Meta-heuristic evolutionary algorithms have become widely used for solving complex optimization problems.However,their effectiveness in real-world applications is often limited by the need for many evaluations,which c...Meta-heuristic evolutionary algorithms have become widely used for solving complex optimization problems.However,their effectiveness in real-world applications is often limited by the need for many evaluations,which can be both costly and time-consuming.This is especially true for large-scale transportation networks,where the size of the problem and the high computational cost can hinder the algorithm’s performance.To address these challenges,recent research has focused on using surrogate-assisted models.These models aim to reduce the number of expensive evaluations and improve the efficiency of solving time-consuming optimization problems.This paper presents a new two-layer Surrogate-Assisted Fish Migration Optimization(SA-FMO)algorithm designed to tackle high-dimensional and computationally heavy problems.The global surrogate model offers a good approximation of the entire problem space,while the local surrogate model focuses on refining the solution near the current best option,improving local optimization.To test the effectiveness of the SA-FMO algorithm,we first conduct experiments using six benchmark functions in a 50-dimensional space.We then apply the algorithm to optimize urban rail transit routes,focusing on the Train Routing Optimization problem.This aims to improve operational efficiency and vehicle turnover in situations with uneven passenger flow during transit disruptions.The results show that SA-FMO can effectively improve optimization outcomes in complex transportation scenarios.展开更多
To enhance the efficiency and expediency of issuing e-licenses within the power sector, we must confront thechallenge of managing the surging demand for data traffic. Within this realm, the network imposes stringentQu...To enhance the efficiency and expediency of issuing e-licenses within the power sector, we must confront thechallenge of managing the surging demand for data traffic. Within this realm, the network imposes stringentQuality of Service (QoS) requirements, revealing the inadequacies of traditional routing allocation mechanismsin accommodating such extensive data flows. In response to the imperative of handling a substantial influx of datarequests promptly and alleviating the constraints of existing technologies and network congestion, we present anarchitecture forQoS routing optimizationwith in SoftwareDefinedNetwork (SDN), leveraging deep reinforcementlearning. This innovative approach entails the separation of SDN control and transmission functionalities, centralizingcontrol over data forwardingwhile integrating deep reinforcement learning for informed routing decisions. Byfactoring in considerations such as delay, bandwidth, jitter rate, and packet loss rate, we design a reward function toguide theDeepDeterministic PolicyGradient (DDPG) algorithmin learning the optimal routing strategy to furnishsuperior QoS provision. In our empirical investigations, we juxtapose the performance of Deep ReinforcementLearning (DRL) against that of Shortest Path (SP) algorithms in terms of data packet transmission delay. Theexperimental simulation results show that our proposed algorithm has significant efficacy in reducing networkdelay and improving the overall transmission efficiency, which is superior to the traditional methods.展开更多
In Software-Defined Networks(SDNs),determining how to efficiently achieve Quality of Service(QoS)-aware routing is challenging but critical for significantly improving the performance of a network,where the metrics of...In Software-Defined Networks(SDNs),determining how to efficiently achieve Quality of Service(QoS)-aware routing is challenging but critical for significantly improving the performance of a network,where the metrics of QoS can be defined as,for example,average latency,packet loss ratio,and throughput.The SDN controller can use network statistics and a Deep Reinforcement Learning(DRL)method to resolve this challenge.In this paper,we formulate dynamic routing in an SDN as a Markov decision process and propose a DRL algorithm called the Asynchronous Advantage Actor-Critic QoS-aware Routing Optimization Mechanism(AQROM)to determine routing strategies that balance the traffic loads in the network.AQROM can improve the QoS of the network and reduce the training time via dynamic routing strategy updates;that is,the reward function can be dynamically and promptly altered based on the optimization objective regardless of the network topology and traffic pattern.AQROM can be considered as one-step optimization and a black-box routing mechanism in high-dimensional input and output sets for both discrete and continuous states,and actions with respect to the operations in the SDN.Extensive simulations were conducted using OMNeT++and the results demonstrated that AQROM 1)achieved much faster and stable convergence than the Deep Deterministic Policy Gradient(DDPG)and Advantage Actor-Critic(A2C),2)incurred a lower packet loss ratio and latency than Open Shortest Path First(OSPF),DDPG,and A2C,and 3)resulted in higher and more stable throughput than OSPF,DDPG,and A2C.展开更多
This paper systematically reviews the latest research developments in Vehicle Routing Problems(VRP).It examines classical VRP models and their classifications across different dimensions,including load capacity,operat...This paper systematically reviews the latest research developments in Vehicle Routing Problems(VRP).It examines classical VRP models and their classifications across different dimensions,including load capacity,operational characteristics,optimization objectives,vehicle types,and time constraints.Based on literature retrieval results from the Web of Science database,the paper analyzes the current state and trends in VRP research,providing detailed explanations of VRP models and algorithms applied to various scenarios in recent years.Additionally,the article discusses limitations in existing research and provides perspectives on future development trends in VRP research.This review offers researchers in the VRP field a comprehensive overview while identifying future research directions.展开更多
