This paper discusses an optimization of operating a p ermutation circulation-type vehicle routing system (PCVRS, for short), in w hich several stages are located along by a single loop, and a fleet of vehicles travels...This paper discusses an optimization of operating a p ermutation circulation-type vehicle routing system (PCVRS, for short), in w hich several stages are located along by a single loop, and a fleet of vehicles travels on the loop unidirectionally and repeatedly. Traveling on the loop, each vehicle receives an object from the loading stage and then carries it to a cert ain processing stage, or receives an object from a certain processing stage and then carries it to the unloading stage per a turnaround. No passing is allowed f or the vehicles on the loop (from which the system is called permutation, and th is restriction may cause interferences between vehicles). Material handling systems such as PCVRS are actually encountered in flexible man ufacturing systems and in automated storage/retrieval systems. In this paper, we propose a heuristic algorithm for operating the PCVRS, which i ncorporates a new scheduling method for the vehicles with the SPT (shortest proc essing time) numbering of jobs and a round-robin manner of allocating jobs to t he stages, aiming to reduce interferences between the vehicles. We also give num erical results with respect to system performances attained by the heuristic. Description of the system The PCVRS consists of a set of n v vehicles V={V 1,V 2,...,V n v}, a set of n s, processing stages S p={S 1,S 2,...,S n s}, a loading stage S 0 and an unloading stage S n s +1. We denote by S=S p∪{S 0,S n s+l} the set of all the stages. The vehicles travel on a single loop unidirectionany and repeated ly. The system layout is depicted in Fig.1. There is a set of n jobs J={J 1,J 2,...,J n} to be processed b y the vehicles. Each job consists of two tasks: That is, each vehicle receives a n object from S 0 and then carries it to S l with a certain l∈{1,2, ...,n s} (a throw-in job), or receives an object from S l with a certain l∈{1,2,...,n s} and then carries it to S n s+1 (a throw-out job ) per a turnaround. The loop consists of buffer zones BZ(l) and travel zones TZ(l) (see Fig. 1). Each buffer zone BZ(l) is placed in front of stage S l, l=0,1,..., n s, n s+1, in order to avoid a collision between vehicles (i.e., the syste m adopts the so-called zone control strategy). A heuristic algorithm We develop a heuristic algorithm to obtain a good performance for the PCVRS. An operation π={A/B/C} for the PCVRS consists of three decision factors: (A) Numbering jobs Jobs are loaded into S 0 according to an assending order of job numbers. In this paper, we use the following rules to number jobs: SPT: Order jobs in the shortest processing time rule, i.e., P 1≤P 2≤...≤P n for the set of jobs J={J 1,J 2,...,J n}, rather than the FCFS numbering (i.e., number jobs in first-come-first-served order). The SPT rule intends to reduce interferences between two adjacent vehicles at stages. (B) Allocating jobs to stages For the purpose of balancing loads of processing stages, we adopt the following to allocate jobs to the stages: ORDER: Allocate n jobs to n s, processing stages by an in-order manner , i.e., let l(i) be the index of processing stage allocated job J i by ORDER, it holds that l(i)=n s+1-(i-[(i-1)/n s]n s).(1) The ORDER rule intends to process jobs parallel at stages as many as possible. (C) Scheduling vehicles The following method for scheduling vehicles under ORDER rule is already known: Fig.1 The vehicle ro uting system, PCVRS Fig.2 Mean turnaroun d times by heuristics Unchange: Assign n jobs to n v vehicles such that let k(i) be the i ndex of vehicle processing job J i, then k(i)= i-[(i-1)/n v]n v.(2) In csse of n v≥n s, mod (n v,n s)=0 or n v<n s, mod (n s,n v)=0 (mod(x,y) is the remainder of x/y), the number of interferences between vehicles is minimized at stage S 1 under Unchange sche dules, while in the other cases it is not [Lu et al. (2001a)]. Therefore, in t his paper, we develop a new scheduling method of the vehicles, denoted by Ex change, to modify Unchange schedules. Note展开更多
This study was concerned with developing an antiretroviral drug distribution routing system with a goal of improving fleet utilization whilst reducing delivery costs. The system would enhance ARV drug delivery satisfa...This study was concerned with developing an antiretroviral drug distribution routing system with a goal of improving fleet utilization whilst reducing delivery costs. The system would enhance ARV drug delivery satisfaction of patients staying in the Limpopo province of South Africa. A VRP mathematical programming problem was formulated and the Savings Based as well as the Sequential Insertion algorithm was used to solve the problem. A mini program was then developed in Visual Basic.Net software that speeded up the vehicle route determination heuristics. This computer based vehicle routing system gave a total travelled distance of 1302.94 km and a space utilization of 93% as compared to the pigeonhole system which had a total travelled distance of 2874.2 km and space utilization of 86% for the demand of 5384 ARV drug patients. Therefore, the mathematical programming approach is more cost effective and efficient thereby enhancing delivery satisfaction to ARV drug patients in the province.展开更多
The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale.Network slicing is crucial in delivering services for different,demanding vertical applications in this...The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale.Network slicing is crucial in delivering services for different,demanding vertical applications in this context.Next-generation applications have time-sensitive requirements and depend on the most efficient routing path to ensure packets reach their intended destinations.However,the existing IP(Internet Protocol)over a multi-domain network faces challenges in enforcing network slicing due to minimal collaboration and information sharing among network operators.Conventional inter-domain routing methods,like Border Gateway Protocol(BGP),cannot make routing decisions based on performance,which frequently results in traffic flowing across congested paths that are never optimal.To address these issues,we propose CoopAI-Route,a multi-agent cooperative deep reinforcement learning(DRL)system utilizing hierarchical software-defined networks(SDN).This framework enforces network slicing in multi-domain networks and cooperative communication with various administrators to find performance-based routes in intra-and inter-domain.CoopAI-Route employs the Distributed Global Topology(DGT)algorithm to define inter-domain Quality of Service(QoS)paths.CoopAI-Route uses a DRL agent with a message-passing multi-agent Twin-Delayed Deep Deterministic Policy Gradient method to ensure optimal end-to-end routes adapted to the specific requirements of network slicing applications.Our evaluation demonstrates CoopAI-Route’s commendable performance in scalability,link failure handling,and adaptability to evolving topologies compared to state-of-the-art methods.展开更多
Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat t...Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat to the safety and reliability of CPPS,and there is an acute need to reduce the probability of these failures.Towards this end,this paper first proposes a cascading failure index to identify and quantify the importance of different information in the same class of communication services.On this basis,a joint improved risk-balanced service function chain routing strategy(SFC-RS)is proposed,which is modeled as a robust optimization problem and solved by column-and-constraint generation(C-CG)algorithm.Compared with the traditional shortest-path routing algorithm,the superiority of SFC-RS is verified in the IEEE 30-bus system.The results demonstrate that SFC-RS effectively mitigates the risk associated with information transmission in the network,enhances information transmission accessibility,and effectively limits communication disruption from becoming the cause of cross-space cascading failures.展开更多
Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To sa...Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link.展开更多
The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the...The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the selection of appropriate routing protocols, which is crucial for maintaining high Quality of Service (QoS). The Internet Engineering Task Force’s Routing Over Low Power and Lossy Networks (IETF ROLL) working group developed the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) to meet these needs. While the initial RPL standard focused on single-metric route selection, ongoing research explores enhancing RPL by incorporating multiple routing metrics and developing new Objective Functions (OFs). This paper introduces a novel Objective Function (OF), the Reliable and Secure Objective Function (RSOF), designed to enhance the reliability and trustworthiness of parent selection at both the node and link levels within IoT and RPL routing protocols. The RSOF employs an adaptive parent node selection mechanism that incorporates multiple metrics, including Residual Energy (RE), Expected Transmission Count (ETX), Extended RPL Node Trustworthiness (ERNT), and a novel metric that measures node failure rate (NFR). In this mechanism, nodes with a high NFR are excluded from the parent selection process to improve network reliability and stability. The proposed RSOF was evaluated using random and grid topologies in the Cooja Simulator, with tests conducted across small, medium, and large-scale networks to examine the impact of varying node densities. The simulation results indicate a significant improvement in network performance, particularly in terms of average latency, packet acknowledgment ratio (PAR), packet delivery ratio (PDR), and Control Message Overhead (CMO), compared to the standard Minimum Rank with Hysteresis Objective Function (MRHOF).展开更多
Cross-domain routing in Integrated Heterogeneous Networks(Inte-HetNet)should ensure efficient and secure data transmission across different network domains by satisfying diverse routing requirements.However,current so...Cross-domain routing in Integrated Heterogeneous Networks(Inte-HetNet)should ensure efficient and secure data transmission across different network domains by satisfying diverse routing requirements.However,current solutions face numerous challenges in continuously ensuring trustworthy routing,fulfilling diverse requirements,achieving reasonable resource allocation,and safeguarding against malicious behaviors of network operators.We propose CrowdRouting,a novel cross-domain routing scheme based on crowdsourcing,dedicated to establishing sustained trust in cross-domain routing,comprehensively considering and fulfilling various customized routing requirements,while ensuring reasonable resource allocation and effectively curbing malicious behavior of network operators.Concretely,CrowdRouting employs blockchain technology to verify the trustworthiness of border routers in different network domains,thereby establishing sustainable and trustworthy crossdomain routing based on sustained trust in these routers.In addition,CrowdRouting ingeniously integrates a crowdsourcing mechanism into the auction for routing,achieving fair and impartial allocation of routing rights by flexibly embedding various customized routing requirements into each auction phase.Moreover,CrowdRouting leverages incentive mechanisms and routing settlement to encourage network domains to actively participate in cross-domain routing,thereby promoting optimal resource allocation and efficient utilization.Furthermore,CrowdRouting introduces a supervisory agency(e.g.,undercover agent)to effectively suppress the malicious behavior of network operators through the game and interaction between the agent and the network operators.Through comprehensive experimental evaluations and comparisons with existing works,we demonstrate that CrowdRouting excels in providing trustworthy and fine-grained customized routing services,stimulating active participation in cross-domain routing,inhibiting malicious operator behavior,and maintaining reasonable resource allocation,all of which outperform baseline schemes.展开更多
Border Gateway Protocol(BGP),as the standard inter-domain routing protocol,is a distance-vector dynamic routing protocol used for exchanging routing information between distributed Autonomous Systems(AS).BGP nodes,com...Border Gateway Protocol(BGP),as the standard inter-domain routing protocol,is a distance-vector dynamic routing protocol used for exchanging routing information between distributed Autonomous Systems(AS).BGP nodes,communicating in a distributed dynamic environment,face several security challenges,with trust being one of the most important issues in inter-domain routing.Existing research,which performs trust evaluation when exchanging routing information to suppress malicious routing behavior,cannot meet the scalability requirements of BGP nodes.In this paper,we propose a blockchain-based trust model for inter-domain routing.Our model achieves scalability by allowing the master node of an AS alliance to transmit the trust evaluation data of its member nodes to the blockchain.The BGP nodes can expedite the trust evaluation process by accessing a global view of other BGP nodes through the master node of their respective alliance.We incorporate security service evaluation before direct evaluation and indirect recommendations to assess the security services that BGP nodes provide for themselves and prioritize to guarantee their security of routing service.We forward the trust evaluation for neighbor discovery and prioritize the nodes with high trust as neighbor nodes to reduce the malicious exchange routing behavior.We use simulation software to simulate a real BGP environments and employ a comparative experimental research approach to demonstrate the performance evaluation of our trust model.Compared with the classical trust model,our trust model not only saves more storage overhead,but also provides higher security,especially reducing the impact of collusion attacks.展开更多
