The stock of Bigeye tuna(Thunnus obesus) in the Indian Ocean supports an important international fishery and is considered to be fully exploited. The responsible management agency, the Indian Ocean Tuna Commission(IOT...The stock of Bigeye tuna(Thunnus obesus) in the Indian Ocean supports an important international fishery and is considered to be fully exploited. The responsible management agency, the Indian Ocean Tuna Commission(IOTC), does not have an explicit management decision-making framework in place to prevent over-fishing. In this study, we evaluated three harvest control rules, i) constant fishing mortality(CF), from 0.2 to 0.6, ii) constant catch(CC), from 60000 to 140000 t, and iii) constant escapement(CE), from 0.3 to 0.7. The population dynamics simulated by the operating model was based on the most recent stock assessment using Stock Synthesis version Ⅲ(SS3). Three simulation scenarios(low, medium and high productivity) were designed to cover possible uncertainty in the stock assessment and biological parameters. Performances of three harvest control rules were compared on the basis of three management objectives(over 3, 10 and 25 years): i) the probability of maintaining spawning stock biomass above a level that can sustain maximum sustainable yield(MSY) on average, ii) the probability of achieving average catches between 0.8 MSY and 1.0 MSY, and iii) inter-annual variability in catches. The constant escapement strategy(CE=0.5), constant fishing mortality strategy(F=0.4) and constant catch(CC=80000) were the most rational among the respective management scenarios. It is concluded that the short-term annual catch is suggested at 80000 t, and the potential total allowable catch for a stable yield could be set at 120000 t once the stock had recovered successfully. All the strategies considered in this study to achieve a ‘tolerable' balance between resource conservation and utilization have been based around the management objectives of the IOTC.展开更多
To improve the ability and precisions of the fuzzy control,this thesis points out the adjusted fuzzy control method,realizes the precision of the fuzzy quantity, and reduces the number of the fuzzy control rules,so th...To improve the ability and precisions of the fuzzy control,this thesis points out the adjusted fuzzy control method,realizes the precision of the fuzzy quantity, and reduces the number of the fuzzy control rules,so that it can predigest the process of disigns and realize the methods without influencing the idiocratic control,which are on the base of the domain flexing.展开更多
The application of conventional flood operation regulation is restricted due to insufficient description of flood control rules for the Pubugou Reservoir in southern China. Based on the requirements of different flood...The application of conventional flood operation regulation is restricted due to insufficient description of flood control rules for the Pubugou Reservoir in southern China. Based on the requirements of different flood control objects, this paper proposes to optimize flood control rules with punishment mechanism by defining different parameters of flood control rules in response to flood inflow forecast and reservoir water level. A genetic algorithm is adopted for solving parameter optimization problem. The failure risk and overflow volume of the downstream insufficient flood control capacity are assessed through the reservoir operation policies. The results show that an optimised regulation can provide better performance than the current flood control rules.展开更多
Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor fault...Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.展开更多
On the tasis of study in the mathematical model of 3-dimensional ruled surface (RS),this paper introduces a new concept of distance paramcter (DP) and also puts forward that themethod of modeling a RS depends on not o...On the tasis of study in the mathematical model of 3-dimensional ruled surface (RS),this paper introduces a new concept of distance paramcter (DP) and also puts forward that themethod of modeling a RS depends on not only two boundary curves but also DP. According toabove theory, the formulas to calculate corresponding point coordinates to any kind of top and bot-tom profile of a workpiece and formulas to calcuate the maximum inclination angle of ruling linehave been obtained. Then a different top and bottom RS mathining method including profile withline-are combination as well as parametric curves has been achieved by 4-axes simultancous con-trol programming proposed.展开更多
Growing numbers of users and many access control policies which involve many different resource attributes in service-oriented environments bring various problems in protecting resource.This paper analyzes the relatio...Growing numbers of users and many access control policies which involve many different resource attributes in service-oriented environments bring various problems in protecting resource.This paper analyzes the relationships of resource attributes to user attributes in all policies, and propose a general attribute and rule based role-based access control(GAR-RBAC) model to meet the security needs. The model can dynamically assign users to roles via rules to meet the need of growing numbers of users. These rules use different attribute expression and permission as a part of authorization constraints, and are defined by analyzing relations of resource attributes to user attributes in many access policies that are defined by the enterprise. The model is a general access control model, and can support many access control policies, and also can be used to wider application for service. The paper also describes how to use the GAR-RBAC model in Web service environments.展开更多