In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route...In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route distribution. However, existing routing algorithms do not take into account the degree of importance of services, thereby leading to load unbalancing and increasing the risks of services and networks. A routing optimization mechanism based on load balancing for power communication networks is proposed to address the abovementioned problems. First, the mechanism constructs an evaluation model to evaluate the service and network risk degree using combination of devices, service load, and service characteristics. Second, service weights are determined with modified relative entropy TOPSIS method, and a balanced service routing determination algorithm is proposed. Results of simulations on practical network topology show that the mechanism can optimize the network risk degree and load balancing degree efficiently.展开更多
The route optimization problem for road networks was applied to pedestrian flow.Evacuation path networks with nodes and arcs considering the traffic capacities of facilities were built in metro hubs,and a path impedan...The route optimization problem for road networks was applied to pedestrian flow.Evacuation path networks with nodes and arcs considering the traffic capacities of facilities were built in metro hubs,and a path impedance function for metro hubs which used the relationships among circulation speed,density and flow rate for pedestrians was defined.Then,a route optimization model which minimizes the movement time of the last evacuee was constructed to optimize evacuation performance.Solutions to the proposed mathematical model were obtained through an iterative optimization process.The route optimization model was applied to Xidan Station of Beijing Metro Line 4 based on the actual situations,and the calculation results of the model were tested using buildingExodus microscopic evacuation simulation software.The simulation result shows that the proposed model shortens the evacuation time by 16.05%,3.15% and 2.78% compared with all or none method,equally split method and Logit model,respectively.Furthermore,when the population gets larger,evacuation efficiency in the proposed model has a greater advantage.展开更多
The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering...The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering. The objective and constraint includes loading, the dispatch and arrival time, transportation conditions,total cost,etc. An information model and a mathematical model are built,and a method based on knowledge and biologic immunity is put forward for optimizing and evaluating the programs dimensions in vehicle routing and scheduling with multi-objective and multi-constraints. The proposed model and method are illustrated in a case study concerning a transport network, and the result shows that more optimization solutions can be easily obtained and the method is efficient and feasible. Comparing with the standard GA and the standard GA without time constraint,the computational time of the algorithm is less in this paper. And the probability of gaining optimal solution is bigger and the result is better under the condition of multi-constraint.展开更多
Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective funct...Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%.展开更多
Air route network optimization,one of the essential parts of the airspace planning,is an effective way to optimize airspace resources,increase airspace capacity,and alleviate air traffic congestion.However,little has ...Air route network optimization,one of the essential parts of the airspace planning,is an effective way to optimize airspace resources,increase airspace capacity,and alleviate air traffic congestion.However,little has been done on the optimization of air route network in the fragmented airspace caused by prohibited,restricted,and dangerous areas(PRDs).In this paper,an air route network optimization model is developed with the total operational cost as the objective function while airspace restriction,air route network capacity,and non-straight-line factors(NSLF) are taken as major constraints.A square grid cellular space,Moore neighbors,a fixed boundary,together with a set of rules for solving the route network optimization model are designed based on cellular automata.The empirical traffic of airports with the largest traffic volume in each of the 9 flight information regions in China's Mainland is collected as the origin-destination(OD) airport pair demands.Based on traffic patterns,the model generates 35 air routes which successfully avoids 144 PRDs.Compared with the current air route network structure,the number of nodes decreases by 41.67%,while the total length of flight segments and air routes drop by 32.03% and 5.82% respectively.The NSLF decreases by 5.82% with changes in the total length of the air route network.More importantly,the total operational cost of the whole network decreases by 6.22%.The computational results show the potential benefits of the model and the advantage of the algorithm.Optimization of air route network can significantly reduce operational cost while ensuring operation safety.展开更多
Wireless Sensor Networks(WSNs)play an indispensable role in the lives of human beings in the fields of environment monitoring,manufacturing,education,agriculture etc.,However,the batteries in the sensor node under dep...Wireless Sensor Networks(WSNs)play an indispensable role in the lives of human beings in the fields of environment monitoring,manufacturing,education,agriculture etc.,However,the batteries in the sensor node under deployment in an unattended or remote area cannot be replaced because of their wireless existence.In this context,several researchers have contributed diversified number of cluster-based routing schemes that concentrate on the objective of extending node survival time.However,there still exists a room for improvement in Cluster Head(CH)selection based on the integration of critical parameters.The meta-heuristic methods that concentrate on guaranteeing both CH selection and data transmission for improving optimal network performance are predominant.In this paper,a hybrid Marine Predators Optimization and Improved Particle Swarm Optimizationbased Optimal Cluster Routing(MPO-IPSO-OCR)is proposed for ensuring both efficient CH selection and data transmission.The robust characteristic of MPOA is used in optimized CH selection,while improved PSO is used for determining the optimized route to ensure sink mobility.In specific,a strategy of position update is included in the improved PSO for enhancing the global searching efficiency of MPOA.The high-speed ratio,unit speed rate and low speed rate strategy inherited by MPOA facilitate better exploitation by preventing solution from being struck into local optimality point.The simulation investigation and statistical results confirm that the proposed MPOIPSO-OCR is capable of improving the energy stability by 21.28%,prolonging network lifetime by 18.62%and offering maximum throughput by 16.79%when compared to the benchmarked cluster-based routing schemes.展开更多
