Buildings and heating,ventilation and air conditioning(HVAC)systems are recognized as effective flexibility resources that can interact with the power grid to reduce electrical peak loads.Model predictive control(MPC)...Buildings and heating,ventilation and air conditioning(HVAC)systems are recognized as effective flexibility resources that can interact with the power grid to reduce electrical peak loads.Model predictive control(MPC)is a powerful approach for fully unlocking the energy flexibility of buildings.However,MPC relies on online optimization for practical engineering deployment,which imposes a significant computational burden and limits its widespread adoption.To address the challenge of computational burden,this study proposes a machine learning-enhanced lightweight rule-based control strategy(ML-RBC).The main idea of ML-RBC is to use a machine learning(ML)model to automatically tune the adjustable parameters of the rule-based controller(RBC).Specifically,the ML model learns the functional relationship between external inputs and adjustable parameters from a dataset generated by batch offline closed-loop MPC simulations.The proposed method retains inherent high computational efficiency of RBC while also achieving optimal control performance.The demand response(DR)control performance of the proposed method is evaluated using a high-fidelity co-simulation platform that integrates Spawn of EnergyPlus and Modelica.Simulation experiments are performed on a multi-zone office building equipped with a variable air volume(VAV)cooling system under time-of-use electricity pricing and day-ahead DR programs.The experimental results indicate that,compared to the baseline strategy,ML-RBC and traditional MPC achieve cost savings of 21.95%and 23.07%,respectively.Importantly,ML-RBC eliminates the need for online optimization while achieving a computational cost of less than one-thousandth that of MPC,with only a slight performance loss as the trade-off.Finally,the impact of the trajectory interpolation method in ML-RBC on control performance is discussed,revealing that different interpolation methods have a minor influence on the overall performance.展开更多
Self-powered photovoltaic windows,which integrate photovoltaic with electrochromic devices,have attracted widespread attention of scholars since they can generate electricity in situ and reduce building energy consump...Self-powered photovoltaic windows,which integrate photovoltaic with electrochromic devices,have attracted widespread attention of scholars since they can generate electricity in situ and reduce building energy consumption by modulating the transmitted solar radiation.However,previous studies mainly focused on the material development and performance characterization,lack of comfort assessment and energy saving potential of its application to buildings.To address this issue,an adjustable semi-transparent photovoltaic(ATPV)window which integrates CdTe-based photovoltaic and WO3-based electrochromic,was taken as the research object,and a novel rule-based control strategy taking the beam solar radiation luminous efficacy(CtrlEff)as decision variable was proposed for the first time.The ATPV window model was established in WINDOW software based on the measured data,and then it was exported to integrated with a medium office building model in EnergyPlus for performance evaluation including the visual comfort,thermal comfort,net energy consumption,and net-zero energy ratio.The results of a case study in Changsha(E 112°,N 28°)indicated that the ATPV window under the CtrlEff strategy can effectively reduce the southward and westward intolerable glare by 86.9%and 94.9%,respectively,and increase the thermal comfort hours by 5%and 2%,compared to the Low-E window.Furthermore,the net-zero energy consumption can be decreased by 58.7%,65.7%,64.1%,and 53.8%for south,west,east,and north orientations,and the corresponding net-zero energy ratios are 65.1%,54.6%,62.7%,and 61.6%,respectively.The findings of this study provide new strategies for the control and optimization of the adjustable window.展开更多
The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for cancelin...The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for canceling the effect of backlash. Adaptive nonlinear PID controller together with rule? based backlash compensator was developed and a satisfactory tracking performance was achieved. Simulation results demonstrated the effectiveness of the proposed method.展开更多
Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor fault...Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.展开更多
As legal cases grow in complexity and volume worldwide,integrating machine learning and artificial intelligence into judicial systems has become a pivotal research focus.This study introduces a comprehensive framework...As legal cases grow in complexity and volume worldwide,integrating machine learning and artificial intelligence into judicial systems has become a pivotal research focus.This study introduces a comprehensive framework for verdict recommendation that synergizes rule-based methods with deep learning techniques specifically tailored to the legal domain.The proposed framework comprises three core modules:legal feature extraction,semantic similarity assessment,and verdict recommendation.For legal feature extraction,a rule-based approach leverages Black’s Law Dictionary and WordNet Synsets to construct feature vectors from judicial texts.Semantic similarity between cases is evaluated using a hybrid method that combines rule-based logic with an LSTM model,analyzing the feature vectors of query cases against a legal knowledge base.Verdicts are then recommended through a rule-based