The study on the coupling relationship and hydrology mechanism between ecosystem and hydrological process in a basin has recently become the international research frontier in hydrology.Runoff separation is still an i...The study on the coupling relationship and hydrology mechanism between ecosystem and hydrological process in a basin has recently become the international research frontier in hydrology.Runoff separation is still an important subject and possibly cutting edge process in hydrology.This paper summarizes the progress of national and international research,and comments on the advantages and disadvantages of recent,diverse base flow separation methods.This paper also presents research on hydrological process and eco-hydrological function in different landscape zones,combining isotopic technology with hydrochemical methods.Based on the runoff separation of different water bodies,this paper probes into the coupling relationship and hydrology mechanism between ecosystem pattern and eco-hydrological process,and makes analysis on water conservation,regulation and storage mechanism,and eco-hydrological function in different landscape zones.This report also examines future trends in research on hydrological process and eco-hydrological function in mountainous areas.展开更多
Snowmelt water is an essential runoff source of some alpine rivers in China. This study selected the Upper Burqin River(UBR), a typical snow-fed river, to quantitatively assess the runoff contributions of different co...Snowmelt water is an essential runoff source of some alpine rivers in China. This study selected the Upper Burqin River(UBR), a typical snow-fed river, to quantitatively assess the runoff contributions of different components, as well as the causes of runoff variations under the background of cryosphere change and global warming. Based on the spatial-temporal distributions of snow and glaciers during a year, as well as the altitudinal variations of 0 ℃ isotherm, the high flow hydrographs in UBR was separated into two parts: seasonal snowmelt flood of lower altitudes(<3,000 m) and glacier-snow melt flow in high altitudes(3,000-4,296 m). The daily baseflow hydrograph of UBR was separated by the digital filtering technique. It is concluded that the contributions of snowmelt flow, glacier melt flow, and baseflow(includes rainfall runoff component) to total annual flow volumes are 27.2%(±2.7%), 8.5%(±1.7%), and 64.3%(±3.0%), respectively. The speed of air temperature rise in spring may be the controlling factor for monthly snowmelt flow distributions in the snow-fed river. The volume of snowmelt was determined by spring precipitation(SP) and previous winter’s precipitation(PWP). The PWP changes can explain 43.7% of snowmelt changes during 1981-2010 in UBR, while snowmelt change in 1957-1980 is more impacted by SP. The determining factor of snowmelt variation was changed from SP to PAP during the recent decades. Precipitation in current year, excluding previous year’s rainfall and snowfall, can only explain 32%-70% of the variability in total runoff.展开更多
Changes in forest cover can affect not only the total runoff from a watershed,but also the runoff components(e.g.,surface runoff,interflow,groundwater flow).In this study,based on the WetSpa model simulation method an...Changes in forest cover can affect not only the total runoff from a watershed,but also the runoff components(e.g.,surface runoff,interflow,groundwater flow).In this study,based on the WetSpa model simulation method and the recursive digital filtering(RDF)method,the Banchengzi watershed in the mountainous region of Beijing,China,was selected to investigate how changes in forest cover type and cover percentage affect total runoff,surface runoff,interflow,and groundwater flow through scenario settings.Our results show that the difference between the WetSpa model and the RDF method for separating runoff components is small,with only 4.7%and 0.4%difference between the calibration and validation periods.Total runoff in different forest types followed the order shrub forest>coniferous forest>mixed forest>broadleaf forest.Regarding runoff components,the proportions of baseflow(sum of interflow and groundwater flow)to total runoff were 61.1%and 60.8%for broadleaf and mixed forests,which was significantly higher than those of 53.0%and 43.1%for coniferous and shrub forests.However,the proportion of shrub forest baseflow was high in wet years,and that of broadleaf forest baseflow was high in normal and dry years.The proportions of interflow and groundwater flow from various forest cover types to total runoff continued to increase with increasing forest cover rate.Our results have important implications for the implementation of afforestation projects and forest conservation programs,contributing to water resource regulation and ecosystem protection in watersheds.展开更多
基金supported by the West Action Program of Chinese Academy of Sciences (KZCX2-XB2-04-03)the Chinese National Natural Science Fund (40801021)+1 种基金the West Light Foundation of West Doctor of CASthe China Postdoctoral Science Foundation (200801244, 20070420135)
文摘The study on the coupling relationship and hydrology mechanism between ecosystem and hydrological process in a basin has recently become the international research frontier in hydrology.Runoff separation is still an important subject and possibly cutting edge process in hydrology.This paper summarizes the progress of national and international research,and comments on the advantages and disadvantages of recent,diverse base flow separation methods.This paper also presents research on hydrological process and eco-hydrological function in different landscape zones,combining isotopic technology with hydrochemical methods.Based on the runoff separation of different water bodies,this paper probes into the coupling relationship and hydrology mechanism between ecosystem pattern and eco-hydrological process,and makes analysis on water conservation,regulation and storage mechanism,and eco-hydrological function in different landscape zones.This report also examines future trends in research on hydrological process and eco-hydrological function in mountainous areas.
