Unmanned Aerial Vehicle(UAV)stands as a burgeoning electric transportation carrier,holding substantial promise for the logistics sector.A reinforcement learning framework Centralized-S Proximal Policy Optimization(C-S...Unmanned Aerial Vehicle(UAV)stands as a burgeoning electric transportation carrier,holding substantial promise for the logistics sector.A reinforcement learning framework Centralized-S Proximal Policy Optimization(C-SPPO)based on centralized decision process and considering policy entropy(S)is proposed.The proposed framework aims to plan the best scheduling scheme with the objective of minimizing both the timeout of order requests and the flight impact of UAVs that may lead to conflicts.In this framework,the intents of matching act are generated through the observations of UAV agents,and the ultimate conflict-free matching results are output under the guidance of a centralized decision maker.Concurrently,a pre-activation operation is introduced to further enhance the cooperation among UAV agents.Simulation experiments based on real-world data from New York City are conducted.The results indicate that the proposed CSPPO outperforms the baseline algorithms in the Average Delay Time(ADT),the Maximum Delay Time(MDT),the Order Delay Rate(ODR),the Average Flight Distance(AFD),and the Flight Impact Ratio(FIR).Furthermore,the framework demonstrates scalability to scenarios of different sizes without requiring additional training.展开更多
The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic ...The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic customer demands.These uncertainties make traditional deterministic models inadequate,often leading to suboptimal or infeasible solutions.To address these challenges,this work proposes an adaptive hybrid metaheuristic that integrates Genetic Algorithms(GA)with Local Search(LS),while incorporating stochastic uncertainty modeling through probabilistic travel times.The proposed algorithm dynamically adjusts parameters—such as mutation rate and local search probability—based on real-time search performance.This adaptivity enhances the algorithm’s ability to balance exploration and exploitation during the optimization process.Travel time uncertainties are modeled using Gaussian noise,and solution robustness is evaluated through scenario-based simulations.We test our method on a set of benchmark problems from Solomon’s instance suite,comparing its performance under deterministic and stochastic conditions.Results show that the proposed hybrid approach achieves up to a 9%reduction in expected total travel time and a 40% reduction in time window violations compared to baseline methods,including classical GA and non-adaptive hybrids.Additionally,the algorithm demonstrates strong robustness,with lower solution variance across uncertainty scenarios,and converges faster than competing approaches.These findings highlight the method’s suitability for practical logistics applications such as last-mile delivery and real-time transportation planning,where uncertainty and service-level constraints are critical.The flexibility and effectiveness of the proposed framework make it a promising candidate for deployment in dynamic,uncertainty-aware supply chain environments.展开更多
This paper addresses the Multi-Vehicle Routing Problem with Time Windows and Simultaneous Pickup and Delivery(MVRPTWSPD),aiming to optimize logistics distribution routes and minimize total costs.A vehicle routing opti...This paper addresses the Multi-Vehicle Routing Problem with Time Windows and Simultaneous Pickup and Delivery(MVRPTWSPD),aiming to optimize logistics distribution routes and minimize total costs.A vehicle routing optimization model is developed based on the operational requirements of the KS Logistics Center,focusing on minimizing vehicle dispatch,loading and unloading,operating,and time window penalty costs.The model incorporates constraints such as vehicle capacity,time windows,and travel distance,and is solved using a genetic algorithm to ensure optimal route planning.Through MATLAB simulations,34 customer points are analyzed,demonstrating that the simultaneous pickup and delivery model reduces total costs by 30.13%,increases vehicle loading rates by 20.04%,and decreases travel distance compared to delivery-only or pickup-only models.The results demonstrate the significant advantages of the simultaneous pickup and delivery mode in reducing logistics costs and improving vehicle utilization,offering valuable insights for enhancing the operational efficiency of the KS Logistics Center.展开更多
This paper systematically reviews the latest research developments in Vehicle Routing Problems(VRP).It examines classical VRP models and their classifications across different dimensions,including load capacity,operat...This paper systematically reviews the latest research developments in Vehicle Routing Problems(VRP).It examines classical VRP models and their classifications across different dimensions,including load capacity,operational characteristics,optimization objectives,vehicle types,and time constraints.Based on literature retrieval results from the Web of Science database,the paper analyzes the current state and trends in VRP research,providing detailed explanations of VRP models and algorithms applied to various scenarios in recent years.Additionally,the article discusses limitations in existing research and provides perspectives on future development trends in VRP research.This review offers researchers in the VRP field a comprehensive overview while identifying future research directions.展开更多