Time and space complexity is themost critical problemof the current routing optimization algorithms for Software Defined Networking(SDN).To overcome this complexity,researchers use meta-heuristic techniques inside the...Time and space complexity is themost critical problemof the current routing optimization algorithms for Software Defined Networking(SDN).To overcome this complexity,researchers use meta-heuristic techniques inside the routing optimization algorithms in the OpenFlow(OF)based large scale SDNs.This paper proposes a hybrid meta-heuristic algorithm to optimize the dynamic routing problem for the large scale SDNs.Due to the dynamic nature of SDNs,the proposed algorithm uses amutation operator to overcome the memory-based problem of the ant colony algorithm.Besides,it uses the box-covering method and the k-means clustering method to divide the SDN network to overcome the problemof time and space complexity.The results of the proposed algorithm compared with the results of other similar algorithms and it shows that the proposed algorithm can handle the dynamic network changing,reduce the network congestion,the delay and running times and the packet loss rates.展开更多
Wireless sensor Mobile ad hoc networks have excellent potential in moving and monitoring disaster area networks on real-time basis.The recent challenges faced in Mobile Ad Hoc Networks(MANETs)include scalability,local...Wireless sensor Mobile ad hoc networks have excellent potential in moving and monitoring disaster area networks on real-time basis.The recent challenges faced in Mobile Ad Hoc Networks(MANETs)include scalability,localization,heterogeneous network,self-organization,and self-sufficient operation.In this background,the current study focuses on specially-designed communication link establishment for high connection stability of wireless mobile sensor networks,especially in disaster area network.Existing protocols focus on location-dependent communications and use networks based on typically-used Internet Protocol(IP)architecture.However,IP-based communications have a few limitations such as inefficient bandwidth utilization,high processing,less transfer speeds,and excessive memory intake.To overcome these challenges,the number of neighbors(Node Density)is minimized and high Mobility Nodes(Node Speed)are avoided.The proposed Geographic Drone Based Route Optimization(GDRO)method reduces the entire overhead to a considerable level in an efficient manner and significantly improves the overall performance by identifying the disaster region.This drone communicates with anchor node periodically and shares the information to it so as to introduce a drone-based disaster network in an area.Geographic routing is a promising approach to enhance the routing efficiency in MANET.This algorithm helps in reaching the anchor(target)node with the help of Geographical Graph-Based Mapping(GGM).Global Positioning System(GPS)is enabled on mobile network of the anchor node which regularly broadcasts its location information that helps in finding the location.In first step,the node searches for local and remote anticipated Expected Transmission Count(ETX),thereby calculating the estimated distance.Received Signal Strength Indicator(RSSI)results are stored in the local memory of the node.Then,the node calculates the least remote anticipated ETX,Link Loss Rate,and information to the new location.Freeway Heuristic algorithm improves the data speed,efficiency and determines the path and optimization problem.In comparison with other models,the proposed method yielded an efficient communication,increased the throughput,and reduced the end-to-end delay,energy consumption and packet loss performance in disaster area networks.展开更多
A main shortcoming of mobile Ad-hoc network's reactive routing protocols is the large volume of far-reaching control traffic required to support the route discovery (RD) and route repair (RR) mechanism. Using a ra...A main shortcoming of mobile Ad-hoc network's reactive routing protocols is the large volume of far-reaching control traffic required to support the route discovery (RD) and route repair (RR) mechanism. Using a random mobility model, this paper derives the probability equation of the relative distance (RDIS) between any two mobile hosts in an ad-hoc network. Consequently, combining with average equivalent hop distance (AEHD), a host can estimate the routing hops between itself and any destination host each time the RD/RR procedure is triggered, and reduce the flooding area of RD/RR messages. Simulation results show that this optimized route repair (ORR) algorithm can significantly decrease the communication overhead of RR process by about 35%.展开更多
This paper presents an optimization model for solving the planning problem of collection and transportation of solid waste in medium-sized cities. As final results, are expected to promote cost savings to the public c...This paper presents an optimization model for solving the planning problem of collection and transportation of solid waste in medium-sized cities. As final results, are expected to promote cost savings to the public coffers, as well as environmental benefits. The developed mathematical model is formulated as a problem of linear programming with mixed-integer variables and transcribed into software GAMS (general algebraic modeling system). The practical application was tested using data collected in the central region of a Brazilian city with approximately 90,000 inhabitants. The deterministic model used allowed an optimal solution. It was found after inclusion of restrictions that eliminated the appearance of sub-routes. It was concluded that the optimal routes allow for a 38% reduction in total distance traveled, which can generate savings of $320.00 per day regarding maintenance and fuel trucks.展开更多