retrieval system,enhanced by predefined legal statutes and regulations.By merging rule-based methodologies with deep learning,this framework addresses the interpretability challenges often associated with contemporary AImodels,thereby enhancing both transparency and generalizability across diverse legal contexts.The system was rigorously tested using a legal corpus of 43,000 case laws across six categories:Criminal,Revenue,Service,Corporate,Constitutional,and Civil law,ensuring its adaptability across a wide range of judicial scenarios.Performance evaluation showed that the feature extraction module achieved an average accuracy of 91.6%with an F-Score of 95%.The semantic similarity module,tested using Manhattan,Euclidean,and Cosine distance metrics,achieved 88%accuracy and a 93%F-Score for short queries(Manhattan),89%accuracy and a 93.7%F-Score for medium-length queries(Euclidean),and 87%accuracy with a 92.5%F-Score for longer queries(Cosine).The verdict recommendation module outperformed existing methods,achieving 90%accuracy and a 93.75%F-Score.This study highlights the potential of hybrid AI frameworks to improve judicial decision-making and streamline legal processes,offering a robust,interpretable,and adaptable solution for the evolving demands of modern legal systems.展开更多
The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy b...The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy but ignore the interpretability.The single-objective optimization strategy has been applied in the interpretability-accuracy trade-off by inte-grating accuracy and interpretability into an optimization objec-tive.But the integration has a greater impact on optimization results with strong subjectivity.Thus,a multi-objective optimiza-tion framework in the modeling of BRB systems with inter-pretability-accuracy trade-off is proposed in this paper.Firstly,complexity and accuracy are taken as two independent opti-mization goals,and uniformity as a constraint to give the mathe-matical description.Secondly,a classical multi-objective opti-mization algorithm,nondominated sorting genetic algorithm II(NSGA-II),is utilized as an optimization tool to give a set of BRB systems with different accuracy and complexity.Finally,a pipeline leakage detection case is studied to verify the feasibility and effectiveness of the developed multi-objective optimization.The comparison illustrates that the proposed multi-objective optimization framework can effectively avoid the subjectivity of single-objective optimization,and has capability of joint optimiz-ing the structure and parameters of BRB systems with inter-pretability-accuracy trade-off.展开更多
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ...In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.展开更多
Microbial population and enzyme activities are the significant indicators of soil strength.Soil microbial dynamics characterize microbial population and enzyme activities.The present study explores the development of ...Microbial population and enzyme activities are the significant indicators of soil strength.Soil microbial dynamics characterize microbial population and enzyme activities.The present study explores the development of efficient predictive modeling systems for the estimation of specific soil microbial dynamics,like rock phosphate solubilization,bacterial population,and ACC-deaminase activity.More specifically,optimized subtractive clustering(SC)and Wang and Mendel's(WM)fuzzy inference systems(FIS)have been implemented with the objective to achieve the best estimation accuracy of microbial dynamics.Experimental measurements were performed using controlled pot experiment using minimal salt media with rock phosphate as sole carbon source inoculated with phosphate solubilizing microorganism in order to estimate rock phosphate solubilization potential of selected strains.Three experimental parameters,including temperature,pH,and incubation period have been used as inputs SC-FIS and WM-FIS.The better performance of the SC-FIS has been observed as compared to the WM-FIS in the estimation of phosphate solubilization and bacterial population with the maximum value of the coefficient of determination(0.9988)2 R=in the estimation of previous microbial dynamics.展开更多
Inland freshwater lake wetlands play an important role in regional ecological balance. Hongze Lake is the fourth biggest freshwater lake in China. In the past three decades, there has been significant loss of freshwat...Inland freshwater lake wetlands play an important role in regional ecological balance. Hongze Lake is the fourth biggest freshwater lake in China. In the past three decades, there has been significant loss of freshwater wet- lands within the lake and at the mouths of neighboring rivers, due to disturbance, primarily from human activities. The main purpose of this paper was to explore a practical technology for differentiating wetlands effectively from upland types in close proximity to them. In the paper, an integrated method, which combined per-pixel and per-field classifi- cation, was used for mapping wetlands of Hongze Lake and their neighboring upland types. Firstly, Landsat ETM+ imagery was segmented and classified by using spectral and textural features. Secondly, ETM+ spectral bands, textural features derived from ETM+ Pan imagery, relative relations between neighboring classes, shape fea^xes, and elevation were used in a decision tree classification. Thirdly, per-pixel classification results from the decision tree classifier were improved by using classification results from object-oriented classification as a context. The results show that the technology has not only overcome the salt-and-pepper effect commonly observed in the past studies, but also has im- proved the accuracy of identification by nearly 5%.展开更多