Efficient warehouse management is critical for modern supply chain systems,particularly in the era of e-commerce and automation.The Multi-Picker Robot Routing Problem(MPRRP)presents a complex challenge involving the o...Efficient warehouse management is critical for modern supply chain systems,particularly in the era of e-commerce and automation.The Multi-Picker Robot Routing Problem(MPRRP)presents a complex challenge involving the optimization of routes for multiple robots assigned to retrieve items from distinct locations within a warehouse.This study introduces optimized metaheuristic strategies to address MPRRP,with the aim of minimizing travel distances,energy consumption,and order fulfillment time while ensuring operational efficiency.Advanced algorithms,including an enhanced Particle Swarm Optimization(PSO-MPRRP)and a tailored Genetic Algorithm(GA-MPRRP),are specifically designed with customized evolutionary operators to effectively solve the MPRRP.Comparative experiments are conducted to evaluate the proposed strategies against benchmark approaches,demonstrating significant improvements in solution quality and computational efficiency.The findings contribute to the development of intelligent,scalable,and environmentally friendly warehouse systems,paving the way for future advances in robotics and automated logistics management.展开更多
As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in mult...As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm.展开更多
Commercial organisations commonly use operational research tools to solve vehicle routing problems. This practice is less commonplace in charity and voluntary organisations. In this paper, we provide an elementary app...Commercial organisations commonly use operational research tools to solve vehicle routing problems. This practice is less commonplace in charity and voluntary organisations. In this paper, we provide an elementary approach for solving the Vehicle Routing Problem (VRP) that we believe can be easily implemented in these types of organisations. The proposed model leverages mixed integer linear programming to optimize the pickup sequence of all customers, each with distinct time windows and locations, transporting them to a final destination using a fleet of vehicles. To ensure ease of implementation, the model utilises Python, a user-friendly programming language, and integrates with the Google Maps API, which simplifies data input by eliminating the need for manual entry of travel times between locations. Troubleshooting methods are incorporated into the model design to ensure easy debugging of the model’s infeasibilities. Additionally, a computation time analysis is conducted to evaluate the efficiency of the code. A node partitioning approach is also discussed, which aims to reduce computational times, especially when handling larger datasets, ensuring this model is realistic and practical for real-world application. By implementing this optimized routing strategy, logistics companies or organisations can expect significant improvements in their day-to-day operations, with minimal computational cost or need for specialised expertise. This includes reduced travel times, minimized fuel consumption, and thus lower operational costs, while ensuring punctuality and meeting the demands of all passengers.展开更多
Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a ...Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful.展开更多
The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendl...The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles.展开更多
Capacitated vehicle routing problem (CVRP) is an NP-hard problem. For large-scale problems, it is quite difficult to achieve an optimal solution with traditional optimization methods due to the high computational comp...Capacitated vehicle routing problem (CVRP) is an NP-hard problem. For large-scale problems, it is quite difficult to achieve an optimal solution with traditional optimization methods due to the high computational complexity. A new hybrid ap- proximation algorithm is developed in this work to solve the problem. In the hybrid algorithm, discrete particle swarm optimiza- tion (DPSO) combines global search and local search to search for the optimal results and simulated annealing (SA) uses certain probability to avoid being trapped in a local optimum. The computational study showed that the proposed algorithm is a feasible and effective approach for capacitated vehicle routing problem, especially for large scale problems.展开更多
The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithm...The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithms is proposed. This combination absorbs the merits of the two algorithms in solutions construction and optimization separately. In order to improve the efficiency of the insertion procedure, a nearest neighbor selection(NNS) mechanism, an insertion local search procedure and a local optimization procedure are specified in detail. And in order to find a balance between good scouting performance and fast convergence rate, an adaptive pheromone updating strategy is proposed in the MTAS. Computational results confirm the MTAS algorithm's good performance with all these strategies on classic vehicle routing problem with time windows(VRPTW) benchmark instances and the TDVRPTW instances, and some better results especially for the number of vehicles and travel times of the best solutions are obtained in comparison with the previous research.展开更多