The transfer system,an important subsystem in urban citizen passenger transport system,is a guarantee of public transport priority and is crucial in the whole urban passenger transport traffic.What the majority of bus...The transfer system,an important subsystem in urban citizen passenger transport system,is a guarantee of public transport priority and is crucial in the whole urban passenger transport traffic.What the majority of bus passengers consider is the convenience and comfort of the bus ride,which reduces the transfer time of bus passengers."Transfer time" is considered to be the first factor by the majority of bus passengers who select the routes.In this paper,according to the needs of passengers,optimization algorithm,with the minimal distance being the first goal,namely,the improved Dijkstra algorithm based on the minimal distance,is put forward on the basis of the optimization algorithm with the minimal transfer time being the first goal.展开更多
Rural vitalization is a major strategy for reform and development of agriculture and rural areas in China,the key task of which is improving rural living environment.Imperfect rural solid waste(RSW)collection and tran...Rural vitalization is a major strategy for reform and development of agriculture and rural areas in China,the key task of which is improving rural living environment.Imperfect rural solid waste(RSW)collection and transportation system exacerbates the pollution of RSW to rural living environment,while it has not been established and improved in the cold region of Northern China due to climate and economy.Through the analysis of the current situation of RSW source separation,collection,transportation and disposal in China,an RSW collection and transportation system suitable for the northern cold region was developed.Considering the low winter temperature in the northern cold region,different requirements for RSW collection,transportation and terminal disposal,scattered source points and single terminal disposal nodes in rural areas,the study focused on determining the number and location of transfer stations,established a model for transfer stations selection and RSW collection and transportation routes optimization for RSW collection and transportation system,and proposed the elite retention particle swarm optimization–genetic algorithm(ERPSO–GA).The rural area of Baiquan County was taken as a representative case,the collection and transportation scheme of which was given,and the feasibility of the scheme was clarified by simulation experiment.展开更多
Based on the perspective of electricity supplier on the issues of Rural Surplus Labor resettlement, we analyzed China's rural electricity supplier development and resettlement of rural surplus labor issues and factor...Based on the perspective of electricity supplier on the issues of Rural Surplus Labor resettlement, we analyzed China's rural electricity supplier development and resettlement of rural surplus labor issues and factors, proposed the impact of sluggish development of rural electricity suppliers on their resettlement of the rural surplus labor force, and made the following suggestions: to develop township enterprises, to strengthen the construction of small towns, to settlement surplus labor force on the post, to transfer the surplus labor, to increase farmers' income; to eliminate the urban-rural dual structure, to implement loose household registration management system, to increase education level, to improve the quality of farmers, to provide information and improve guidance to change disorderly transfer to the orderly transfer.展开更多
Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of d...Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of dynamicvehicle scheduling and real-time route planning in urban public transportation systems, with a focus on busservices. It addresses the limitations of current shared mobility routing algorithms, which are primarily designedfor simpler, single origin/destination scenarios, and do not meet the complex demands of bus transit systems. Theresearch introduces an route planning algorithm designed to dynamically accommodate passenger travel needsand enable real-time route modifications. Unlike traditional methods, this algorithm leverages a queue-based,multi-objective heuristic A∗ approach, offering a solution to the inflexibility and limited coverage of suburbanbus routes. Also, this study conducts a comparative analysis of the proposed algorithm with solutions based onGenetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACO), focusing on calculation time, routelength, passenger waiting time, boarding time, and detour rate. The findings demonstrate that the proposedalgorithmsignificantly enhances route planning speed, achieving an 80–100-fold increase in efficiency over existingmodels, thereby supporting the real-time demands of Demand-Responsive Transportation (DRT) systems. Thestudy concludes that this algorithm not only optimizes route planning in bus transit but also presents a scalablesolution for improving urban mobility.展开更多
Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat t...Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat to the safety and reliability of CPPS,and there is an acute need to reduce the probability of these failures.Towards this end,this paper first proposes a cascading failure index to identify and quantify the importance of different information in the same class of communication services.On this basis,a joint improved risk-balanced service function chain routing strategy(SFC-RS)is proposed,which is modeled as a robust optimization problem and solved by column-and-constraint generation(C-CG)algorithm.Compared with the traditional shortest-path routing algorithm,the superiority of SFC-RS is verified in the IEEE 30-bus system.The results demonstrate that SFC-RS effectively mitigates the risk associated with information transmission in the network,enhances information transmission accessibility,and effectively limits communication disruption from becoming the cause of cross-space cascading failures.展开更多
基金supported by the National Natural Science Foundation of China(Project No.52172321,52102391)Sichuan Province Science and Technology Innovation Talent Project(2024JDRC0020)+1 种基金China Shenhua Energy Company Limited Technology Project(GJNY-22-7/2300-K1220053)Key science and technology projects in the transportation industry of the Ministry of Transport(2022-ZD7-132).