A series of plane-strain physical model experiments are carried out to study the spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway, which is subjected to the pressure induced by the mining p...A series of plane-strain physical model experiments are carried out to study the spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway, which is subjected to the pressure induced by the mining process. The digital photogrammetry technology and large deformation analysis method are applied to measure the deformation and fracture of surrounding rocks. The experimental results indicate that the deformation and fracture of coal pillars are the cause to the instability and failure of the surrounding rocks. The spatiotemporal evolution rule of the rock deformation and fracture surrounding gob-side roadway is obtained. The coal pillar and the roof near coal pillar should be strengthened in support design. The engineering application results also can provide a useful guide that the combined support with wire meshes, beam, anchor bolt and cable is an effective method.展开更多
This paper presents a novel method to solve old problem of water level control system of pressurized water reactor (PWR) steam generator (SG) of nuclear power plant (NPP) .The level control system of SG plays an impo...This paper presents a novel method to solve old problem of water level control system of pressurized water reactor (PWR) steam generator (SG) of nuclear power plant (NPP) .The level control system of SG plays an important role which effects the reliablity,safty,cost of SG and its mathematical models have been solved.A model of the conventional controller is presented and the existing problems are discussed. A novel rule based realtime control technique is designed with a computerized water level control (CWLC) system for SG of PWR NPP.The performance of this is evaluated for full power reactor operating conditions by applying different transient conditions of SG′s data of Qinshan Nuclear Power Plant (QNPP).展开更多
We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utiliz...We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utilize quadratures for singular integrals using graded points. One has a polynomial order of accuracy if the integrand has a polynomial order of smoothness except at the singular point and the other has exponential order of accuracy if the integrand has an infinite order of smoothness except at the singular point. We estimate the order of convergence and computational complexity of the corresponding approximate solutions of the equation. We prove that the second technique preserves the order of convergence and computational complexity of the original collocation method. Numerical experiments are presented to illustrate the theoretical estimates.展开更多
The subjection function of the fuzzy quantity is bell like,which is on the base of the theory;but during the course of the control,each fuzzy grade should be predigested into a triangle of W=4.
The welding process essentially is a complicated nonlinear system with time-varying, uncertain, strong-coupling characteristics, so it is difficult to get high welding quality by traditional control approaches such as...The welding process essentially is a complicated nonlinear system with time-varying, uncertain, strong-coupling characteristics, so it is difficult to get high welding quality by traditional control approaches such as the standard proportionalintegral ( PI) algorithm. A new algorithm based on artificial neural network (ANN) is presented to achieve optimal P1 parameters and improve its adaptability. First, main parameters of artificial neural network are researched to improve the convergence rate and system stability. Then, six expert rules are proposed to constitute the expert adaptive ANN-PI algorithm. Experimental results show that the welding current control system'has high dynamic response rate, and the welding process is stable.展开更多
Accidental or frequent shift often occurs when the shifting rule is built based on traditional two parameters (i.e., velocity and throttle), because the speed of engine varies slower than change of throttle opening....Accidental or frequent shift often occurs when the shifting rule is built based on traditional two parameters (i.e., velocity and throttle), because the speed of engine varies slower than change of throttle opening. Currently, modifying shift point velocity value or throttle by throttle change rate is one of common methods, but the results are not so satisfactory in some working condition such as uphill. The reason is that these methods merely consider throttle change rate which is not enough for a car driving in driver-vehicle-road environment system. So a novel fuzzy control modification strategy is proposed to avoid or reduce those abnormal shift actions. It can adjust shifting rule by the change rate of throttle, current gear position and road environment information, while different gear position and driving environment get corresponding modification value. In order to compare the results of shifting actions, fuel consumption and braking distance, emergent braking in level road and extra-urban driving cycle(EUDC) working conditions with fuzzy shifting schedule modification strategy are simulated digitally. Furthermore, a hardware-in-the-loop simulation platform is introduced to verify its effect in slope road condition according to the ON/OFF numbers of solenoid valve in hydraulic system. The simulation results show that the problem of unexpected shift in those working conditions may be resolved by fuzzy modification strategy. At last, it is concluded that although there is some slight decline in power performance in uphill situation, this fuzzy modification strategy could correctly identify slope of road, decrease braking distance, improve vehicle comfort and fuel economy effectively and prolong the life of clutch system. So, this fuzzy logic shifting strategy provides important references for vehicle intelligent shifting schedule.展开更多