The vehicle routing problem(VRP)is a typical discrete combinatorial optimization problem,and many models and algorithms have been proposed to solve the VRP and its variants.Although existing approaches have contribute...The vehicle routing problem(VRP)is a typical discrete combinatorial optimization problem,and many models and algorithms have been proposed to solve the VRP and its variants.Although existing approaches have contributed significantly to the development of this field,these approaches either are limited in problem size or need manual intervention in choosing parameters.To solve these difficulties,many studies have considered learning-based optimization(LBO)algorithms to solve the VRP.This paper reviews recent advances in this field and divides relevant approaches into end-to-end approaches and step-by-step approaches.We performed a statistical analysis of the reviewed articles from various aspects and designed three experiments to evaluate the performance of four representative LBO algorithms.Finally,we conclude the applicable types of problems for different LBO algorithms and suggest directions in which researchers can improve LBO algorithms.展开更多
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency...The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.展开更多
Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when mode...Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-Ⅱ (NSGA-Ⅱ) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-Ⅱ (GNSGA-Ⅱ) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-Ⅱ is prevented from premature convergence and refine the performance of NSGA-Ⅱ at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-Ⅱ is compared with NSGA-Ⅱ. As a result, the GNSGA-Ⅱ is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-Ⅱ, premature convergence is better avoided and search efficiency has been improved sharply.展开更多
As a new variant of vehicle routing problem( VRP),a finished vehicle routing problem with time windows in finished vehicle logistics( FVRPTW) is modeled and solved. An optimization model for FVRPTW is presented with t...As a new variant of vehicle routing problem( VRP),a finished vehicle routing problem with time windows in finished vehicle logistics( FVRPTW) is modeled and solved. An optimization model for FVRPTW is presented with the objective of scheduling multiple transport routes considering loading constraints along with time penalty function to minimize the total cost. Then a genetic algorithm( GA) is developed. The specific encoding and genetic operators for FVRPTW are devised.Especially,in order to accelerate its convergence,an improved termination condition is given. Finally,a case study is used to evaluate the effectiveness of the proposed algorithm and a series of experiments are conducted over a set of finished vehicle routing problems. The results demonstrate that the proposed approach has superior performance and satisfies users in practice. Contributions of the study are the modeling and solving of a complex FVRPTW in logistics industry.展开更多
The school bus routing problem(SBRP)is a central issue in transportation planning and optimization systems.SBRP seeks to plan an efficient schedule for a fleet of school buses where each bus picks up students from var...The school bus routing problem(SBRP)is a central issue in transportation planning and optimization systems.SBRP seeks to plan an efficient schedule for a fleet of school buses where each bus picks up students from various bus stops and delivers them to their designated schools while satisfying various constraints such as the maximum capacity of a bus,and the time window of a school.Due to its inherent complexity,many heuristics have been proposed to solve this combinatorial problem in an effective way.In this paper,a novel geographic information systems(GIS)-based decisionmaking framework that combines GIS,clustering techniques,network cutting techniques,and a hybrid ant colony optimization metaheuristic with the iterated Lin–Kernighan local improvement heuristic is proposed for solving the SBRP as a split delivery vehicle routing problem(SDVRP).Experiments were conducted for evaluating the proposed framework by comparing the results for solving 11 routing problems using both the proposed decision-making framework and Arc-GIS 9.2 Network Analyst which uses the greedy Dijkstra’s algorithm.The reported results of the proposed framework generally outperform that of the ArcGIS Network Analyst.In addition,the proposed decision-making framework was applied to solve a real life SBRP to demonstrate its application.展开更多