Train traffic rescheduling is a complicated and large-scaled combinatorial problem. According to the characteristics of China railway system and from the point of practical use, this paper introduces a rule-based trai...Train traffic rescheduling is a complicated and large-scaled combinatorial problem. According to the characteristics of China railway system and from the point of practical use, this paper introduces a rule-based train traffic reschedule interactive simulator. It can be used as a powerful training tool to train the dispatcher and to carry out experimental analysis. The production rules are used as the basic for describing the processes to be simulated. With the increase of rule, users can easily upgrade the simulator by adding their own rules.展开更多
Identity verification using authenticity evaluation of handwritten signatures is an important issue.There have been several approaches for the verification of signatures using dynamics of the signing process.Most of t...Identity verification using authenticity evaluation of handwritten signatures is an important issue.There have been several approaches for the verification of signatures using dynamics of the signing process.Most of these approaches extract only global characteristics.With the aim of capturing both dynamic global and local features,this paper introduces a novel model for verifying handwritten dynamic signatures using neutrosophic rule-based verification system(NRVS)and Genetic NRVS(GNRVS)models.The neutrosophic Logic is structured to reflect multiple types of knowledge and relations among all features using three values:truth,indeterminacy,and falsity.These three values are determined by neutrosophic membership functions.The proposed model also is able to deal with all features without the need to select from them.In the GNRVS model,the neutrosophic rules are automatically chosen by Genetic Algorithms.The performance of the proposed system is tested on the MCYT-Signature-100 dataset.In terms of the accuracy,average error rate,false acceptance rate,and false rejection rate,the experimental results indicate that the proposed model has a significant advantage compared to different well-known models.展开更多
In the field of sentiment analysis,extracting aspects or opinion targets fromuser reviews about a product is a key task.Extracting the polarity of an opinion is much more useful if we also know the targeted Aspect or ...In the field of sentiment analysis,extracting aspects or opinion targets fromuser reviews about a product is a key task.Extracting the polarity of an opinion is much more useful if we also know the targeted Aspect or Feature.Rule based approaches,like dependency-based rules,are quite popular and effective for this purpose.However,they are heavily dependent on the authenticity of the employed parts-of-speech(POS)tagger and dependency parser.Another popular rule based approach is to use sequential rules,wherein the rules formulated by learning from the user’s behavior.However,in general,the sequential rule-based approaches have poor generalization capability.Moreover,existing approaches mostly consider an aspect as a noun or noun phrase,so these approaches are unable to extract verb aspects.In this article,we have proposed a multi-layered rule-based(ML-RB)technique using the syntactic dependency parser based rules along with some selective sequential rules in separate layers to extract noun aspects.Additionally,after rigorous analysis,we have also constructed rules for the extraction of verb aspects.These verb rules primarily based on the association between verb and opinion words.The proposed multi-layer technique compensates for the weaknesses of individual layers and yields improved results on two publicly available customer review datasets.The F1 score for both the datasets are 0.90 and 0.88,respectively,which are better than existing approaches.These improved results can be attributed to the application of sequential/syntactic rules in a layered manner as well as the capability to extract both noun and verb aspects.展开更多
This paper firstly proposes a new support vector machine regression (SVR) with a robust loss function, and designs a gradient based algorithm for implementation of the SVR, then uses the SVR to extract fuzzy rules and...This paper firstly proposes a new support vector machine regression (SVR) with a robust loss function, and designs a gradient based algorithm for implementation of the SVR, then uses the SVR to extract fuzzy rules and designs fuzzy rule-based system. Simulations show that fuzzy rule-based system technique based on robust SVR achieves superior performance to the conventional fuzzy inference method, the proposed method provides satisfactory performance with excellent approximation and generalization property than the existing algorithm.展开更多