FDES(fuzzy discrete event systems) can effectively represent a kind of complicated systems involving deterministic uncertainties and vagueness as well as human subjective observation and judgement from the view of dis...FDES(fuzzy discrete event systems) can effectively represent a kind of complicated systems involving deterministic uncertainties and vagueness as well as human subjective observation and judgement from the view of discrete events, here the information system is divided into some independent intelligent entitative Agents. The concept of information processing state based on Agents was proposed. The processing state of Agent can be judged by some assistant observation parameters about the Agent and its environment around, and the transition among these states can be represented by FDES based on rules. In order to ensure the harmony of the Agents for information processing, its upstream and downstream buffers are considered in the modeling of the Agent system, and the supervisory controller based on FDES is constructed. The processing state of Agent can be adjusted by the supervisory controller to improve the stability of the system and the efficiency of resource utilization during the process according to the control policies. The result of its application was provided to illustrate the validity of the supervisory adjustment.展开更多
The most important parameters which control the electrolytic process are the concentrations of zinc and sulfuric acid in the electrolyte. An expert control strategy for determining and tracking the optimal concentrati...The most important parameters which control the electrolytic process are the concentrations of zinc and sulfuric acid in the electrolyte. An expert control strategy for determining and tracking the optimal concentrations was proposed, which uses neural networks, rule models and a single loop control scheme. First, the process was described and the strategy that features an expert controller and three single loop controllers was explained. Next, neural networks and rule models were constructed based on statistical data and empirical knowledge on the process. Then, the expert controller for determining the optimal concentrations was designed through a combination of the neural networks and rule models. The three single loop controllers used the PI algorithm to track the optimal concentrations. Finally, the implementation of the proposed strategy were presented. The run results show that the strategy provides not only high purity metallic zinc, but also significant economic benefits.展开更多
Creep-fatigue interaction is one of the main damage mechanisms in high temperature plants and their components. Assessment of creep-fatigue properties is of practical importance for design and operation of high temper...Creep-fatigue interaction is one of the main damage mechanisms in high temperature plants and their components. Assessment of creep-fatigue properties is of practical importance for design and operation of high temperature components. However, the standard evaluation techniques, i.e. time fraction rule and ductility exhaustion one have limitations in accounting for the effects of control mode on the cyclic deformations. It was found that conventional linear cumulative damage rule failed in accurately evaluating the creep-fatigue life under stress controlled condition. The calculated creep damages by time fraction rule were excessively high, which led to overly conservative prediction of failure lives. In the present study, it was suggested that such over estimation of creep damage was mainly caused by anelastic strain upon stress loading. For precise assessment under conditions of stress control, a modified creep damage model accounting for the effect of anelastic creep was proposed. The assessments of creep fatigue data under stress controlled condition were performed with the new approach developed in this paper for a rotor material and a boiler material used in ultra supercritical power plants. It was shown that a more moderate amount of creep damage was obtained by the new model, which gave better predictions of failure life.展开更多
Real-time and accurate fault detection is essential to enhance the aircraft navigation system’s reliability and safety. The existent detection methods based on analytical model draws back at simultaneously detecting ...Real-time and accurate fault detection is essential to enhance the aircraft navigation system’s reliability and safety. The existent detection methods based on analytical model draws back at simultaneously detecting gradual and sudden faults. On account of this reason, we propose an online detection solution based on non-analytical model. In this article, the navigation system fault detection model is established based on belief rule base (BRB), where the system measuring residual and its changing rate are used as the inputs of BRB model and the fault detection function as the output. To overcome the drawbacks of current parameter optimization algorithms for BRB and achieve online update, a parameter recursive estimation algorithm is presented for online BRB detection model based on expectation maximization (EM) algorithm. Furthermore, the proposed method is verified by navigation experiment. Experimental results show that the proposed method is able to effectively realize online parameter evaluation in navigation system fault detection model. The output of the detection model can track the fault state very well, and the faults can be diagnosed in real time and accurately. In addition, the detection ability, especially in the probability of false detection, is superior to offline optimization method, and thus the system reliability has great improvement.展开更多