We study the capacitated vehicle routing problem(CVRP)which is a well-known NP-hard combinatorial optimization problem(COP).The aim of the problem is to serve different customers by a convoy of vehicles starting from ...We study the capacitated vehicle routing problem(CVRP)which is a well-known NP-hard combinatorial optimization problem(COP).The aim of the problem is to serve different customers by a convoy of vehicles starting from a depot so that sum of the routing costs under their capacity constraints is minimized.Since the problem is very complicated,solving the problem using exact methods is almost impossible.So,one has to go for the heuristic/metaheuristic methods and genetic algorithm(GA)is broadly applied metaheuristic method to obtain near optimal solution to such COPs.So,this paper studies GAs to find solution to the problem.Generally,to solve a COP,GAs start with a chromosome set named initial population,and then mainly three operators-selection,crossover andmutation,are applied.Among these three operators,crossover is very crucial in designing and implementing GAs,and hence,numerous crossover operators were developed and applied to different COPs.There are two major kinds of crossover operators-blind crossovers and distance-based crossovers.We intend to compare the performance of four blind crossover and four distance-based crossover operators to test the suitability of the operators to solve the CVRP.These operators were originally proposed for the standard travelling salesman problem(TSP).First,these eight crossovers are illustrated using same parent chromosomes for building offspring(s).Then eight GAs using these eight crossover operators without any mutation operator and another eight GAs using these eight crossover operators with a mutation operator are developed.These GAs are experimented on some benchmark asymmetric and symmetric instances of numerous sizes and various number of vehicles.Our study revealed that the distance-based crossovers are much superior to the blind crossovers.Further,we observed that the sequential constructive crossover with and without mutation operator is the best one for theCVRP.This estimation is validated by Student’s t-test at 95%confidence level.We further determined a comparative rank of the eight crossovers for the CVRP.展开更多
With the expansion of the application scope of social computing problems,many path problems in real life have evolved from pure path optimization problems to social computing problems that take into account various so...With the expansion of the application scope of social computing problems,many path problems in real life have evolved from pure path optimization problems to social computing problems that take into account various social attributes,cultures,and the emotional needs of customers.The actual soft time window vehicle routing problem,speeding up the response of customer needs,improving distribution efficiency,and reducing operating costs is the focus of current social computing problems.Therefore,designing fast and effective algorithms to solve this problem has certain theoretical and practical significance.In this paper,considering the time delay problem of customer demand,the compensation problem is given,and the mathematical model of vehicle path problem with soft time window is given.This paper proposes a hybrid tabu search(TS)&scatter search(SS)algorithm for vehicle routing problem with soft time windows(VRPSTW),which mainly embeds the TS dynamic tabu mechanism into the SS algorithm framework.TS uses the scattering of SS to avoid the dependence on the quality of the initial solution,and SS uses the climbing ability of TS improves the ability of optimizing,so that the quality of search for the optimal solution can be significantly improved.The hybrid algorithm is still based on the basic framework of SS.In particular,TS is mainly used for solution improvement and combination to generate new solutions.In the solution process,both the quality and the dispersion of the solution are considered.A simulation experiments verify the influence of the number of vehicles and maximum value of tabu length on solution,parameters’control over the degree of convergence,and the influence of the number of diverse solutions on algorithm performance.Based on the determined parameters,simulation experiment is carried out in this paper to further prove the algorithm feasibility and effectiveness.The results of this paper provide further ideas for solving vehicle routing problems with time windows and improving the efficiency of vehicle routing problems and have strong applicability.展开更多
In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location...In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location,inventory and transportation.Due to the complex of LIR problem( LIRP), a multi-objective genetic algorithm(GA), non-dominated sorting in genetic algorithm Ⅱ( NSGA-Ⅱ) has been introduced. Its performance is tested over a real case for the proposed problems. Results indicate that NSGA-Ⅱ provides a competitive performance than GA,which demonstrates that the proposed model and multi-objective GA are considerably efficient to solve the problem.展开更多
This study attempts to solve vehicle routing problem with time window (VRPTW). The study first identifies the real problems and suggests some recommendations on the issues. The technique used in this study is Genetic ...This study attempts to solve vehicle routing problem with time window (VRPTW). The study first identifies the real problems and suggests some recommendations on the issues. The technique used in this study is Genetic Algorithm (GA) and initialization applied is random population method. The objective of the study is to assign a number of vehicles to routes that connect customers and depot such that the overall distance travelled is minimized and the delivery operations are completed within the time windows requested by the customers. The analysis reveals that the problems experienced in vehicle routing with time window can be solved by GA and retrieved for optimal solutions. After a thorough study on VRPTW, it is highly recommended that a company should implement the optimal routes derived from the study to increase the efficiency and accuracy of delivery with time insertion.展开更多