Underwater Wireless Sensor Networks(UWSNs)are gaining popularity because of their potential uses in oceanography,seismic activity monitoring,environmental preservation,and underwater mapping.Yet,these networks are fac...Underwater Wireless Sensor Networks(UWSNs)are gaining popularity because of their potential uses in oceanography,seismic activity monitoring,environmental preservation,and underwater mapping.Yet,these networks are faced with challenges such as self-interference,long propagation delays,limited bandwidth,and changing network topologies.These challenges are coped with by designing advanced routing protocols.In this work,we present Under Water Fuzzy-Routing Protocol for Low power and Lossy networks(UWF-RPL),an enhanced fuzzy-based protocol that improves decision-making during path selection and traffic distribution over different network nodes.Our method extends RPL with the aid of fuzzy logic to optimize depth,energy,Received Signal Strength Indicator(RSSI)to Expected Transmission Count(ETX)ratio,and latency.Theproposed protocol outperforms other techniques in that it offersmore energy efficiency,better packet delivery,lowdelay,and no queue overflow.It also exhibits better scalability and reliability in dynamic underwater networks,which is of very high importance in maintaining the network operations efficiency and the lifetime of UWSNs optimized.Compared to other recent methods,it offers improved network convergence time(10%–23%),energy efficiency(15%),packet delivery(17%),and delay(24%).展开更多
This paper systematically reviews the latest research developments in Vehicle Routing Problems(VRP).It examines classical VRP models and their classifications across different dimensions,including load capacity,operat...This paper systematically reviews the latest research developments in Vehicle Routing Problems(VRP).It examines classical VRP models and their classifications across different dimensions,including load capacity,operational characteristics,optimization objectives,vehicle types,and time constraints.Based on literature retrieval results from the Web of Science database,the paper analyzes the current state and trends in VRP research,providing detailed explanations of VRP models and algorithms applied to various scenarios in recent years.Additionally,the article discusses limitations in existing research and provides perspectives on future development trends in VRP research.This review offers researchers in the VRP field a comprehensive overview while identifying future research directions.展开更多
Unmanned Aerial Vehicle(UAV)stands as a burgeoning electric transportation carrier,holding substantial promise for the logistics sector.A reinforcement learning framework Centralized-S Proximal Policy Optimization(C-S...Unmanned Aerial Vehicle(UAV)stands as a burgeoning electric transportation carrier,holding substantial promise for the logistics sector.A reinforcement learning framework Centralized-S Proximal Policy Optimization(C-SPPO)based on centralized decision process and considering policy entropy(S)is proposed.The proposed framework aims to plan the best scheduling scheme with the objective of minimizing both the timeout of order requests and the flight impact of UAVs that may lead to conflicts.In this framework,the intents of matching act are generated through the observations of UAV agents,and the ultimate conflict-free matching results are output under the guidance of a centralized decision maker.Concurrently,a pre-activation operation is introduced to further enhance the cooperation among UAV agents.Simulation experiments based on real-world data from New York City are conducted.The results indicate that the proposed CSPPO outperforms the baseline algorithms in the Average Delay Time(ADT),the Maximum Delay Time(MDT),the Order Delay Rate(ODR),the Average Flight Distance(AFD),and the Flight Impact Ratio(FIR).Furthermore,the framework demonstrates scalability to scenarios of different sizes without requiring additional training.展开更多
Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed ...Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed satellites,ground users now can be covered by multiple visible satellites,but also face complex handover issues with such massive high-mobility satellites in multi-layer.The end-to-end routing is also affected by the handover behavior.In this paper,we propose an intelligent handover strategy dedicated to multi-layer LEO mega-constellation networks.Firstly,an analytic model is utilized to rapidly estimate the end-to-end propagation latency as a key handover factor to construct a multi-objective optimization model.Subsequently,an intelligent handover strategy is proposed by employing the Dueling Double Deep Q Network(D3QN)-based deep reinforcement learning algorithm for single-layer constellations.Moreover,an optimal crosslayer handover scheme is proposed by predicting the latency-jitter and minimizing the cross-layer overhead.Simulation results demonstrate the superior performance of the proposed method in the multi-layer LEO mega-constellation,showcasing reductions of up to 8.2%and 59.5%in end-to-end latency and jitter respectively,when compared to the existing handover strategies.展开更多
Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a netwo...Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a network, the delay is with epistemic uncertainty, which makes the traditional routing scheme based on deterministic theory or probability theory not applicable. Motivated by this problem, the MCN with epistemic uncertainty is first summarized as a dynamic uncertain network based on uncertainty theory, which is widely applied to model epistemic uncertainties. Then by modeling the uncertain end-toend delay, a new delay bounded routing scheme is proposed to find the path with the maximum belief degree that satisfies the delay threshold for the dynamic uncertain network. Finally, a lowEarth-orbit satellite communication network(LEO-SCN) is used as a case to verify the effectiveness of our routing scheme. It is first modeled as a dynamic uncertain network, and then the delay bounded paths with the maximum belief degree are computed and compared under different delay thresholds.展开更多
UAV networks often encounter jamming attacks, under which multi-radio protocols have to switch radios to accelerate communication recovery. However, the existing protocols rely on exchange of hello messages to detect ...UAV networks often encounter jamming attacks, under which multi-radio protocols have to switch radios to accelerate communication recovery. However, the existing protocols rely on exchange of hello messages to detect jamming, leading to long sensing time and thus slow routing recovery. To address the issues raised by jamming attacks, we propose a new routing protocol, Electromagnetic Spectrum situation awareness Optimized Link State Routing (ESOLSR) protocol, to improve the existing OLSRv2 protocol. ESOLSR utilizes the spectrum situation awareness capability from the physical layer, and adopts joint-updating of link status, updating of interface functions, and adaptive adjustment of parameters. Our simulation results show that the improved protocol, ESOLSR, can recover routing and resume normal communication 26.6% faster compared to the existing protocols.展开更多
DDeeaarr EEddiittoorr,,The encoding and retrieval of emotional memories demands intricate interplay within the limbic network,where the network state is subject to significant reconfiguration by learning-induced plast...DDeeaarr EEddiittoorr,,The encoding and retrieval of emotional memories demands intricate interplay within the limbic network,where the network state is subject to significant reconfiguration by learning-induced plasticity,behavioral state,and contextual information[1].展开更多