基金supported by Shanghai Ocean University Graduate School (PhD Dissertation Grant)the National High-tech R&D Program of China (863 Program 2012AA 092303)+3 种基金Project of Shanghai Science and Technology Innovation (12231203900)Industrialization Program of National Development and Reform Commission (2159999)National Key Technologies Research, Development Program of China (2013BAD13B00)Shanghai Universities First-Class Disciplines Project (Fisheries A)
文摘The stock of Bigeye tuna(Thunnus obesus) in the Indian Ocean supports an important international fishery and is considered to be fully exploited. The responsible management agency, the Indian Ocean Tuna Commission(IOTC), does not have an explicit management decision-making framework in place to prevent over-fishing. In this study, we evaluated three harvest control rules, i) constant fishing mortality(CF), from 0.2 to 0.6, ii) constant catch(CC), from 60000 to 140000 t, and iii) constant escapement(CE), from 0.3 to 0.7. The population dynamics simulated by the operating model was based on the most recent stock assessment using Stock Synthesis version Ⅲ(SS3). Three simulation scenarios(low, medium and high productivity) were designed to cover possible uncertainty in the stock assessment and biological parameters. Performances of three harvest control rules were compared on the basis of three management objectives(over 3, 10 and 25 years): i) the probability of maintaining spawning stock biomass above a level that can sustain maximum sustainable yield(MSY) on average, ii) the probability of achieving average catches between 0.8 MSY and 1.0 MSY, and iii) inter-annual variability in catches. The constant escapement strategy(CE=0.5), constant fishing mortality strategy(F=0.4) and constant catch(CC=80000) were the most rational among the respective management scenarios. It is concluded that the short-term annual catch is suggested at 80000 t, and the potential total allowable catch for a stable yield could be set at 120000 t once the stock had recovered successfully. All the strategies considered in this study to achieve a ‘tolerable' balance between resource conservation and utilization have been based around the management objectives of the IOTC.
文摘To improve the ability and precisions of the fuzzy control,this thesis points out the adjusted fuzzy control method,realizes the precision of the fuzzy quantity, and reduces the number of the fuzzy control rules,so that it can predigest the process of disigns and realize the methods without influencing the idiocratic control,which are on the base of the domain flexing.
基金funded by the National Natural Science Foundations of China (Nos. 51179130 and 51190094)
文摘The application of conventional flood operation regulation is restricted due to insufficient description of flood control rules for the Pubugou Reservoir in southern China. Based on the requirements of different flood control objects, this paper proposes to optimize flood control rules with punishment mechanism by defining different parameters of flood control rules in response to flood inflow forecast and reservoir water level. A genetic algorithm is adopted for solving parameter optimization problem. The failure risk and overflow volume of the downstream insufficient flood control capacity are assessed through the reservoir operation policies. The results show that an optimised regulation can provide better performance than the current flood control rules.
基金supported by National Natural Science Foundation of China(Grant No. 51275264)National Hi-tech Research and Development Program of China(863 Program, Grant No. 2011AA11A269)
文摘Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.
文摘On the tasis of study in the mathematical model of 3-dimensional ruled surface (RS),this paper introduces a new concept of distance paramcter (DP) and also puts forward that themethod of modeling a RS depends on not only two boundary curves but also DP. According toabove theory, the formulas to calculate corresponding point coordinates to any kind of top and bot-tom profile of a workpiece and formulas to calcuate the maximum inclination angle of ruling linehave been obtained. Then a different top and bottom RS mathining method including profile withline-are combination as well as parametric curves has been achieved by 4-axes simultancous con-trol programming proposed.
基金The National Natural Science Foundation of China(No60402019No60672068)
文摘Growing numbers of users and many access control policies which involve many different resource attributes in service-oriented environments bring various problems in protecting resource.This paper analyzes the relationships of resource attributes to user attributes in all policies, and propose a general attribute and rule based role-based access control(GAR-RBAC) model to meet the security needs. The model can dynamically assign users to roles via rules to meet the need of growing numbers of users. These rules use different attribute expression and permission as a part of authorization constraints, and are defined by analyzing relations of resource attributes to user attributes in many access policies that are defined by the enterprise. The model is a general access control model, and can support many access control policies, and also can be used to wider application for service. The paper also describes how to use the GAR-RBAC model in Web service environments.