The Wireless Sensor Networks(WSN)are vulnerable to assaults due to the fact that the devices connected to them have a reliable connection to the inter-net.A malicious node acts as the controller and uses a grey hole a...The Wireless Sensor Networks(WSN)are vulnerable to assaults due to the fact that the devices connected to them have a reliable connection to the inter-net.A malicious node acts as the controller and uses a grey hole attack to get the data from all of the other nodes in the network.Additionally,the nodes are dis-carding and modifying the data packets according to the requirements of the sys-tem.The assault modifies the fundamental concept of the WSNs,which is that different devices should communicate with one another.In the proposed system,there is a fuzzy idea offered for the purpose of preventing the grey hole attack from making effective communication among the WSN devices.The currently available model is unable to recognise the myriad of different kinds of attacks.The fuzzy engine identified suspicious actions by utilising the rules that were gen-erated to make a prediction about the malicious node that would halt the process.Experiments conducted using simulation are used to determine delay,accuracy,energy consumption,throughput,and the ratio of packets successfully delivered.It stands in contrast to the model that was suggested,as well as the methodologies that are currently being used,and analogue behavioural modelling.In comparison to the existing method,the proposed model achieves an accuracy rate of 45 per-cent,a packet delivery ratio of 79 percent,and a reduction in energy usage of around 35.6 percent.These results from the simulation demonstrate that the fuzzy grey detection technique that was presented has the potential to increase the net-work’s capability of detecting grey hole assaults.展开更多
Despite the presence of various construction project cost estimate softwares, human experience and knowledge cannot be disregarded. This fact has been proven in practice, where the success of construction cost estimat...Despite the presence of various construction project cost estimate softwares, human experience and knowledge cannot be disregarded. This fact has been proven in practice, where the success of construction cost estimate process is mainly based on knowledge of human estimator. The main question concerns what human knowledge determines the success of the construction cost estimation process. To address this question we have applied Delphi technique and the output is eleven factors that are enough to precisely represent construction cost estimator knowledge. Then we have used First Order Logic (FOL) to represent these factors in terms of predicates and rules. These FOL rules could be used for evaluating construction cost estimator knowledge in five classes: fail, pass, acceptable, good, and very good. As a validation process we have done experiments using history data and the results have proved the accuracy of our proposed method.展开更多
Project-based learning has been in widespread use in education. However, project managers are unaware of the students’ lack of experience and treat them as if they were professional staff. This paper proposes the app...Project-based learning has been in widespread use in education. However, project managers are unaware of the students’ lack of experience and treat them as if they were professional staff. This paper proposes the application of a fuzzy failure mode and effects analysis model for project-based software engineering education. This method integrates the fuzzy rule-based system with learning agents. The agents construct the membership function from historical data. Data are processed by a clustering process that facilitates the construction of the membership function. It helps students who lack experience in risk assessment to develop their expertise in that skill. The paper also suggests a classification technique for a fuzzy rule-based system that can be used to judge risk based on a fuzzy inference system. The student project will thus be further enhanced with respect to risk assessment. We then discuss the design of experiments to verify the proposed model.展开更多
The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,...The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.展开更多
As rule-based systems (RBS) technology gains wider acceptance, the need to create and maintain large knowledge bases will assume greater importance. Demonstrating a rule base to be free from error remains one of the o...As rule-based systems (RBS) technology gains wider acceptance, the need to create and maintain large knowledge bases will assume greater importance. Demonstrating a rule base to be free from error remains one of the obstacles to the adoption of this technology. In the past several years, a vast body of research has been carried out in developing various graphical techniques such as utilizing Petri Nets to analyze structural errors in rule-based systems, which utilize propositional logic. Four typical errors in rule-based systems are redundancy, circularity, incompleteness, and inconsistency. Recently, a DNA-based computing approach to detect these errors has been proposed. That paper presents algorithms which are able to detect structural errors just for special cases. For a rule base, which contains multiple starting nodes and goal nodes, structural errors are not removed correctly by utilizing the algorithms proposed in that paper and algorithms lack generality. In this study algorithms mainly based on Adleman’s operations, which are able to detect structural errors, in any form that they may arise in rule base, are presented. The potential of applying our algorithm is auspicious giving the operational time complexity of O(n*(Max{q, K, z})), in which n is the number of fact clauses;q is the number of rules in the longest inference chain;K is the number of tubes containing antecedents which are comprised of distinct number of starting nodes;and z denotes the maximum number of distinct antecedents comprised of the same number of starting nodes.展开更多
This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic mo...This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.展开更多
The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow ...The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract.展开更多
基金supported in part by the scholarship from Ministry of Science and Technology of China(Project ID:2024YFE0199300).