Automated guided vehicles(AGVs)are key equipment in automated container terminals(ACTs),and their operational efficiency can be impacted by conflicts and battery swapping.Additionally,AGVs have bidirectional transport...Automated guided vehicles(AGVs)are key equipment in automated container terminals(ACTs),and their operational efficiency can be impacted by conflicts and battery swapping.Additionally,AGVs have bidirectional transportation capabilities,allowing them tomove in the opposite directionwithout turning around,which helps reduce transportation time.This paper aims at the problem of AGV scheduling and bidirectional conflict-free routing with battery swapping in automated terminals.A bi-level mixed integer programming(MIP)model is proposed,taking into account task assignment,bidirectional conflict-free routing,and battery swapping.The upper model focuses on container task assignment and AGV battery swapping planning,while the lower model ensures conflict-free movement of AGVs.A double-threshold battery swapping strategy is introduced,allowing AGVs to utilize waiting time for loading for battery swapping.An improved differential evolution variable neighborhood search(IDE-VNS)algorithm is developed to solve the bi-level MIP model,aiming to minimize the completion time of all jobs.Experimental results demonstrate that compared to the differential evolution(DE)algorithm and the genetic algorithm(GA),the IDEVNS algorithmreduces fitness values by 44.49% and 45.22%,though it does increase computation time by 56.28% and 62.03%,respectively.Bidirectional transportation reduces the fitness value by an average of 10.97% when the container scale is small.As the container scale increases,the fitness value of bidirectional transportation gradually approaches that of unidirectional transportation.The results further show that the double-threshold battery swapping strategy enhances AGV utilization and reduces the fitness value.展开更多
This paper addresses the Multi-Vehicle Routing Problem with Time Windows and Simultaneous Pickup and Delivery(MVRPTWSPD),aiming to optimize logistics distribution routes and minimize total costs.A vehicle routing opti...This paper addresses the Multi-Vehicle Routing Problem with Time Windows and Simultaneous Pickup and Delivery(MVRPTWSPD),aiming to optimize logistics distribution routes and minimize total costs.A vehicle routing optimization model is developed based on the operational requirements of the KS Logistics Center,focusing on minimizing vehicle dispatch,loading and unloading,operating,and time window penalty costs.The model incorporates constraints such as vehicle capacity,time windows,and travel distance,and is solved using a genetic algorithm to ensure optimal route planning.Through MATLAB simulations,34 customer points are analyzed,demonstrating that the simultaneous pickup and delivery model reduces total costs by 30.13%,increases vehicle loading rates by 20.04%,and decreases travel distance compared to delivery-only or pickup-only models.The results demonstrate the significant advantages of the simultaneous pickup and delivery mode in reducing logistics costs and improving vehicle utilization,offering valuable insights for enhancing the operational efficiency of the KS Logistics Center.展开更多
In large-scaleWireless Rechargeable SensorNetworks(WRSN),traditional forward routingmechanisms often lead to reduced energy efficiency.To address this issue,this paper proposes a WRSN node energy optimization algorith...In large-scaleWireless Rechargeable SensorNetworks(WRSN),traditional forward routingmechanisms often lead to reduced energy efficiency.To address this issue,this paper proposes a WRSN node energy optimization algorithm based on regional partitioning and inter-layer routing.The algorithm employs a dynamic clustering radius method and the K-means clustering algorithm to dynamically partition the WRSN area.Then,the cluster head nodes in the outermost layer select an appropriate layer from the next relay routing region and designate it as the relay layer for data transmission.Relay nodes are selected layer by layer,starting from the outermost cluster heads.Finally,the inter-layer routing mechanism is integrated with regional partitioning and clustering methods to develop the WRSN energy optimization algorithm.To further optimize the algorithm’s performance,we conduct parameter optimization experiments on the relay routing selection function,cluster head rotation energy threshold,and inter-layer relay structure selection,ensuring the best configurations for energy efficiency and network lifespan.Based on these optimizations,simulation results demonstrate that the proposed algorithm outperforms traditional forward routing,K-CHRA,and K-CLP algorithms in terms of node mortality rate and energy consumption,extending the number of rounds to 50%node death by 11.9%,19.3%,and 8.3%in a 500-node network,respectively.展开更多
This paper proposes an efficient strategy for resource utilization in Elastic Optical Networks (EONs) to minimize spectrum fragmentation and reduce connection blocking probability during Routing and Spectrum Allocatio...This paper proposes an efficient strategy for resource utilization in Elastic Optical Networks (EONs) to minimize spectrum fragmentation and reduce connection blocking probability during Routing and Spectrum Allocation (RSA). The proposed method, Dynamic Threshold-Based Routing and Spectrum Allocation with Fragmentation Awareness (DT-RSAF), integrates rerouting and spectrum defragmentation as needed. By leveraging Yen’s shortest path algorithm, DT-RSAF enhances resource utilization while ensuring improved service continuity. A dynamic threshold mechanism enables the algorithm to adapt to varying network conditions, while its fragmentation awareness effectively mitigates spectrum fragmentation. Simulation results on NSFNET and COST 239 topologies demonstrate that DT-RSAF significantly outperforms methods such as K-Shortest Path Routing and Spectrum Allocation (KSP-RSA), Load Balanced and Fragmentation-Aware (LBFA), and the Invasive Weed Optimization-based RSA (IWO-RSA). Under heavy traffic, DT-RSAF reduces the blocking probability by up to 15% and achieves lower Bandwidth Fragmentation Ratios (BFR), ranging from 74% to 75%, compared to 77% - 80% for KSP-RSA, 75% - 77% for LBFA, and approximately 76% for IWO-RSA. DT-RSAF also demonstrated reasonable computation times compared to KSP-RSA, LBFA, and IWO-RSA. On a small-sized network, its computation time was 8710 times faster than that of Integer Linear Programming (ILP) on the same network topology. Additionally, it achieved a similar execution time to LBFA and outperformed IWO-RSA in terms of efficiency. These results highlight DT-RSAF’s capability to maintain large contiguous frequency blocks, making it highly effective for accommodating high-bandwidth requests in EONs while maintaining reasonable execution times.展开更多
Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectu...Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use.展开更多