文摘Meta-heuristic evolutionary algorithms have become widely used for solving complex optimization problems.However,their effectiveness in real-world applications is often limited by the need for many evaluations,which can be both costly and time-consuming.This is especially true for large-scale transportation networks,where the size of the problem and the high computational cost can hinder the algorithm’s performance.To address these challenges,recent research has focused on using surrogate-assisted models.These models aim to reduce the number of expensive evaluations and improve the efficiency of solving time-consuming optimization problems.This paper presents a new two-layer Surrogate-Assisted Fish Migration Optimization(SA-FMO)algorithm designed to tackle high-dimensional and computationally heavy problems.The global surrogate model offers a good approximation of the entire problem space,while the local surrogate model focuses on refining the solution near the current best option,improving local optimization.To test the effectiveness of the SA-FMO algorithm,we first conduct experiments using six benchmark functions in a 50-dimensional space.We then apply the algorithm to optimize urban rail transit routes,focusing on the Train Routing Optimization problem.This aims to improve operational efficiency and vehicle turnover in situations with uneven passenger flow during transit disruptions.The results show that SA-FMO can effectively improve optimization outcomes in complex transportation scenarios.
基金State Grid Corporation of China Science and Technology Project“Research andApplication of Key Technologies for Trusted Issuance and Security Control of Electronic Licenses for Power Business”(5700-202353318A-1-1-ZN).
文摘To enhance the efficiency and expediency of issuing e-licenses within the power sector, we must confront thechallenge of managing the surging demand for data traffic. Within this realm, the network imposes stringentQuality of Service (QoS) requirements, revealing the inadequacies of traditional routing allocation mechanismsin accommodating such extensive data flows. In response to the imperative of handling a substantial influx of datarequests promptly and alleviating the constraints of existing technologies and network congestion, we present anarchitecture forQoS routing optimizationwith in SoftwareDefinedNetwork (SDN), leveraging deep reinforcementlearning. This innovative approach entails the separation of SDN control and transmission functionalities, centralizingcontrol over data forwardingwhile integrating deep reinforcement learning for informed routing decisions. Byfactoring in considerations such as delay, bandwidth, jitter rate, and packet loss rate, we design a reward function toguide theDeepDeterministic PolicyGradient (DDPG) algorithmin learning the optimal routing strategy to furnishsuperior QoS provision. In our empirical investigations, we juxtapose the performance of Deep ReinforcementLearning (DRL) against that of Shortest Path (SP) algorithms in terms of data packet transmission delay. Theexperimental simulation results show that our proposed algorithm has significant efficacy in reducing networkdelay and improving the overall transmission efficiency, which is superior to the traditional methods.
基金fully supported by GUET Excellent Graduate Thesis Program(Grant No.19YJPYBS03)Innovation Project of Guangxi Graduate Education(Grant No.YCBZ2022109)New Technology Research University Cooperation Project of the 34th Research Institute of China Electronics Technology Group Corporation,2021(Grant No.SF2126007)。
文摘In Software-Defined Networks(SDNs),determining how to efficiently achieve Quality of Service(QoS)-aware routing is challenging but critical for significantly improving the performance of a network,where the metrics of QoS can be defined as,for example,average latency,packet loss ratio,and throughput.The SDN controller can use network statistics and a Deep Reinforcement Learning(DRL)method to resolve this challenge.In this paper,we formulate dynamic routing in an SDN as a Markov decision process and propose a DRL algorithm called the Asynchronous Advantage Actor-Critic QoS-aware Routing Optimization Mechanism(AQROM)to determine routing strategies that balance the traffic loads in the network.AQROM can improve the QoS of the network and reduce the training time via dynamic routing strategy updates;that is,the reward function can be dynamically and promptly altered based on the optimization objective regardless of the network topology and traffic pattern.AQROM can be considered as one-step optimization and a black-box routing mechanism in high-dimensional input and output sets for both discrete and continuous states,and actions with respect to the operations in the SDN.Extensive simulations were conducted using OMNeT++and the results demonstrated that AQROM 1)achieved much faster and stable convergence than the Deep Deterministic Policy Gradient(DDPG)and Advantage Actor-Critic(A2C),2)incurred a lower packet loss ratio and latency than Open Shortest Path First(OSPF),DDPG,and A2C,and 3)resulted in higher and more stable throughput than OSPF,DDPG,and A2C.