基金the support of the Chinese Special Research Project for Civil Aircraft(No.MJZ17N22)the National Natural Science Foundation of China(Nos.U2133207,U2333214)+1 种基金the China Postdoctoral Science Foundation(No.2023M741687)the National Social Science Fund of China(No.22&ZD169)。
文摘Unmanned Aerial Vehicle(UAV)stands as a burgeoning electric transportation carrier,holding substantial promise for the logistics sector.A reinforcement learning framework Centralized-S Proximal Policy Optimization(C-SPPO)based on centralized decision process and considering policy entropy(S)is proposed.The proposed framework aims to plan the best scheduling scheme with the objective of minimizing both the timeout of order requests and the flight impact of UAVs that may lead to conflicts.In this framework,the intents of matching act are generated through the observations of UAV agents,and the ultimate conflict-free matching results are output under the guidance of a centralized decision maker.Concurrently,a pre-activation operation is introduced to further enhance the cooperation among UAV agents.Simulation experiments based on real-world data from New York City are conducted.The results indicate that the proposed CSPPO outperforms the baseline algorithms in the Average Delay Time(ADT),the Maximum Delay Time(MDT),the Order Delay Rate(ODR),the Average Flight Distance(AFD),and the Flight Impact Ratio(FIR).Furthermore,the framework demonstrates scalability to scenarios of different sizes without requiring additional training.
文摘The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic customer demands.These uncertainties make traditional deterministic models inadequate,often leading to suboptimal or infeasible solutions.To address these challenges,this work proposes an adaptive hybrid metaheuristic that integrates Genetic Algorithms(GA)with Local Search(LS),while incorporating stochastic uncertainty modeling through probabilistic travel times.The proposed algorithm dynamically adjusts parameters—such as mutation rate and local search probability—based on real-time search performance.This adaptivity enhances the algorithm’s ability to balance exploration and exploitation during the optimization process.Travel time uncertainties are modeled using Gaussian noise,and solution robustness is evaluated through scenario-based simulations.We test our method on a set of benchmark problems from Solomon’s instance suite,comparing its performance under deterministic and stochastic conditions.Results show that the proposed hybrid approach achieves up to a 9%reduction in expected total travel time and a 40% reduction in time window violations compared to baseline methods,including classical GA and non-adaptive hybrids.Additionally,the algorithm demonstrates strong robustness,with lower solution variance across uncertainty scenarios,and converges faster than competing approaches.These findings highlight the method’s suitability for practical logistics applications such as last-mile delivery and real-time transportation planning,where uncertainty and service-level constraints are critical.The flexibility and effectiveness of the proposed framework make it a promising candidate for deployment in dynamic,uncertainty-aware supply chain environments.
文摘This paper addresses the Multi-Vehicle Routing Problem with Time Windows and Simultaneous Pickup and Delivery(MVRPTWSPD),aiming to optimize logistics distribution routes and minimize total costs.A vehicle routing optimization model is developed based on the operational requirements of the KS Logistics Center,focusing on minimizing vehicle dispatch,loading and unloading,operating,and time window penalty costs.The model incorporates constraints such as vehicle capacity,time windows,and travel distance,and is solved using a genetic algorithm to ensure optimal route planning.Through MATLAB simulations,34 customer points are analyzed,demonstrating that the simultaneous pickup and delivery model reduces total costs by 30.13%,increases vehicle loading rates by 20.04%,and decreases travel distance compared to delivery-only or pickup-only models.The results demonstrate the significant advantages of the simultaneous pickup and delivery mode in reducing logistics costs and improving vehicle utilization,offering valuable insights for enhancing the operational efficiency of the KS Logistics Center.
文摘This paper systematically reviews the latest research developments in Vehicle Routing Problems(VRP).It examines classical VRP models and their classifications across different dimensions,including load capacity,operational characteristics,optimization objectives,vehicle types,and time constraints.Based on literature retrieval results from the Web of Science database,the paper analyzes the current state and trends in VRP research,providing detailed explanations of VRP models and algorithms applied to various scenarios in recent years.Additionally,the article discusses limitations in existing research and provides perspectives on future development trends in VRP research.This review offers researchers in the VRP field a comprehensive overview while identifying future research directions.