文摘This paper discusses an optimization of operating a p ermutation circulation-type vehicle routing system (PCVRS, for short), in w hich several stages are located along by a single loop, and a fleet of vehicles travels on the loop unidirectionally and repeatedly. Traveling on the loop, each vehicle receives an object from the loading stage and then carries it to a cert ain processing stage, or receives an object from a certain processing stage and then carries it to the unloading stage per a turnaround. No passing is allowed f or the vehicles on the loop (from which the system is called permutation, and th is restriction may cause interferences between vehicles). Material handling systems such as PCVRS are actually encountered in flexible man ufacturing systems and in automated storage/retrieval systems. In this paper, we propose a heuristic algorithm for operating the PCVRS, which i ncorporates a new scheduling method for the vehicles with the SPT (shortest proc essing time) numbering of jobs and a round-robin manner of allocating jobs to t he stages, aiming to reduce interferences between the vehicles. We also give num erical results with respect to system performances attained by the heuristic. Description of the system The PCVRS consists of a set of n v vehicles V={V 1,V 2,...,V n v}, a set of n s, processing stages S p={S 1,S 2,...,S n s}, a loading stage S 0 and an unloading stage S n s +1. We denote by S=S p∪{S 0,S n s+l} the set of all the stages. The vehicles travel on a single loop unidirectionany and repeated ly. The system layout is depicted in Fig.1. There is a set of n jobs J={J 1,J 2,...,J n} to be processed b y the vehicles. Each job consists of two tasks: That is, each vehicle receives a n object from S 0 and then carries it to S l with a certain l∈{1,2, ...,n s} (a throw-in job), or receives an object from S l with a certain l∈{1,2,...,n s} and then carries it to S n s+1 (a throw-out job ) per a turnaround. The loop consists of buffer zones BZ(l) and travel zones TZ(l) (see Fig. 1). Each buffer zone BZ(l) is placed in front of stage S l, l=0,1,..., n s, n s+1, in order to avoid a collision between vehicles (i.e., the syste m adopts the so-called zone control strategy). A heuristic algorithm We develop a heuristic algorithm to obtain a good performance for the PCVRS. An operation π={A/B/C} for the PCVRS consists of three decision factors: (A) Numbering jobs Jobs are loaded into S 0 according to an assending order of job numbers. In this paper, we use the following rules to number jobs: SPT: Order jobs in the shortest processing time rule, i.e., P 1≤P 2≤...≤P n for the set of jobs J={J 1,J 2,...,J n}, rather than the FCFS numbering (i.e., number jobs in first-come-first-served order). The SPT rule intends to reduce interferences between two adjacent vehicles at stages. (B) Allocating jobs to stages For the purpose of balancing loads of processing stages, we adopt the following to allocate jobs to the stages: ORDER: Allocate n jobs to n s, processing stages by an in-order manner , i.e., let l(i) be the index of processing stage allocated job J i by ORDER, it holds that l(i)=n s+1-(i-[(i-1)/n s]n s).(1) The ORDER rule intends to process jobs parallel at stages as many as possible. (C) Scheduling vehicles The following method for scheduling vehicles under ORDER rule is already known: Fig.1 The vehicle ro uting system, PCVRS Fig.2 Mean turnaroun d times by heuristics Unchange: Assign n jobs to n v vehicles such that let k(i) be the i ndex of vehicle processing job J i, then k(i)= i-[(i-1)/n v]n v.(2) In csse of n v≥n s, mod (n v,n s)=0 or n v<n s, mod (n s,n v)=0 (mod(x,y) is the remainder of x/y), the number of interferences between vehicles is minimized at stage S 1 under Unchange sche dules, while in the other cases it is not [Lu et al. (2001a)]. Therefore, in t his paper, we develop a new scheduling method of the vehicles, denoted by Ex change, to modify Unchange schedules. Note
文摘This study was concerned with developing an antiretroviral drug distribution routing system with a goal of improving fleet utilization whilst reducing delivery costs. The system would enhance ARV drug delivery satisfaction of patients staying in the Limpopo province of South Africa. A VRP mathematical programming problem was formulated and the Savings Based as well as the Sequential Insertion algorithm was used to solve the problem. A mini program was then developed in Visual Basic.Net software that speeded up the vehicle route determination heuristics. This computer based vehicle routing system gave a total travelled distance of 1302.94 km and a space utilization of 93% as compared to the pigeonhole system which had a total travelled distance of 2874.2 km and space utilization of 86% for the demand of 5384 ARV drug patients. Therefore, the mathematical programming approach is more cost effective and efficient thereby enhancing delivery satisfaction to ARV drug patients in the province.
文摘The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale.Network slicing is crucial in delivering services for different,demanding vertical applications in this context.Next-generation applications have time-sensitive requirements and depend on the most efficient routing path to ensure packets reach their intended destinations.However,the existing IP(Internet Protocol)over a multi-domain network faces challenges in enforcing network slicing due to minimal collaboration and information sharing among network operators.Conventional inter-domain routing methods,like Border Gateway Protocol(BGP),cannot make routing decisions based on performance,which frequently results in traffic flowing across congested paths that are never optimal.To address these issues,we propose CoopAI-Route,a multi-agent cooperative deep reinforcement learning(DRL)system utilizing hierarchical software-defined networks(SDN).This framework enforces network slicing in multi-domain networks and cooperative communication with various administrators to find performance-based routes in intra-and inter-domain.CoopAI-Route employs the Distributed Global Topology(DGT)algorithm to define inter-domain Quality of Service(QoS)paths.CoopAI-Route uses a DRL agent with a message-passing multi-agent Twin-Delayed Deep Deterministic Policy Gradient method to ensure optimal end-to-end routes adapted to the specific requirements of network slicing applications.Our evaluation demonstrates CoopAI-Route’s commendable performance in scalability,link failure handling,and adaptability to evolving topologies compared to state-of-the-art methods.
基金funded by the National Natural Science Foundation of China under Grant 52177074.
文摘Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat to the safety and reliability of CPPS,and there is an acute need to reduce the probability of these failures.Towards this end,this paper first proposes a cascading failure index to identify and quantify the importance of different information in the same class of communication services.On this basis,a joint improved risk-balanced service function chain routing strategy(SFC-RS)is proposed,which is modeled as a robust optimization problem and solved by column-and-constraint generation(C-CG)algorithm.Compared with the traditional shortest-path routing algorithm,the superiority of SFC-RS is verified in the IEEE 30-bus system.The results demonstrate that SFC-RS effectively mitigates the risk associated with information transmission in the network,enhances information transmission accessibility,and effectively limits communication disruption from becoming the cause of cross-space cascading failures.
