Two japonica rice varieties, Longjing 20 (more tillers and curved panicle type, MCP) and Longjing 21 (few tillers and half erect panicle type, FEP), were used to study the effects of row-spacing on canopy structur...Two japonica rice varieties, Longjing 20 (more tillers and curved panicle type, MCP) and Longjing 21 (few tillers and half erect panicle type, FEP), were used to study the effects of row-spacing on canopy structure, morphological characteristics and yield. The results showed that the percentage of productive tiller reduced first, and increased afterwards as row-spacing increasing. The relationship between row spacing and the percentage of productive tiller fitted a quadratic regression. The effects of row spacing on leaf area index (LAI) at later tillering stage and the highest stem number per square meter also followed a quadratic regression relationship with increasing first and then reducing. The effects of row-spacing on primary branch were larger than the secondary branch in Longjing 20. However, the trend in Longjing 21 was opposite. The relationship between row spacing and seed setting rate of the secondary branch or panicle was negatively correlated. An extreme significant negative correlation was obtained between seed setting rate of secondary branch in Longjing 20. There was no significant positive correlation between row-spacing and yield in Longjing 20 (R2=0.68). However, the negative correlation between row-spacing and yield of Longjing 21 was extremely significant (R2=–0.96**). The canopy structure of MCP was more sensitive to row-spacing. The positive correlation between row spacing and the length of the flag leaf (R2=0.89**), the width of the flag leaf (R2=0.85*), the length of the last internode (R2=0.85*), the length of the last 2nd internode (R2=0.96**) or the length of the panicle (R2=0.91**) was significant or extremely significant in Longjing 20, but not in Longjing 21. The wider row-spacing promoted the accumulation of the dry matter of panicle, stem and leaf and the yield formation in MCP. The best row-spacing in Longjing 20 was 30 cm. For Longjing 21, the narrower row-spacing was better. The best row-spacing of it was 21 cm. These results suggested that improved the population environment of MCP or the utilization of the free space in the field of FEP could be reached either by wider row-spacing or narrow row-spacing.展开更多
A row-type mutant of barley named poly-row-and-branched spike (prbs) was previously obtained from a two-rowed cultivar Pudamai-2 after treated by inflorescence soaking in maize total DNA solution. The mutant produce...A row-type mutant of barley named poly-row-and-branched spike (prbs) was previously obtained from a two-rowed cultivar Pudamai-2 after treated by inflorescence soaking in maize total DNA solution. The mutant produces branched spikes with irregular multiple rows. Genetic analysis indicated that the mutant phenotype was caused by a recessive gene prbs, and the PRBS locus had a recessive epistatic effect on an independent locus (denoted as Vrsx) conferring the variation of two-rowed spike vs. six-rowed spike. This study aimed to map PRBS as well as Vrsx using simple sequence repeats (SSR) markers. We developed an F2 population from a cross between the prbs mutant and a six-rowed cultivar Putianwudu for the gene mapping. As the two target loci interacted to result in a segregation ratio of two-rowed type:six-rowed type:prbs=9:3:4 in the population, we adopted a special strategy to map the two loci. PRBS was mapped between SSR markers HvLTPPB and Bmag0508A on the short arm of chromosome 3H, with distances of 24.7 and 14.3 cM to the two markers, respectively. Vrsx was mapped between SSR markers Bmag0125 and Bmag0378 on chromosome 2H, with distances of 6.9 and 15.3 cM to the two markers, respectively. This suggests that Vrsx should be the known locus Vrs1, which predominantly controls row-type variation in barley cultivars, and PRBS is a new locus related to the row type of spikes in barley.展开更多
为解决带式高速导种装置导种过程中种带托片与种粒均经过监测点,无法区分脉冲变化特征,导种性能难以监测的问题,研究一种基于红外传感器的带式高速导种装置监测方法并设计了监测系统。利用其导种特性提出了双侧脉冲比较法,设计了带式高...为解决带式高速导种装置导种过程中种带托片与种粒均经过监测点,无法区分脉冲变化特征,导种性能难以监测的问题,研究一种基于红外传感器的带式高速导种装置监测方法并设计了监测系统。利用其导种特性提出了双侧脉冲比较法,设计了带式高速导种装置监测模块硬件电路与软件程序。同时通过对监测系统采样试验结果分析,提出一种基于双侧脉冲值分析与能量掩码平滑算法(Bilateral pulse value analysis and energy masking smoothing algorithm,BPV-EMSA)的带式高速导种装置监测算法。仿真试验表明:该算法减少了原始脉冲的噪声和随机波动,使数据更加平滑稳定并突出了数据主要趋势和模式,同时抑制了瞬态脉冲干扰,提升了数据可解释性和分析准确性。监测系统精度试验结果表明:所设计的带式高速导种装置监测系统在不同作业速度下最高监测精度为97.65%,最低精度为95.99%,系统能够精确采集种粒经过监测点的脉冲变化。监测系统性能评价试验结果表明:播种合格率平均监测差值为2个百分点,播种漏播率平均监测差值为1.45个百分点,播种重播率平均监测差值为0.56个百分点。播种合格率相对差值不大于2.23个百分点,播种漏播率相对差值不大于1.78个百分点,播种重播率相对差值不大于1.00个百分点。该监测方法能够准确监测带式高速导种装置的导种性能。展开更多