基金funded by Hanoi University of Industry,Hanoi,Vietnam,under contract number 25−2024−RD/HD−DHCN.
文摘Efficient warehouse management is critical for modern supply chain systems,particularly in the era of e-commerce and automation.The Multi-Picker Robot Routing Problem(MPRRP)presents a complex challenge involving the optimization of routes for multiple robots assigned to retrieve items from distinct locations within a warehouse.This study introduces optimized metaheuristic strategies to address MPRRP,with the aim of minimizing travel distances,energy consumption,and order fulfillment time while ensuring operational efficiency.Advanced algorithms,including an enhanced Particle Swarm Optimization(PSO-MPRRP)and a tailored Genetic Algorithm(GA-MPRRP),are specifically designed with customized evolutionary operators to effectively solve the MPRRP.Comparative experiments are conducted to evaluate the proposed strategies against benchmark approaches,demonstrating significant improvements in solution quality and computational efficiency.The findings contribute to the development of intelligent,scalable,and environmentally friendly warehouse systems,paving the way for future advances in robotics and automated logistics management.
文摘As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm.
文摘Commercial organisations commonly use operational research tools to solve vehicle routing problems. This practice is less commonplace in charity and voluntary organisations. In this paper, we provide an elementary approach for solving the Vehicle Routing Problem (VRP) that we believe can be easily implemented in these types of organisations. The proposed model leverages mixed integer linear programming to optimize the pickup sequence of all customers, each with distinct time windows and locations, transporting them to a final destination using a fleet of vehicles. To ensure ease of implementation, the model utilises Python, a user-friendly programming language, and integrates with the Google Maps API, which simplifies data input by eliminating the need for manual entry of travel times between locations. Troubleshooting methods are incorporated into the model design to ensure easy debugging of the model’s infeasibilities. Additionally, a computation time analysis is conducted to evaluate the efficiency of the code. A node partitioning approach is also discussed, which aims to reduce computational times, especially when handling larger datasets, ensuring this model is realistic and practical for real-world application. By implementing this optimized routing strategy, logistics companies or organisations can expect significant improvements in their day-to-day operations, with minimal computational cost or need for specialised expertise. This includes reduced travel times, minimized fuel consumption, and thus lower operational costs, while ensuring punctuality and meeting the demands of all passengers.
基金The National Natural Science Foundation of China(No.61074147)the Natural Science Foundation of Guangdong Province(No.S2011010005059)+2 种基金the Foundation of Enterprise-University-Research Institute Cooperation from Guangdong Province and Ministry of Education of China(No.2012B091000171,2011B090400460)the Science and Technology Program of Guangdong Province(No.2012B050600028)the Science and Technology Program of Huadu District,Guangzhou(No.HD14ZD001)
文摘Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful.
基金supported by the National Natural Science Foundation of China(71571076)the National Key R&D Program for the 13th-Five-Year-Plan of China(2018YFF0300301).
文摘The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles.
基金Project (No. 60174009) supported by the National Natural ScienceFoundation of China
文摘Capacitated vehicle routing problem (CVRP) is an NP-hard problem. For large-scale problems, it is quite difficult to achieve an optimal solution with traditional optimization methods due to the high computational complexity. A new hybrid ap- proximation algorithm is developed in this work to solve the problem. In the hybrid algorithm, discrete particle swarm optimiza- tion (DPSO) combines global search and local search to search for the optimal results and simulated annealing (SA) uses certain probability to avoid being trapped in a local optimum. The computational study showed that the proposed algorithm is a feasible and effective approach for capacitated vehicle routing problem, especially for large scale problems.
文摘The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithms is proposed. This combination absorbs the merits of the two algorithms in solutions construction and optimization separately. In order to improve the efficiency of the insertion procedure, a nearest neighbor selection(NNS) mechanism, an insertion local search procedure and a local optimization procedure are specified in detail. And in order to find a balance between good scouting performance and fast convergence rate, an adaptive pheromone updating strategy is proposed in the MTAS. Computational results confirm the MTAS algorithm's good performance with all these strategies on classic vehicle routing problem with time windows(VRPTW) benchmark instances and the TDVRPTW instances, and some better results especially for the number of vehicles and travel times of the best solutions are obtained in comparison with the previous research.