基金supported by the National Natural Science Foundation of China (No. 51174197)the Major State Basic Research Development Program of China (No. 2014CB046905)+1 种基金State Key Laboratory for Geo Mechanics and Deep Underground Engineering (CUMT) (No. SKLGDUEK1503)the ‘Qing Lan’ Project of Jiangsu Province
文摘A series of plane-strain physical model experiments are carried out to study the spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway, which is subjected to the pressure induced by the mining process. The digital photogrammetry technology and large deformation analysis method are applied to measure the deformation and fracture of surrounding rocks. The experimental results indicate that the deformation and fracture of coal pillars are the cause to the instability and failure of the surrounding rocks. The spatiotemporal evolution rule of the rock deformation and fracture surrounding gob-side roadway is obtained. The coal pillar and the roof near coal pillar should be strengthened in support design. The engineering application results also can provide a useful guide that the combined support with wire meshes, beam, anchor bolt and cable is an effective method.
文摘This paper presents a novel method to solve old problem of water level control system of pressurized water reactor (PWR) steam generator (SG) of nuclear power plant (NPP) .The level control system of SG plays an important role which effects the reliablity,safty,cost of SG and its mathematical models have been solved.A model of the conventional controller is presented and the existing problems are discussed. A novel rule based realtime control technique is designed with a computerized water level control (CWLC) system for SG of PWR NPP.The performance of this is evaluated for full power reactor operating conditions by applying different transient conditions of SG′s data of Qinshan Nuclear Power Plant (QNPP).
基金The NNSF (10371137 and 10201034) of Chinathe Foundation (20030558008) of Doctoral Program of National Higher Education, Guangdong Provincial Natural Science Foundation (1011170) of China and the Advanced Research Foundation of Zhongshan UniversityThe US National Science Foundation (9973427 and 0312113)NSF (10371122) of China and the Chinese Academy of Sciences under the program of "Hundred Distinguished Young Chinese Scientists."
文摘We propose two error control techniques for numerical integrations in fast multiscale collocation methods for solving Fredholm integral equations of the second kind with weakly singular kernels. Both techniques utilize quadratures for singular integrals using graded points. One has a polynomial order of accuracy if the integrand has a polynomial order of smoothness except at the singular point and the other has exponential order of accuracy if the integrand has an infinite order of smoothness except at the singular point. We estimate the order of convergence and computational complexity of the corresponding approximate solutions of the equation. We prove that the second technique preserves the order of convergence and computational complexity of the original collocation method. Numerical experiments are presented to illustrate the theoretical estimates.
文摘The subjection function of the fuzzy quantity is bell like,which is on the base of the theory;but during the course of the control,each fuzzy grade should be predigested into a triangle of W=4.
基金This work is supported by the National Natural Science Foundation of China (No. 51207083).
文摘The welding process essentially is a complicated nonlinear system with time-varying, uncertain, strong-coupling characteristics, so it is difficult to get high welding quality by traditional control approaches such as the standard proportionalintegral ( PI) algorithm. A new algorithm based on artificial neural network (ANN) is presented to achieve optimal P1 parameters and improve its adaptability. First, main parameters of artificial neural network are researched to improve the convergence rate and system stability. Then, six expert rules are proposed to constitute the expert adaptive ANN-PI algorithm. Experimental results show that the welding current control system'has high dynamic response rate, and the welding process is stable.
基金supported by Science and Technology Commission Shanghai Municipality (Grant No. 06dz1102, Grant No. 08dz1150401)
文摘Accidental or frequent shift often occurs when the shifting rule is built based on traditional two parameters (i.e., velocity and throttle), because the speed of engine varies slower than change of throttle opening. Currently, modifying shift point velocity value or throttle by throttle change rate is one of common methods, but the results are not so satisfactory in some working condition such as uphill. The reason is that these methods merely consider throttle change rate which is not enough for a car driving in driver-vehicle-road environment system. So a novel fuzzy control modification strategy is proposed to avoid or reduce those abnormal shift actions. It can adjust shifting rule by the change rate of throttle, current gear position and road environment information, while different gear position and driving environment get corresponding modification value. In order to compare the results of shifting actions, fuel consumption and braking distance, emergent braking in level road and extra-urban driving cycle(EUDC) working conditions with fuzzy shifting schedule modification strategy are simulated digitally. Furthermore, a hardware-in-the-loop simulation platform is introduced to verify its effect in slope road condition according to the ON/OFF numbers of solenoid valve in hydraulic system. The simulation results show that the problem of unexpected shift in those working conditions may be resolved by fuzzy modification strategy. At last, it is concluded that although there is some slight decline in power performance in uphill situation, this fuzzy modification strategy could correctly identify slope of road, decrease braking distance, improve vehicle comfort and fuel economy effectively and prolong the life of clutch system. So, this fuzzy logic shifting strategy provides important references for vehicle intelligent shifting schedule.