文摘This paper systematically reviews the latest research developments in Vehicle Routing Problems(VRP).It examines classical VRP models and their classifications across different dimensions,including load capacity,operational characteristics,optimization objectives,vehicle types,and time constraints.Based on literature retrieval results from the Web of Science database,the paper analyzes the current state and trends in VRP research,providing detailed explanations of VRP models and algorithms applied to various scenarios in recent years.Additionally,the article discusses limitations in existing research and provides perspectives on future development trends in VRP research.This review offers researchers in the VRP field a comprehensive overview while identifying future research directions.
基金supported by the State Grid project which names the simulation and service quality evaluation technology research of power communication network(No.XX71-14-046)
文摘In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route distribution. However, existing routing algorithms do not take into account the degree of importance of services, thereby leading to load unbalancing and increasing the risks of services and networks. A routing optimization mechanism based on load balancing for power communication networks is proposed to address the abovementioned problems. First, the mechanism constructs an evaluation model to evaluate the service and network risk degree using combination of devices, service load, and service characteristics. Second, service weights are determined with modified relative entropy TOPSIS method, and a balanced service routing determination algorithm is proposed. Results of simulations on practical network topology show that the mechanism can optimize the network risk degree and load balancing degree efficiently.
基金Project(51078086)supported by the National Natural Science Foundation of China
文摘The route optimization problem for road networks was applied to pedestrian flow.Evacuation path networks with nodes and arcs considering the traffic capacities of facilities were built in metro hubs,and a path impedance function for metro hubs which used the relationships among circulation speed,density and flow rate for pedestrians was defined.Then,a route optimization model which minimizes the movement time of the last evacuee was constructed to optimize evacuation performance.Solutions to the proposed mathematical model were obtained through an iterative optimization process.The route optimization model was applied to Xidan Station of Beijing Metro Line 4 based on the actual situations,and the calculation results of the model were tested using buildingExodus microscopic evacuation simulation software.The simulation result shows that the proposed model shortens the evacuation time by 16.05%,3.15% and 2.78% compared with all or none method,equally split method and Logit model,respectively.Furthermore,when the population gets larger,evacuation efficiency in the proposed model has a greater advantage.
基金National natural science foundation (No:70371040)
文摘The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering. The objective and constraint includes loading, the dispatch and arrival time, transportation conditions,total cost,etc. An information model and a mathematical model are built,and a method based on knowledge and biologic immunity is put forward for optimizing and evaluating the programs dimensions in vehicle routing and scheduling with multi-objective and multi-constraints. The proposed model and method are illustrated in a case study concerning a transport network, and the result shows that more optimization solutions can be easily obtained and the method is efficient and feasible. Comparing with the standard GA and the standard GA without time constraint,the computational time of the algorithm is less in this paper. And the probability of gaining optimal solution is bigger and the result is better under the condition of multi-constraint.
基金supported by the the Youth Science and Technology Innovation Fund (Science)(Nos.NS2014070, NS2014070)
文摘Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%.
基金co-supported by the National Natural Science Foundation of China(No.61304190)the Natural Science Foundation of Jiangsu Province(No.BK20130818)the Fundamental Research Funds for the Central Universities of China(No.NJ20150030)
文摘Air route network optimization,one of the essential parts of the airspace planning,is an effective way to optimize airspace resources,increase airspace capacity,and alleviate air traffic congestion.However,little has been done on the optimization of air route network in the fragmented airspace caused by prohibited,restricted,and dangerous areas(PRDs).In this paper,an air route network optimization model is developed with the total operational cost as the objective function while airspace restriction,air route network capacity,and non-straight-line factors(NSLF) are taken as major constraints.A square grid cellular space,Moore neighbors,a fixed boundary,together with a set of rules for solving the route network optimization model are designed based on cellular automata.The empirical traffic of airports with the largest traffic volume in each of the 9 flight information regions in China's Mainland is collected as the origin-destination(OD) airport pair demands.Based on traffic patterns,the model generates 35 air routes which successfully avoids 144 PRDs.Compared with the current air route network structure,the number of nodes decreases by 41.67%,while the total length of flight segments and air routes drop by 32.03% and 5.82% respectively.The NSLF decreases by 5.82% with changes in the total length of the air route network.More importantly,the total operational cost of the whole network decreases by 6.22%.The computational results show the potential benefits of the model and the advantage of the algorithm.Optimization of air route network can significantly reduce operational cost while ensuring operation safety.