文摘Buildings and heating,ventilation and air conditioning(HVAC)systems are recognized as effective flexibility resources that can interact with the power grid to reduce electrical peak loads.Model predictive control(MPC)is a powerful approach for fully unlocking the energy flexibility of buildings.However,MPC relies on online optimization for practical engineering deployment,which imposes a significant computational burden and limits its widespread adoption.To address the challenge of computational burden,this study proposes a machine learning-enhanced lightweight rule-based control strategy(ML-RBC).The main idea of ML-RBC is to use a machine learning(ML)model to automatically tune the adjustable parameters of the rule-based controller(RBC).Specifically,the ML model learns the functional relationship between external inputs and adjustable parameters from a dataset generated by batch offline closed-loop MPC simulations.The proposed method retains inherent high computational efficiency of RBC while also achieving optimal control performance.The demand response(DR)control performance of the proposed method is evaluated using a high-fidelity co-simulation platform that integrates Spawn of EnergyPlus and Modelica.Simulation experiments are performed on a multi-zone office building equipped with a variable air volume(VAV)cooling system under time-of-use electricity pricing and day-ahead DR programs.The experimental results indicate that,compared to the baseline strategy,ML-RBC and traditional MPC achieve cost savings of 21.95%and 23.07%,respectively.Importantly,ML-RBC eliminates the need for online optimization while achieving a computational cost of less than one-thousandth that of MPC,with only a slight performance loss as the trade-off.Finally,the impact of the trajectory interpolation method in ML-RBC on control performance is discussed,revealing that different interpolation methods have a minor influence on the overall performance.
基金the National Natural Science Foundation of China(No.51978252)the High-tech Industry Technology Innovation Leading Plan of Hunan Province(2020GK2076)+2 种基金the Science and Technology Innovation Program of Hunan Province(2020RC5003)the Hunan Province Innovation Development Program(2020RC4045)the Hunan Province Key R&D Program(2021SK2045).
文摘Self-powered photovoltaic windows,which integrate photovoltaic with electrochromic devices,have attracted widespread attention of scholars since they can generate electricity in situ and reduce building energy consumption by modulating the transmitted solar radiation.However,previous studies mainly focused on the material development and performance characterization,lack of comfort assessment and energy saving potential of its application to buildings.To address this issue,an adjustable semi-transparent photovoltaic(ATPV)window which integrates CdTe-based photovoltaic and WO3-based electrochromic,was taken as the research object,and a novel rule-based control strategy taking the beam solar radiation luminous efficacy(CtrlEff)as decision variable was proposed for the first time.The ATPV window model was established in WINDOW software based on the measured data,and then it was exported to integrated with a medium office building model in EnergyPlus for performance evaluation including the visual comfort,thermal comfort,net energy consumption,and net-zero energy ratio.The results of a case study in Changsha(E 112°,N 28°)indicated that the ATPV window under the CtrlEff strategy can effectively reduce the southward and westward intolerable glare by 86.9%and 94.9%,respectively,and increase the thermal comfort hours by 5%and 2%,compared to the Low-E window.Furthermore,the net-zero energy consumption can be decreased by 58.7%,65.7%,64.1%,and 53.8%for south,west,east,and north orientations,and the corresponding net-zero energy ratios are 65.1%,54.6%,62.7%,and 61.6%,respectively.The findings of this study provide new strategies for the control and optimization of the adjustable window.
文摘The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for canceling the effect of backlash. Adaptive nonlinear PID controller together with rule? based backlash compensator was developed and a satisfactory tracking performance was achieved. Simulation results demonstrated the effectiveness of the proposed method.
基金supported by National Natural Science Foundation of China(Grant No. 51275264)National Hi-tech Research and Development Program of China(863 Program, Grant No. 2011AA11A269)
文摘Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.