文摘The vehicle routing problem(VRP)is a typical discrete combinatorial optimization problem,and many models and algorithms have been proposed to solve the VRP and its variants.Although existing approaches have contributed significantly to the development of this field,these approaches either are limited in problem size or need manual intervention in choosing parameters.To solve these difficulties,many studies have considered learning-based optimization(LBO)algorithms to solve the VRP.This paper reviews recent advances in this field and divides relevant approaches into end-to-end approaches and step-by-step approaches.We performed a statistical analysis of the reviewed articles from various aspects and designed three experiments to evaluate the performance of four representative LBO algorithms.Finally,we conclude the applicable types of problems for different LBO algorithms and suggest directions in which researchers can improve LBO algorithms.
基金Project(50775089)supported by the National Natural Science Foundation of ChinaProject(2007AA04Z190,2009AA043301)supported by the National High Technology Research and Development Program of ChinaProject(2005CB724100)supported by the National Basic Research Program of China
文摘The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.
基金supported by National Natural Science Foundation of China (No.60474059)Hi-tech Research and Development Program of China (863 Program,No.2006AA04Z160).
文摘Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-Ⅱ (NSGA-Ⅱ) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-Ⅱ (GNSGA-Ⅱ) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-Ⅱ is prevented from premature convergence and refine the performance of NSGA-Ⅱ at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-Ⅱ is compared with NSGA-Ⅱ. As a result, the GNSGA-Ⅱ is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-Ⅱ, premature convergence is better avoided and search efficiency has been improved sharply.
基金Supported by the National Natural Science Foundation of China(No.51565036)
文摘As a new variant of vehicle routing problem( VRP),a finished vehicle routing problem with time windows in finished vehicle logistics( FVRPTW) is modeled and solved. An optimization model for FVRPTW is presented with the objective of scheduling multiple transport routes considering loading constraints along with time penalty function to minimize the total cost. Then a genetic algorithm( GA) is developed. The specific encoding and genetic operators for FVRPTW are devised.Especially,in order to accelerate its convergence,an improved termination condition is given. Finally,a case study is used to evaluate the effectiveness of the proposed algorithm and a series of experiments are conducted over a set of finished vehicle routing problems. The results demonstrate that the proposed approach has superior performance and satisfies users in practice. Contributions of the study are the modeling and solving of a complex FVRPTW in logistics industry.
文摘The school bus routing problem(SBRP)is a central issue in transportation planning and optimization systems.SBRP seeks to plan an efficient schedule for a fleet of school buses where each bus picks up students from various bus stops and delivers them to their designated schools while satisfying various constraints such as the maximum capacity of a bus,and the time window of a school.Due to its inherent complexity,many heuristics have been proposed to solve this combinatorial problem in an effective way.In this paper,a novel geographic information systems(GIS)-based decisionmaking framework that combines GIS,clustering techniques,network cutting techniques,and a hybrid ant colony optimization metaheuristic with the iterated Lin–Kernighan local improvement heuristic is proposed for solving the SBRP as a split delivery vehicle routing problem(SDVRP).Experiments were conducted for evaluating the proposed framework by comparing the results for solving 11 routing problems using both the proposed decision-making framework and Arc-GIS 9.2 Network Analyst which uses the greedy Dijkstra’s algorithm.The reported results of the proposed framework generally outperform that of the ArcGIS Network Analyst.In addition,the proposed decision-making framework was applied to solve a real life SBRP to demonstrate its application.
基金the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University for funding thiswork through Research Group No.RG-21-09-17.