文摘Wireless Sensor Networks(WSNs)play an indispensable role in the lives of human beings in the fields of environment monitoring,manufacturing,education,agriculture etc.,However,the batteries in the sensor node under deployment in an unattended or remote area cannot be replaced because of their wireless existence.In this context,several researchers have contributed diversified number of cluster-based routing schemes that concentrate on the objective of extending node survival time.However,there still exists a room for improvement in Cluster Head(CH)selection based on the integration of critical parameters.The meta-heuristic methods that concentrate on guaranteeing both CH selection and data transmission for improving optimal network performance are predominant.In this paper,a hybrid Marine Predators Optimization and Improved Particle Swarm Optimizationbased Optimal Cluster Routing(MPO-IPSO-OCR)is proposed for ensuring both efficient CH selection and data transmission.The robust characteristic of MPOA is used in optimized CH selection,while improved PSO is used for determining the optimized route to ensure sink mobility.In specific,a strategy of position update is included in the improved PSO for enhancing the global searching efficiency of MPOA.The high-speed ratio,unit speed rate and low speed rate strategy inherited by MPOA facilitate better exploitation by preventing solution from being struck into local optimality point.The simulation investigation and statistical results confirm that the proposed MPOIPSO-OCR is capable of improving the energy stability by 21.28%,prolonging network lifetime by 18.62%and offering maximum throughput by 16.79%when compared to the benchmarked cluster-based routing schemes.
文摘Time and space complexity is themost critical problemof the current routing optimization algorithms for Software Defined Networking(SDN).To overcome this complexity,researchers use meta-heuristic techniques inside the routing optimization algorithms in the OpenFlow(OF)based large scale SDNs.This paper proposes a hybrid meta-heuristic algorithm to optimize the dynamic routing problem for the large scale SDNs.Due to the dynamic nature of SDNs,the proposed algorithm uses amutation operator to overcome the memory-based problem of the ant colony algorithm.Besides,it uses the box-covering method and the k-means clustering method to divide the SDN network to overcome the problemof time and space complexity.The results of the proposed algorithm compared with the results of other similar algorithms and it shows that the proposed algorithm can handle the dynamic network changing,reduce the network congestion,the delay and running times and the packet loss rates.
文摘Wireless sensor Mobile ad hoc networks have excellent potential in moving and monitoring disaster area networks on real-time basis.The recent challenges faced in Mobile Ad Hoc Networks(MANETs)include scalability,localization,heterogeneous network,self-organization,and self-sufficient operation.In this background,the current study focuses on specially-designed communication link establishment for high connection stability of wireless mobile sensor networks,especially in disaster area network.Existing protocols focus on location-dependent communications and use networks based on typically-used Internet Protocol(IP)architecture.However,IP-based communications have a few limitations such as inefficient bandwidth utilization,high processing,less transfer speeds,and excessive memory intake.To overcome these challenges,the number of neighbors(Node Density)is minimized and high Mobility Nodes(Node Speed)are avoided.The proposed Geographic Drone Based Route Optimization(GDRO)method reduces the entire overhead to a considerable level in an efficient manner and significantly improves the overall performance by identifying the disaster region.This drone communicates with anchor node periodically and shares the information to it so as to introduce a drone-based disaster network in an area.Geographic routing is a promising approach to enhance the routing efficiency in MANET.This algorithm helps in reaching the anchor(target)node with the help of Geographical Graph-Based Mapping(GGM).Global Positioning System(GPS)is enabled on mobile network of the anchor node which regularly broadcasts its location information that helps in finding the location.In first step,the node searches for local and remote anticipated Expected Transmission Count(ETX),thereby calculating the estimated distance.Received Signal Strength Indicator(RSSI)results are stored in the local memory of the node.Then,the node calculates the least remote anticipated ETX,Link Loss Rate,and information to the new location.Freeway Heuristic algorithm improves the data speed,efficiency and determines the path and optimization problem.In comparison with other models,the proposed method yielded an efficient communication,increased the throughput,and reduced the end-to-end delay,energy consumption and packet loss performance in disaster area networks.
文摘A main shortcoming of mobile Ad-hoc network's reactive routing protocols is the large volume of far-reaching control traffic required to support the route discovery (RD) and route repair (RR) mechanism. Using a random mobility model, this paper derives the probability equation of the relative distance (RDIS) between any two mobile hosts in an ad-hoc network. Consequently, combining with average equivalent hop distance (AEHD), a host can estimate the routing hops between itself and any destination host each time the RD/RR procedure is triggered, and reduce the flooding area of RD/RR messages. Simulation results show that this optimized route repair (ORR) algorithm can significantly decrease the communication overhead of RR process by about 35%.