基金National Key Research and Development Program(2021YFB2900604)。
文摘Low Earth orbit(LEO)satellite networks exhibit distinct characteristics,e.g.,limited resources of individual satellite nodes and dynamic network topology,which have brought many challenges for routing algorithms.To satisfy quality of service(QoS)requirements of various users,it is critical to research efficient routing strategies to fully utilize satellite resources.This paper proposes a multi-QoS information optimized routing algorithm based on reinforcement learning for LEO satellite networks,which guarantees high level assurance demand services to be prioritized under limited satellite resources while considering the load balancing performance of the satellite networks for low level assurance demand services to ensure the full and effective utilization of satellite resources.An auxiliary path search algorithm is proposed to accelerate the convergence of satellite routing algorithm.Simulation results show that the generated routing strategy can timely process and fully meet the QoS demands of high assurance services while effectively improving the load balancing performance of the link.
文摘The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the selection of appropriate routing protocols, which is crucial for maintaining high Quality of Service (QoS). The Internet Engineering Task Force’s Routing Over Low Power and Lossy Networks (IETF ROLL) working group developed the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) to meet these needs. While the initial RPL standard focused on single-metric route selection, ongoing research explores enhancing RPL by incorporating multiple routing metrics and developing new Objective Functions (OFs). This paper introduces a novel Objective Function (OF), the Reliable and Secure Objective Function (RSOF), designed to enhance the reliability and trustworthiness of parent selection at both the node and link levels within IoT and RPL routing protocols. The RSOF employs an adaptive parent node selection mechanism that incorporates multiple metrics, including Residual Energy (RE), Expected Transmission Count (ETX), Extended RPL Node Trustworthiness (ERNT), and a novel metric that measures node failure rate (NFR). In this mechanism, nodes with a high NFR are excluded from the parent selection process to improve network reliability and stability. The proposed RSOF was evaluated using random and grid topologies in the Cooja Simulator, with tests conducted across small, medium, and large-scale networks to examine the impact of varying node densities. The simulation results indicate a significant improvement in network performance, particularly in terms of average latency, packet acknowledgment ratio (PAR), packet delivery ratio (PDR), and Control Message Overhead (CMO), compared to the standard Minimum Rank with Hysteresis Objective Function (MRHOF).
基金supported in part by the National Natural Science Foundation of China under Grant U23A20300 and 62072351in part by the Key Research Project of Shaanxi Natural Science Foundation under Grant 2023-JC-ZD-35+1 种基金in part by the Concept Verification Funding of Hangzhou Institute of Technology of Xidian University under Grant GNYZ2024XX007in part by the 111 Project under Grant B16037.
文摘Cross-domain routing in Integrated Heterogeneous Networks(Inte-HetNet)should ensure efficient and secure data transmission across different network domains by satisfying diverse routing requirements.However,current solutions face numerous challenges in continuously ensuring trustworthy routing,fulfilling diverse requirements,achieving reasonable resource allocation,and safeguarding against malicious behaviors of network operators.We propose CrowdRouting,a novel cross-domain routing scheme based on crowdsourcing,dedicated to establishing sustained trust in cross-domain routing,comprehensively considering and fulfilling various customized routing requirements,while ensuring reasonable resource allocation and effectively curbing malicious behavior of network operators.Concretely,CrowdRouting employs blockchain technology to verify the trustworthiness of border routers in different network domains,thereby establishing sustainable and trustworthy crossdomain routing based on sustained trust in these routers.In addition,CrowdRouting ingeniously integrates a crowdsourcing mechanism into the auction for routing,achieving fair and impartial allocation of routing rights by flexibly embedding various customized routing requirements into each auction phase.Moreover,CrowdRouting leverages incentive mechanisms and routing settlement to encourage network domains to actively participate in cross-domain routing,thereby promoting optimal resource allocation and efficient utilization.Furthermore,CrowdRouting introduces a supervisory agency(e.g.,undercover agent)to effectively suppress the malicious behavior of network operators through the game and interaction between the agent and the network operators.Through comprehensive experimental evaluations and comparisons with existing works,we demonstrate that CrowdRouting excels in providing trustworthy and fine-grained customized routing services,stimulating active participation in cross-domain routing,inhibiting malicious operator behavior,and maintaining reasonable resource allocation,all of which outperform baseline schemes.
基金funded by the National Natural Science Foundation of China,grant numbers(62272007,62001007)the Natural Science Foundation of Beijing,grant numbers(4234083,4212018)The authors also extend their appreciation to King Khalid University for funding this work through the Large Group Project under grant number RGP.2/373/45.
文摘Border Gateway Protocol(BGP),as the standard inter-domain routing protocol,is a distance-vector dynamic routing protocol used for exchanging routing information between distributed Autonomous Systems(AS).BGP nodes,communicating in a distributed dynamic environment,face several security challenges,with trust being one of the most important issues in inter-domain routing.Existing research,which performs trust evaluation when exchanging routing information to suppress malicious routing behavior,cannot meet the scalability requirements of BGP nodes.In this paper,we propose a blockchain-based trust model for inter-domain routing.Our model achieves scalability by allowing the master node of an AS alliance to transmit the trust evaluation data of its member nodes to the blockchain.The BGP nodes can expedite the trust evaluation process by accessing a global view of other BGP nodes through the master node of their respective alliance.We incorporate security service evaluation before direct evaluation and indirect recommendations to assess the security services that BGP nodes provide for themselves and prioritize to guarantee their security of routing service.We forward the trust evaluation for neighbor discovery and prioritize the nodes with high trust as neighbor nodes to reduce the malicious exchange routing behavior.We use simulation software to simulate a real BGP environments and employ a comparative experimental research approach to demonstrate the performance evaluation of our trust model.Compared with the classical trust model,our trust model not only saves more storage overhead,but also provides higher security,especially reducing the impact of collusion attacks.