基金Supported by the National Key Technology R&D Program (2007BAD65B01-4)Science and Technology Development Plan of Heilongjiang Province in China (GB06B104-1-5)Key Technology R&D Program of Heilongjiang Province in China (GA09B102-3)
文摘Two japonica rice varieties, Longjing 20 (more tillers and curved panicle type, MCP) and Longjing 21 (few tillers and half erect panicle type, FEP), were used to study the effects of row-spacing on canopy structure, morphological characteristics and yield. The results showed that the percentage of productive tiller reduced first, and increased afterwards as row-spacing increasing. The relationship between row spacing and the percentage of productive tiller fitted a quadratic regression. The effects of row spacing on leaf area index (LAI) at later tillering stage and the highest stem number per square meter also followed a quadratic regression relationship with increasing first and then reducing. The effects of row-spacing on primary branch were larger than the secondary branch in Longjing 20. However, the trend in Longjing 21 was opposite. The relationship between row spacing and seed setting rate of the secondary branch or panicle was negatively correlated. An extreme significant negative correlation was obtained between seed setting rate of secondary branch in Longjing 20. There was no significant positive correlation between row-spacing and yield in Longjing 20 (R2=0.68). However, the negative correlation between row-spacing and yield of Longjing 21 was extremely significant (R2=–0.96**). The canopy structure of MCP was more sensitive to row-spacing. The positive correlation between row spacing and the length of the flag leaf (R2=0.89**), the width of the flag leaf (R2=0.85*), the length of the last internode (R2=0.85*), the length of the last 2nd internode (R2=0.96**) or the length of the panicle (R2=0.91**) was significant or extremely significant in Longjing 20, but not in Longjing 21. The wider row-spacing promoted the accumulation of the dry matter of panicle, stem and leaf and the yield formation in MCP. The best row-spacing in Longjing 20 was 30 cm. For Longjing 21, the narrower row-spacing was better. The best row-spacing of it was 21 cm. These results suggested that improved the population environment of MCP or the utilization of the free space in the field of FEP could be reached either by wider row-spacing or narrow row-spacing.
基金supported by the Natural Science Foundation of Fujian Province, China (B0310012)the Education Department of Fujian Province, China (JA09079)the Postdoctoral Research Fund of Human Resources Office of Fujian Province, China (80222)
文摘A row-type mutant of barley named poly-row-and-branched spike (prbs) was previously obtained from a two-rowed cultivar Pudamai-2 after treated by inflorescence soaking in maize total DNA solution. The mutant produces branched spikes with irregular multiple rows. Genetic analysis indicated that the mutant phenotype was caused by a recessive gene prbs, and the PRBS locus had a recessive epistatic effect on an independent locus (denoted as Vrsx) conferring the variation of two-rowed spike vs. six-rowed spike. This study aimed to map PRBS as well as Vrsx using simple sequence repeats (SSR) markers. We developed an F2 population from a cross between the prbs mutant and a six-rowed cultivar Putianwudu for the gene mapping. As the two target loci interacted to result in a segregation ratio of two-rowed type:six-rowed type:prbs=9:3:4 in the population, we adopted a special strategy to map the two loci. PRBS was mapped between SSR markers HvLTPPB and Bmag0508A on the short arm of chromosome 3H, with distances of 24.7 and 14.3 cM to the two markers, respectively. Vrsx was mapped between SSR markers Bmag0125 and Bmag0378 on chromosome 2H, with distances of 6.9 and 15.3 cM to the two markers, respectively. This suggests that Vrsx should be the known locus Vrs1, which predominantly controls row-type variation in barley cultivars, and PRBS is a new locus related to the row type of spikes in barley.
文摘为解决带式高速导种装置导种过程中种带托片与种粒均经过监测点,无法区分脉冲变化特征,导种性能难以监测的问题,研究一种基于红外传感器的带式高速导种装置监测方法并设计了监测系统。利用其导种特性提出了双侧脉冲比较法,设计了带式高速导种装置监测模块硬件电路与软件程序。同时通过对监测系统采样试验结果分析,提出一种基于双侧脉冲值分析与能量掩码平滑算法(Bilateral pulse value analysis and energy masking smoothing algorithm,BPV-EMSA)的带式高速导种装置监测算法。仿真试验表明:该算法减少了原始脉冲的噪声和随机波动,使数据更加平滑稳定并突出了数据主要趋势和模式,同时抑制了瞬态脉冲干扰,提升了数据可解释性和分析准确性。监测系统精度试验结果表明:所设计的带式高速导种装置监测系统在不同作业速度下最高监测精度为97.65%,最低精度为95.99%,系统能够精确采集种粒经过监测点的脉冲变化。监测系统性能评价试验结果表明:播种合格率平均监测差值为2个百分点,播种漏播率平均监测差值为1.45个百分点,播种重播率平均监测差值为0.56个百分点。播种合格率相对差值不大于2.23个百分点,播种漏播率相对差值不大于1.78个百分点,播种重播率相对差值不大于1.00个百分点。该监测方法能够准确监测带式高速导种装置的导种性能。