文摘We study the capacitated vehicle routing problem(CVRP)which is a well-known NP-hard combinatorial optimization problem(COP).The aim of the problem is to serve different customers by a convoy of vehicles starting from a depot so that sum of the routing costs under their capacity constraints is minimized.Since the problem is very complicated,solving the problem using exact methods is almost impossible.So,one has to go for the heuristic/metaheuristic methods and genetic algorithm(GA)is broadly applied metaheuristic method to obtain near optimal solution to such COPs.So,this paper studies GAs to find solution to the problem.Generally,to solve a COP,GAs start with a chromosome set named initial population,and then mainly three operators-selection,crossover andmutation,are applied.Among these three operators,crossover is very crucial in designing and implementing GAs,and hence,numerous crossover operators were developed and applied to different COPs.There are two major kinds of crossover operators-blind crossovers and distance-based crossovers.We intend to compare the performance of four blind crossover and four distance-based crossover operators to test the suitability of the operators to solve the CVRP.These operators were originally proposed for the standard travelling salesman problem(TSP).First,these eight crossovers are illustrated using same parent chromosomes for building offspring(s).Then eight GAs using these eight crossover operators without any mutation operator and another eight GAs using these eight crossover operators with a mutation operator are developed.These GAs are experimented on some benchmark asymmetric and symmetric instances of numerous sizes and various number of vehicles.Our study revealed that the distance-based crossovers are much superior to the blind crossovers.Further,we observed that the sequential constructive crossover with and without mutation operator is the best one for theCVRP.This estimation is validated by Student’s t-test at 95%confidence level.We further determined a comparative rank of the eight crossovers for the CVRP.
基金This work was supported by the National Natural Science Foundation of China(61772196,61472136)the Hunan Provincial Focus Social Science Fund(2016ZDB006)Thanks to Professor Weijin Jiang for his guidance and suggestions on this research.Funding Statement。
文摘With the expansion of the application scope of social computing problems,many path problems in real life have evolved from pure path optimization problems to social computing problems that take into account various social attributes,cultures,and the emotional needs of customers.The actual soft time window vehicle routing problem,speeding up the response of customer needs,improving distribution efficiency,and reducing operating costs is the focus of current social computing problems.Therefore,designing fast and effective algorithms to solve this problem has certain theoretical and practical significance.In this paper,considering the time delay problem of customer demand,the compensation problem is given,and the mathematical model of vehicle path problem with soft time window is given.This paper proposes a hybrid tabu search(TS)&scatter search(SS)algorithm for vehicle routing problem with soft time windows(VRPSTW),which mainly embeds the TS dynamic tabu mechanism into the SS algorithm framework.TS uses the scattering of SS to avoid the dependence on the quality of the initial solution,and SS uses the climbing ability of TS improves the ability of optimizing,so that the quality of search for the optimal solution can be significantly improved.The hybrid algorithm is still based on the basic framework of SS.In particular,TS is mainly used for solution improvement and combination to generate new solutions.In the solution process,both the quality and the dispersion of the solution are considered.A simulation experiments verify the influence of the number of vehicles and maximum value of tabu length on solution,parameters’control over the degree of convergence,and the influence of the number of diverse solutions on algorithm performance.Based on the determined parameters,simulation experiment is carried out in this paper to further prove the algorithm feasibility and effectiveness.The results of this paper provide further ideas for solving vehicle routing problems with time windows and improving the efficiency of vehicle routing problems and have strong applicability.
基金Natural Science Foundation of Shanghai,China(No.15ZR1401600)the Fundamental Research Funds for the Central Universities,China(No.CUSF-DH-D-2015096)
文摘In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location,inventory and transportation.Due to the complex of LIR problem( LIRP), a multi-objective genetic algorithm(GA), non-dominated sorting in genetic algorithm Ⅱ( NSGA-Ⅱ) has been introduced. Its performance is tested over a real case for the proposed problems. Results indicate that NSGA-Ⅱ provides a competitive performance than GA,which demonstrates that the proposed model and multi-objective GA are considerably efficient to solve the problem.
文摘This study attempts to solve vehicle routing problem with time window (VRPTW). The study first identifies the real problems and suggests some recommendations on the issues. The technique used in this study is Genetic Algorithm (GA) and initialization applied is random population method. The objective of the study is to assign a number of vehicles to routes that connect customers and depot such that the overall distance travelled is minimized and the delivery operations are completed within the time windows requested by the customers. The analysis reveals that the problems experienced in vehicle routing with time window can be solved by GA and retrieved for optimal solutions. After a thorough study on VRPTW, it is highly recommended that a company should implement the optimal routes derived from the study to increase the efficiency and accuracy of delivery with time insertion.