文摘Underwater Wireless Sensor Networks(UWSNs)are gaining popularity because of their potential uses in oceanography,seismic activity monitoring,environmental preservation,and underwater mapping.Yet,these networks are faced with challenges such as self-interference,long propagation delays,limited bandwidth,and changing network topologies.These challenges are coped with by designing advanced routing protocols.In this work,we present Under Water Fuzzy-Routing Protocol for Low power and Lossy networks(UWF-RPL),an enhanced fuzzy-based protocol that improves decision-making during path selection and traffic distribution over different network nodes.Our method extends RPL with the aid of fuzzy logic to optimize depth,energy,Received Signal Strength Indicator(RSSI)to Expected Transmission Count(ETX)ratio,and latency.Theproposed protocol outperforms other techniques in that it offersmore energy efficiency,better packet delivery,lowdelay,and no queue overflow.It also exhibits better scalability and reliability in dynamic underwater networks,which is of very high importance in maintaining the network operations efficiency and the lifetime of UWSNs optimized.Compared to other recent methods,it offers improved network convergence time(10%–23%),energy efficiency(15%),packet delivery(17%),and delay(24%).
文摘This paper systematically reviews the latest research developments in Vehicle Routing Problems(VRP).It examines classical VRP models and their classifications across different dimensions,including load capacity,operational characteristics,optimization objectives,vehicle types,and time constraints.Based on literature retrieval results from the Web of Science database,the paper analyzes the current state and trends in VRP research,providing detailed explanations of VRP models and algorithms applied to various scenarios in recent years.Additionally,the article discusses limitations in existing research and provides perspectives on future development trends in VRP research.This review offers researchers in the VRP field a comprehensive overview while identifying future research directions.
基金the support of the Chinese Special Research Project for Civil Aircraft(No.MJZ17N22)the National Natural Science Foundation of China(Nos.U2133207,U2333214)+1 种基金the China Postdoctoral Science Foundation(No.2023M741687)the National Social Science Fund of China(No.22&ZD169)。
文摘Unmanned Aerial Vehicle(UAV)stands as a burgeoning electric transportation carrier,holding substantial promise for the logistics sector.A reinforcement learning framework Centralized-S Proximal Policy Optimization(C-SPPO)based on centralized decision process and considering policy entropy(S)is proposed.The proposed framework aims to plan the best scheduling scheme with the objective of minimizing both the timeout of order requests and the flight impact of UAVs that may lead to conflicts.In this framework,the intents of matching act are generated through the observations of UAV agents,and the ultimate conflict-free matching results are output under the guidance of a centralized decision maker.Concurrently,a pre-activation operation is introduced to further enhance the cooperation among UAV agents.Simulation experiments based on real-world data from New York City are conducted.The results indicate that the proposed CSPPO outperforms the baseline algorithms in the Average Delay Time(ADT),the Maximum Delay Time(MDT),the Order Delay Rate(ODR),the Average Flight Distance(AFD),and the Flight Impact Ratio(FIR).Furthermore,the framework demonstrates scalability to scenarios of different sizes without requiring additional training.
基金supported by the National Natural Science Foundation of China(No.62401597)Natural Science Foundation of Hunan Province,China(No.2024JJ6469)the Research Project of National University of Defense Technology,China(No.ZK22-02).
文摘Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed satellites,ground users now can be covered by multiple visible satellites,but also face complex handover issues with such massive high-mobility satellites in multi-layer.The end-to-end routing is also affected by the handover behavior.In this paper,we propose an intelligent handover strategy dedicated to multi-layer LEO mega-constellation networks.Firstly,an analytic model is utilized to rapidly estimate the end-to-end propagation latency as a key handover factor to construct a multi-objective optimization model.Subsequently,an intelligent handover strategy is proposed by employing the Dueling Double Deep Q Network(D3QN)-based deep reinforcement learning algorithm for single-layer constellations.Moreover,an optimal crosslayer handover scheme is proposed by predicting the latency-jitter and minimizing the cross-layer overhead.Simulation results demonstrate the superior performance of the proposed method in the multi-layer LEO mega-constellation,showcasing reductions of up to 8.2%and 59.5%in end-to-end latency and jitter respectively,when compared to the existing handover strategies.
基金National Natural Science Foundation of China (61773044,62073009)National key Laboratory of Science and Technology on Reliability and Environmental Engineering(WDZC2019601A301)。
文摘Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a network, the delay is with epistemic uncertainty, which makes the traditional routing scheme based on deterministic theory or probability theory not applicable. Motivated by this problem, the MCN with epistemic uncertainty is first summarized as a dynamic uncertain network based on uncertainty theory, which is widely applied to model epistemic uncertainties. Then by modeling the uncertain end-toend delay, a new delay bounded routing scheme is proposed to find the path with the maximum belief degree that satisfies the delay threshold for the dynamic uncertain network. Finally, a lowEarth-orbit satellite communication network(LEO-SCN) is used as a case to verify the effectiveness of our routing scheme. It is first modeled as a dynamic uncertain network, and then the delay bounded paths with the maximum belief degree are computed and compared under different delay thresholds.
基金supported in part by National Natural Science Foundation of China(Nos.61931011 and 62372230)the Jiangsu Provincial Key Research and Development Program,China(No.BE2021013-4).
文摘UAV networks often encounter jamming attacks, under which multi-radio protocols have to switch radios to accelerate communication recovery. However, the existing protocols rely on exchange of hello messages to detect jamming, leading to long sensing time and thus slow routing recovery. To address the issues raised by jamming attacks, we propose a new routing protocol, Electromagnetic Spectrum situation awareness Optimized Link State Routing (ESOLSR) protocol, to improve the existing OLSRv2 protocol. ESOLSR utilizes the spectrum situation awareness capability from the physical layer, and adopts joint-updating of link status, updating of interface functions, and adaptive adjustment of parameters. Our simulation results show that the improved protocol, ESOLSR, can recover routing and resume normal communication 26.6% faster compared to the existing protocols.
基金supported by the National Natural Science Foundation of China(T2394531)the National Key R&D Program of China(2024YFF1206500)+1 种基金the Shanghai Municipal Science and Technology Major Project(2018SHZDZX01)ZJ Lab,and the Shanghai Center for Brain Science and Brain-Inspired Technology,China.