基金funded by the Deanship of Scientific Research at Jouf University under Grant number DSR-2022-RG-0101。
文摘As legal cases grow in complexity and volume worldwide,integrating machine learning and artificial intelligence into judicial systems has become a pivotal research focus.This study introduces a comprehensive framework for verdict recommendation that synergizes rule-based methods with deep learning techniques specifically tailored to the legal domain.The proposed framework comprises three core modules:legal feature extraction,semantic similarity assessment,and verdict recommendation.For legal feature extraction,a rule-based approach leverages Black’s Law Dictionary and WordNet Synsets to construct feature vectors from judicial texts.Semantic similarity between cases is evaluated using a hybrid method that combines rule-based logic with an LSTM model,analyzing the feature vectors of query cases against a legal knowledge base.Verdicts are then recommended through a rule-based retrieval system,enhanced by predefined legal statutes and regulations.By merging rule-based methodologies with deep learning,this framework addresses the interpretability challenges often associated with contemporary AImodels,thereby enhancing both transparency and generalizability across diverse legal contexts.The system was rigorously tested using a legal corpus of 43,000 case laws across six categories:Criminal,Revenue,Service,Corporate,Constitutional,and Civil law,ensuring its adaptability across a wide range of judicial scenarios.Performance evaluation showed that the feature extraction module achieved an average accuracy of 91.6%with an F-Score of 95%.The semantic similarity module,tested using Manhattan,Euclidean,and Cosine distance metrics,achieved 88%accuracy and a 93%F-Score for short queries(Manhattan),89%accuracy and a 93.7%F-Score for medium-length queries(Euclidean),and 87%accuracy with a 92.5%F-Score for longer queries(Cosine).The verdict recommendation module outperformed existing methods,achieving 90%accuracy and a 93.75%F-Score.This study highlights the potential of hybrid AI frameworks to improve judicial decision-making and streamline legal processes,offering a robust,interpretable,and adaptable solution for the evolving demands of modern legal systems.
基金supported by the National Natural Science Foundation of China(71901212)the Science and Technology Innovation Program of Hunan Province(2020RC4046).
文摘The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy but ignore the interpretability.The single-objective optimization strategy has been applied in the interpretability-accuracy trade-off by inte-grating accuracy and interpretability into an optimization objec-tive.But the integration has a greater impact on optimization results with strong subjectivity.Thus,a multi-objective optimiza-tion framework in the modeling of BRB systems with inter-pretability-accuracy trade-off is proposed in this paper.Firstly,complexity and accuracy are taken as two independent opti-mization goals,and uniformity as a constraint to give the mathe-matical description.Secondly,a classical multi-objective opti-mization algorithm,nondominated sorting genetic algorithm II(NSGA-II),is utilized as an optimization tool to give a set of BRB systems with different accuracy and complexity.Finally,a pipeline leakage detection case is studied to verify the feasibility and effectiveness of the developed multi-objective optimization.The comparison illustrates that the proposed multi-objective optimization framework can effectively avoid the subjectivity of single-objective optimization,and has capability of joint optimiz-ing the structure and parameters of BRB systems with inter-pretability-accuracy trade-off.
基金Supported in part by Natural Science Foundation of Guangxi(2023GXNSFAA026246)in part by the Central Government's Guide to Local Science and Technology Development Fund(GuikeZY23055044)in part by the National Natural Science Foundation of China(62363003)。
文摘In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method.
文摘Microbial population and enzyme activities are the significant indicators of soil strength.Soil microbial dynamics characterize microbial population and enzyme activities.The present study explores the development of efficient predictive modeling systems for the estimation of specific soil microbial dynamics,like rock phosphate solubilization,bacterial population,and ACC-deaminase activity.More specifically,optimized subtractive clustering(SC)and Wang and Mendel's(WM)fuzzy inference systems(FIS)have been implemented with the objective to achieve the best estimation accuracy of microbial dynamics.Experimental measurements were performed using controlled pot experiment using minimal salt media with rock phosphate as sole carbon source inoculated with phosphate solubilizing microorganism in order to estimate rock phosphate solubilization potential of selected strains.Three experimental parameters,including temperature,pH,and incubation period have been used as inputs SC-FIS and WM-FIS.The better performance of the SC-FIS has been observed as compared to the WM-FIS in the estimation of phosphate solubilization and bacterial population with the maximum value of the coefficient of determination(0.9988)2 R=in the estimation of previous microbial dynamics.
基金Under the auspices of Natural Science Foundation of Jiangsu Province (No. BK2008360)Foundamental Research Funds for the Central Universities (No. 2009B12714,2009B11714)
文摘Inland freshwater lake wetlands play an important role in regional ecological balance. Hongze Lake is the fourth biggest freshwater lake in China. In the past three decades, there has been significant loss of freshwater wet- lands within the lake and at the mouths of neighboring rivers, due to disturbance, primarily from human activities. The main purpose of this paper was to explore a practical technology for differentiating wetlands effectively from upland types in close proximity to them. In the paper, an integrated method, which combined per-pixel and per-field classifi- cation, was used for mapping wetlands of Hongze Lake and their neighboring upland types. Firstly, Landsat ETM+ imagery was segmented and classified by using spectral and textural features. Secondly, ETM+ spectral bands, textural features derived from ETM+ Pan imagery, relative relations between neighboring classes, shape fea^xes, and elevation were used in a decision tree classification. Thirdly, per-pixel classification results from the decision tree classifier were improved by using classification results from object-oriented classification as a context. The results show that the technology has not only overcome the salt-and-pepper effect commonly observed in the past studies, but also has im- proved the accuracy of identification by nearly 5%.