文摘This paper presents an optimization model for solving the planning problem of collection and transportation of solid waste in medium-sized cities. As final results, are expected to promote cost savings to the public coffers, as well as environmental benefits. The developed mathematical model is formulated as a problem of linear programming with mixed-integer variables and transcribed into software GAMS (general algebraic modeling system). The practical application was tested using data collected in the central region of a Brazilian city with approximately 90,000 inhabitants. The deterministic model used allowed an optimal solution. It was found after inclusion of restrictions that eliminated the appearance of sub-routes. It was concluded that the optimal routes allow for a 38% reduction in total distance traveled, which can generate savings of $320.00 per day regarding maintenance and fuel trucks.
基金supported by School Foundation of North University of ChinaPostdoctoral granted financial support from China Postdoctoral Science Foundation(20100481307)+1 种基金Natural Science Foundation of Shanxi(2009011018-3)National Natural Science Foundation of China(60876077)
文摘The transfer system,an important subsystem in urban citizen passenger transport system,is a guarantee of public transport priority and is crucial in the whole urban passenger transport traffic.What the majority of bus passengers consider is the convenience and comfort of the bus ride,which reduces the transfer time of bus passengers."Transfer time" is considered to be the first factor by the majority of bus passengers who select the routes.In this paper,according to the needs of passengers,optimization algorithm,with the minimal distance being the first goal,namely,the improved Dijkstra algorithm based on the minimal distance,is put forward on the basis of the optimization algorithm with the minimal transfer time being the first goal.
基金Supported by Heilongjiang Province Philosophy and Social Science Planning Research Project(22JYB232)。
文摘Rural vitalization is a major strategy for reform and development of agriculture and rural areas in China,the key task of which is improving rural living environment.Imperfect rural solid waste(RSW)collection and transportation system exacerbates the pollution of RSW to rural living environment,while it has not been established and improved in the cold region of Northern China due to climate and economy.Through the analysis of the current situation of RSW source separation,collection,transportation and disposal in China,an RSW collection and transportation system suitable for the northern cold region was developed.Considering the low winter temperature in the northern cold region,different requirements for RSW collection,transportation and terminal disposal,scattered source points and single terminal disposal nodes in rural areas,the study focused on determining the number and location of transfer stations,established a model for transfer stations selection and RSW collection and transportation routes optimization for RSW collection and transportation system,and proposed the elite retention particle swarm optimization–genetic algorithm(ERPSO–GA).The rural area of Baiquan County was taken as a representative case,the collection and transportation scheme of which was given,and the feasibility of the scheme was clarified by simulation experiment.
文摘Based on the perspective of electricity supplier on the issues of Rural Surplus Labor resettlement, we analyzed China's rural electricity supplier development and resettlement of rural surplus labor issues and factors, proposed the impact of sluggish development of rural electricity suppliers on their resettlement of the rural surplus labor force, and made the following suggestions: to develop township enterprises, to strengthen the construction of small towns, to settlement surplus labor force on the post, to transfer the surplus labor, to increase farmers' income; to eliminate the urban-rural dual structure, to implement loose household registration management system, to increase education level, to improve the quality of farmers, to provide information and improve guidance to change disorderly transfer to the orderly transfer.
文摘Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of dynamicvehicle scheduling and real-time route planning in urban public transportation systems, with a focus on busservices. It addresses the limitations of current shared mobility routing algorithms, which are primarily designedfor simpler, single origin/destination scenarios, and do not meet the complex demands of bus transit systems. Theresearch introduces an route planning algorithm designed to dynamically accommodate passenger travel needsand enable real-time route modifications. Unlike traditional methods, this algorithm leverages a queue-based,multi-objective heuristic A∗ approach, offering a solution to the inflexibility and limited coverage of suburbanbus routes. Also, this study conducts a comparative analysis of the proposed algorithm with solutions based onGenetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACO), focusing on calculation time, routelength, passenger waiting time, boarding time, and detour rate. The findings demonstrate that the proposedalgorithmsignificantly enhances route planning speed, achieving an 80–100-fold increase in efficiency over existingmodels, thereby supporting the real-time demands of Demand-Responsive Transportation (DRT) systems. Thestudy concludes that this algorithm not only optimizes route planning in bus transit but also presents a scalablesolution for improving urban mobility.
基金funded by the National Natural Science Foundation of China under Grant 52177074.
文摘Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat to the safety and reliability of CPPS,and there is an acute need to reduce the probability of these failures.Towards this end,this paper first proposes a cascading failure index to identify and quantify the importance of different information in the same class of communication services.On this basis,a joint improved risk-balanced service function chain routing strategy(SFC-RS)is proposed,which is modeled as a robust optimization problem and solved by column-and-constraint generation(C-CG)algorithm.Compared with the traditional shortest-path routing algorithm,the superiority of SFC-RS is verified in the IEEE 30-bus system.The results demonstrate that SFC-RS effectively mitigates the risk associated with information transmission in the network,enhances information transmission accessibility,and effectively limits communication disruption from becoming the cause of cross-space cascading failures.