基金the National Natural Science Foundation of China(Nos.41877156,41730751,41771040,41771084)the International Science&Technology Cooperation Program of China(No.2018YFE010010002).
文摘Snowmelt water is an essential runoff source of some alpine rivers in China. This study selected the Upper Burqin River(UBR), a typical snow-fed river, to quantitatively assess the runoff contributions of different components, as well as the causes of runoff variations under the background of cryosphere change and global warming. Based on the spatial-temporal distributions of snow and glaciers during a year, as well as the altitudinal variations of 0 ℃ isotherm, the high flow hydrographs in UBR was separated into two parts: seasonal snowmelt flood of lower altitudes(<3,000 m) and glacier-snow melt flow in high altitudes(3,000-4,296 m). The daily baseflow hydrograph of UBR was separated by the digital filtering technique. It is concluded that the contributions of snowmelt flow, glacier melt flow, and baseflow(includes rainfall runoff component) to total annual flow volumes are 27.2%(±2.7%), 8.5%(±1.7%), and 64.3%(±3.0%), respectively. The speed of air temperature rise in spring may be the controlling factor for monthly snowmelt flow distributions in the snow-fed river. The volume of snowmelt was determined by spring precipitation(SP) and previous winter’s precipitation(PWP). The PWP changes can explain 43.7% of snowmelt changes during 1981-2010 in UBR, while snowmelt change in 1957-1980 is more impacted by SP. The determining factor of snowmelt variation was changed from SP to PAP during the recent decades. Precipitation in current year, excluding previous year’s rainfall and snowfall, can only explain 32%-70% of the variability in total runoff.
基金This work was supported by the National Key Research and Development Program of China(2020YFF0305905-03).
文摘Changes in forest cover can affect not only the total runoff from a watershed,but also the runoff components(e.g.,surface runoff,interflow,groundwater flow).In this study,based on the WetSpa model simulation method and the recursive digital filtering(RDF)method,the Banchengzi watershed in the mountainous region of Beijing,China,was selected to investigate how changes in forest cover type and cover percentage affect total runoff,surface runoff,interflow,and groundwater flow through scenario settings.Our results show that the difference between the WetSpa model and the RDF method for separating runoff components is small,with only 4.7%and 0.4%difference between the calibration and validation periods.Total runoff in different forest types followed the order shrub forest>coniferous forest>mixed forest>broadleaf forest.Regarding runoff components,the proportions of baseflow(sum of interflow and groundwater flow)to total runoff were 61.1%and 60.8%for broadleaf and mixed forests,which was significantly higher than those of 53.0%and 43.1%for coniferous and shrub forests.However,the proportion of shrub forest baseflow was high in wet years,and that of broadleaf forest baseflow was high in normal and dry years.The proportions of interflow and groundwater flow from various forest cover types to total runoff continued to increase with increasing forest cover rate.Our results have important implications for the implementation of afforestation projects and forest conservation programs,contributing to water resource regulation and ecosystem protection in watersheds.