文摘Train traffic rescheduling is a complicated and large-scaled combinatorial problem. According to the characteristics of China railway system and from the point of practical use, this paper introduces a rule-based train traffic reschedule interactive simulator. It can be used as a powerful training tool to train the dispatcher and to carry out experimental analysis. The production rules are used as the basic for describing the processes to be simulated. With the increase of rule, users can easily upgrade the simulator by adding their own rules.
文摘Identity verification using authenticity evaluation of handwritten signatures is an important issue.There have been several approaches for the verification of signatures using dynamics of the signing process.Most of these approaches extract only global characteristics.With the aim of capturing both dynamic global and local features,this paper introduces a novel model for verifying handwritten dynamic signatures using neutrosophic rule-based verification system(NRVS)and Genetic NRVS(GNRVS)models.The neutrosophic Logic is structured to reflect multiple types of knowledge and relations among all features using three values:truth,indeterminacy,and falsity.These three values are determined by neutrosophic membership functions.The proposed model also is able to deal with all features without the need to select from them.In the GNRVS model,the neutrosophic rules are automatically chosen by Genetic Algorithms.The performance of the proposed system is tested on the MCYT-Signature-100 dataset.In terms of the accuracy,average error rate,false acceptance rate,and false rejection rate,the experimental results indicate that the proposed model has a significant advantage compared to different well-known models.
文摘In the field of sentiment analysis,extracting aspects or opinion targets fromuser reviews about a product is a key task.Extracting the polarity of an opinion is much more useful if we also know the targeted Aspect or Feature.Rule based approaches,like dependency-based rules,are quite popular and effective for this purpose.However,they are heavily dependent on the authenticity of the employed parts-of-speech(POS)tagger and dependency parser.Another popular rule based approach is to use sequential rules,wherein the rules formulated by learning from the user’s behavior.However,in general,the sequential rule-based approaches have poor generalization capability.Moreover,existing approaches mostly consider an aspect as a noun or noun phrase,so these approaches are unable to extract verb aspects.In this article,we have proposed a multi-layered rule-based(ML-RB)technique using the syntactic dependency parser based rules along with some selective sequential rules in separate layers to extract noun aspects.Additionally,after rigorous analysis,we have also constructed rules for the extraction of verb aspects.These verb rules primarily based on the association between verb and opinion words.The proposed multi-layer technique compensates for the weaknesses of individual layers and yields improved results on two publicly available customer review datasets.The F1 score for both the datasets are 0.90 and 0.88,respectively,which are better than existing approaches.These improved results can be attributed to the application of sequential/syntactic rules in a layered manner as well as the capability to extract both noun and verb aspects.
基金Supported by Zhejiang Province Nature Science Fund (No.Y106259)
文摘This paper firstly proposes a new support vector machine regression (SVR) with a robust loss function, and designs a gradient based algorithm for implementation of the SVR, then uses the SVR to extract fuzzy rules and designs fuzzy rule-based system. Simulations show that fuzzy rule-based system technique based on robust SVR achieves superior performance to the conventional fuzzy inference method, the proposed method provides satisfactory performance with excellent approximation and generalization property than the existing algorithm.
文摘The Wireless Sensor Networks(WSN)are vulnerable to assaults due to the fact that the devices connected to them have a reliable connection to the inter-net.A malicious node acts as the controller and uses a grey hole attack to get the data from all of the other nodes in the network.Additionally,the nodes are dis-carding and modifying the data packets according to the requirements of the sys-tem.The assault modifies the fundamental concept of the WSNs,which is that different devices should communicate with one another.In the proposed system,there is a fuzzy idea offered for the purpose of preventing the grey hole attack from making effective communication among the WSN devices.The currently available model is unable to recognise the myriad of different kinds of attacks.The fuzzy engine identified suspicious actions by utilising the rules that were gen-erated to make a prediction about the malicious node that would halt the process.Experiments conducted using simulation are used to determine delay,accuracy,energy consumption,throughput,and the ratio of packets successfully delivered.It stands in contrast to the model that was suggested,as well as the methodologies that are currently being used,and analogue behavioural modelling.In comparison to the existing method,the proposed model achieves an accuracy rate of 45 per-cent,a packet delivery ratio of 79 percent,and a reduction in energy usage of around 35.6 percent.These results from the simulation demonstrate that the fuzzy grey detection technique that was presented has the potential to increase the net-work’s capability of detecting grey hole assaults.