文摘DDeeaarr EEddiittoorr,,The encoding and retrieval of emotional memories demands intricate interplay within the limbic network,where the network state is subject to significant reconfiguration by learning-induced plasticity,behavioral state,and contextual information[1].
基金supported by National Natural Science Foundation of China(No.62073212)Shanghai Science and Technology Commission(No.23ZR1426600).
文摘Automated guided vehicles(AGVs)are key equipment in automated container terminals(ACTs),and their operational efficiency can be impacted by conflicts and battery swapping.Additionally,AGVs have bidirectional transportation capabilities,allowing them tomove in the opposite directionwithout turning around,which helps reduce transportation time.This paper aims at the problem of AGV scheduling and bidirectional conflict-free routing with battery swapping in automated terminals.A bi-level mixed integer programming(MIP)model is proposed,taking into account task assignment,bidirectional conflict-free routing,and battery swapping.The upper model focuses on container task assignment and AGV battery swapping planning,while the lower model ensures conflict-free movement of AGVs.A double-threshold battery swapping strategy is introduced,allowing AGVs to utilize waiting time for loading for battery swapping.An improved differential evolution variable neighborhood search(IDE-VNS)algorithm is developed to solve the bi-level MIP model,aiming to minimize the completion time of all jobs.Experimental results demonstrate that compared to the differential evolution(DE)algorithm and the genetic algorithm(GA),the IDEVNS algorithmreduces fitness values by 44.49% and 45.22%,though it does increase computation time by 56.28% and 62.03%,respectively.Bidirectional transportation reduces the fitness value by an average of 10.97% when the container scale is small.As the container scale increases,the fitness value of bidirectional transportation gradually approaches that of unidirectional transportation.The results further show that the double-threshold battery swapping strategy enhances AGV utilization and reduces the fitness value.
文摘This paper addresses the Multi-Vehicle Routing Problem with Time Windows and Simultaneous Pickup and Delivery(MVRPTWSPD),aiming to optimize logistics distribution routes and minimize total costs.A vehicle routing optimization model is developed based on the operational requirements of the KS Logistics Center,focusing on minimizing vehicle dispatch,loading and unloading,operating,and time window penalty costs.The model incorporates constraints such as vehicle capacity,time windows,and travel distance,and is solved using a genetic algorithm to ensure optimal route planning.Through MATLAB simulations,34 customer points are analyzed,demonstrating that the simultaneous pickup and delivery model reduces total costs by 30.13%,increases vehicle loading rates by 20.04%,and decreases travel distance compared to delivery-only or pickup-only models.The results demonstrate the significant advantages of the simultaneous pickup and delivery mode in reducing logistics costs and improving vehicle utilization,offering valuable insights for enhancing the operational efficiency of the KS Logistics Center.
基金funded by National Natural Science Foundation of China(No.61741303)Guangxi Natural Science Foundation(No.2017GXNSFAA198161)the Foundation Project of Guangxi Key Laboratory of Spatial Information and Mapping(No.21-238-21-16).
文摘In large-scaleWireless Rechargeable SensorNetworks(WRSN),traditional forward routingmechanisms often lead to reduced energy efficiency.To address this issue,this paper proposes a WRSN node energy optimization algorithm based on regional partitioning and inter-layer routing.The algorithm employs a dynamic clustering radius method and the K-means clustering algorithm to dynamically partition the WRSN area.Then,the cluster head nodes in the outermost layer select an appropriate layer from the next relay routing region and designate it as the relay layer for data transmission.Relay nodes are selected layer by layer,starting from the outermost cluster heads.Finally,the inter-layer routing mechanism is integrated with regional partitioning and clustering methods to develop the WRSN energy optimization algorithm.To further optimize the algorithm’s performance,we conduct parameter optimization experiments on the relay routing selection function,cluster head rotation energy threshold,and inter-layer relay structure selection,ensuring the best configurations for energy efficiency and network lifespan.Based on these optimizations,simulation results demonstrate that the proposed algorithm outperforms traditional forward routing,K-CHRA,and K-CLP algorithms in terms of node mortality rate and energy consumption,extending the number of rounds to 50%node death by 11.9%,19.3%,and 8.3%in a 500-node network,respectively.
文摘This paper proposes an efficient strategy for resource utilization in Elastic Optical Networks (EONs) to minimize spectrum fragmentation and reduce connection blocking probability during Routing and Spectrum Allocation (RSA). The proposed method, Dynamic Threshold-Based Routing and Spectrum Allocation with Fragmentation Awareness (DT-RSAF), integrates rerouting and spectrum defragmentation as needed. By leveraging Yen’s shortest path algorithm, DT-RSAF enhances resource utilization while ensuring improved service continuity. A dynamic threshold mechanism enables the algorithm to adapt to varying network conditions, while its fragmentation awareness effectively mitigates spectrum fragmentation. Simulation results on NSFNET and COST 239 topologies demonstrate that DT-RSAF significantly outperforms methods such as K-Shortest Path Routing and Spectrum Allocation (KSP-RSA), Load Balanced and Fragmentation-Aware (LBFA), and the Invasive Weed Optimization-based RSA (IWO-RSA). Under heavy traffic, DT-RSAF reduces the blocking probability by up to 15% and achieves lower Bandwidth Fragmentation Ratios (BFR), ranging from 74% to 75%, compared to 77% - 80% for KSP-RSA, 75% - 77% for LBFA, and approximately 76% for IWO-RSA. DT-RSAF also demonstrated reasonable computation times compared to KSP-RSA, LBFA, and IWO-RSA. On a small-sized network, its computation time was 8710 times faster than that of Integer Linear Programming (ILP) on the same network topology. Additionally, it achieved a similar execution time to LBFA and outperformed IWO-RSA in terms of efficiency. These results highlight DT-RSAF’s capability to maintain large contiguous frequency blocks, making it highly effective for accommodating high-bandwidth requests in EONs while maintaining reasonable execution times.
基金funded by Deanship of Graduate studies and Scientific Research at Jouf University under grant No.(DGSSR-2023-2-02038).
文摘Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use.