文摘FDES(fuzzy discrete event systems) can effectively represent a kind of complicated systems involving deterministic uncertainties and vagueness as well as human subjective observation and judgement from the view of discrete events, here the information system is divided into some independent intelligent entitative Agents. The concept of information processing state based on Agents was proposed. The processing state of Agent can be judged by some assistant observation parameters about the Agent and its environment around, and the transition among these states can be represented by FDES based on rules. In order to ensure the harmony of the Agents for information processing, its upstream and downstream buffers are considered in the modeling of the Agent system, and the supervisory controller based on FDES is constructed. The processing state of Agent can be adjusted by the supervisory controller to improve the stability of the system and the efficiency of resource utilization during the process according to the control policies. The result of its application was provided to illustrate the validity of the supervisory adjustment.
文摘The most important parameters which control the electrolytic process are the concentrations of zinc and sulfuric acid in the electrolyte. An expert control strategy for determining and tracking the optimal concentrations was proposed, which uses neural networks, rule models and a single loop control scheme. First, the process was described and the strategy that features an expert controller and three single loop controllers was explained. Next, neural networks and rule models were constructed based on statistical data and empirical knowledge on the process. Then, the expert controller for determining the optimal concentrations was designed through a combination of the neural networks and rule models. The three single loop controllers used the PI algorithm to track the optimal concentrations. Finally, the implementation of the proposed strategy were presented. The run results show that the strategy provides not only high purity metallic zinc, but also significant economic benefits.
基金supported by the National Natural Science Foundations of China (Nos.50835003, 10972078 and 51005076)Natural Science Foundation of Shanghai (No.09JC1404400)Shanghai Postdoctoral Scientific Program (No.09R21411800)
文摘Creep-fatigue interaction is one of the main damage mechanisms in high temperature plants and their components. Assessment of creep-fatigue properties is of practical importance for design and operation of high temperature components. However, the standard evaluation techniques, i.e. time fraction rule and ductility exhaustion one have limitations in accounting for the effects of control mode on the cyclic deformations. It was found that conventional linear cumulative damage rule failed in accurately evaluating the creep-fatigue life under stress controlled condition. The calculated creep damages by time fraction rule were excessively high, which led to overly conservative prediction of failure lives. In the present study, it was suggested that such over estimation of creep damage was mainly caused by anelastic strain upon stress loading. For precise assessment under conditions of stress control, a modified creep damage model accounting for the effect of anelastic creep was proposed. The assessments of creep fatigue data under stress controlled condition were performed with the new approach developed in this paper for a rotor material and a boiler material used in ultra supercritical power plants. It was shown that a more moderate amount of creep damage was obtained by the new model, which gave better predictions of failure life.
基金the National High-tech Research and Development Program of China(No.2011AA7053016)National Natural Science Foundation of China(No.61174030)
文摘Real-time and accurate fault detection is essential to enhance the aircraft navigation system’s reliability and safety. The existent detection methods based on analytical model draws back at simultaneously detecting gradual and sudden faults. On account of this reason, we propose an online detection solution based on non-analytical model. In this article, the navigation system fault detection model is established based on belief rule base (BRB), where the system measuring residual and its changing rate are used as the inputs of BRB model and the fault detection function as the output. To overcome the drawbacks of current parameter optimization algorithms for BRB and achieve online update, a parameter recursive estimation algorithm is presented for online BRB detection model based on expectation maximization (EM) algorithm. Furthermore, the proposed method is verified by navigation experiment. Experimental results show that the proposed method is able to effectively realize online parameter evaluation in navigation system fault detection model. The output of the detection model can track the fault state very well, and the faults can be diagnosed in real time and accurately. In addition, the detection ability, especially in the probability of false detection, is superior to offline optimization method, and thus the system reliability has great improvement.