文摘Despite the presence of various construction project cost estimate softwares, human experience and knowledge cannot be disregarded. This fact has been proven in practice, where the success of construction cost estimate process is mainly based on knowledge of human estimator. The main question concerns what human knowledge determines the success of the construction cost estimation process. To address this question we have applied Delphi technique and the output is eleven factors that are enough to precisely represent construction cost estimator knowledge. Then we have used First Order Logic (FOL) to represent these factors in terms of predicates and rules. These FOL rules could be used for evaluating construction cost estimator knowledge in five classes: fail, pass, acceptable, good, and very good. As a validation process we have done experiments using history data and the results have proved the accuracy of our proposed method.
文摘Project-based learning has been in widespread use in education. However, project managers are unaware of the students’ lack of experience and treat them as if they were professional staff. This paper proposes the application of a fuzzy failure mode and effects analysis model for project-based software engineering education. This method integrates the fuzzy rule-based system with learning agents. The agents construct the membership function from historical data. Data are processed by a clustering process that facilitates the construction of the membership function. It helps students who lack experience in risk assessment to develop their expertise in that skill. The paper also suggests a classification technique for a fuzzy rule-based system that can be used to judge risk based on a fuzzy inference system. The student project will thus be further enhanced with respect to risk assessment. We then discuss the design of experiments to verify the proposed model.
基金supported by the State Grid Corporation of China Science and Technology Project,grant number 52270723000900K.
文摘The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.
文摘As rule-based systems (RBS) technology gains wider acceptance, the need to create and maintain large knowledge bases will assume greater importance. Demonstrating a rule base to be free from error remains one of the obstacles to the adoption of this technology. In the past several years, a vast body of research has been carried out in developing various graphical techniques such as utilizing Petri Nets to analyze structural errors in rule-based systems, which utilize propositional logic. Four typical errors in rule-based systems are redundancy, circularity, incompleteness, and inconsistency. Recently, a DNA-based computing approach to detect these errors has been proposed. That paper presents algorithms which are able to detect structural errors just for special cases. For a rule base, which contains multiple starting nodes and goal nodes, structural errors are not removed correctly by utilizing the algorithms proposed in that paper and algorithms lack generality. In this study algorithms mainly based on Adleman’s operations, which are able to detect structural errors, in any form that they may arise in rule base, are presented. The potential of applying our algorithm is auspicious giving the operational time complexity of O(n*(Max{q, K, z})), in which n is the number of fact clauses;q is the number of rules in the longest inference chain;K is the number of tubes containing antecedents which are comprised of distinct number of starting nodes;and z denotes the maximum number of distinct antecedents comprised of the same number of starting nodes.
基金supported by the National Natural Science Foundation of China(Nos.62103052 and No.52175214)。
文摘This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.
基金supported in part by Natural Science Foundation of Jiangsu Province under Grant BK20230255Natural Science Foundation of Shandong Province under Grant ZR2023QE281.
文摘The multi-terminal direct current(DC)grid has extinctive superiorities over the traditional alternating current system in integrating large-scale renewable energy.Both the DC circuit breaker(DCCB)and the current flow controller(CFC)are demanded to ensure the multiterminal DC grid to operates reliably and flexibly.However,since the CFC and the DCCB are all based on fully controlled semiconductor switches(e.g.,insulated gate bipolar transistor,integrated gate commutated thyristor,etc.),their separation configuration in the multiterminal DC grid will lead to unaffordable implementation costs and conduction power losses.To solve these problems,integrated equipment with both current flow control and fault isolation abilities is proposed,which shares the expensive and duplicated components of CFCs and DCCBs among adjacent lines.In addition,the complicated coordination control of CFCs and DCCBs can be avoided by adopting the integrated equipment in themultiterminal DC grid.In order to examine the current flow control and fault isolation abilities of the integrated equipment,the simulation model of a specific meshed four-terminal DC grid is constructed in the PSCAD/EMTDC software.Finally,the comparison between the integrated equipment and the separate solution is presented a specific result or conclusion needs to be added to the abstract.