期刊文献+
共找到2,274篇文章
< 1 2 114 >
每页显示 20 50 100
Prediction of joint roughness coefficient via hybrid machine learning model combined with principal components analysis 被引量:1
1
作者 Shijie Xie Hang Lin +2 位作者 Tianxing Ma Kang Peng Zhen Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2291-2306,共16页
Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC... Joint roughness coefficient(JRC)is the most commonly used parameter for quantifying surface roughness of rock discontinuities in practice.The system composed of multiple roughness statistical parameters to measure JRC is a nonlinear system with a lot of overlapping information.In this paper,a dataset of eight roughness statistical parameters covering 112 digital joints is established.Then,the principal component analysis method is introduced to extract the significant information,which solves the information overlap problem of roughness characterization.Based on the two principal components of extracted features,the white shark optimizer algorithm was introduced to optimize the extreme gradient boosting model,and a new machine learning(ML)prediction model was established.The prediction accuracy of the new model and the other 17 models was measured using statistical metrics.The results show that the prediction result of the new model is more consistent with the real JRC value,with higher recognition accuracy and generalization ability. 展开更多
关键词 Rock discontinuities Joint roughness coefficient(JRC) roughness characterization Principal components analysis(PCA) Machine learning
在线阅读 下载PDF
Effects of high temperature and thermal cycles on fracture surface's roughness of granite:An insight on 3D morphology 被引量:1
2
作者 Qixiong Gu Zhen Huang +5 位作者 Kui Zhao Wen Zhong Li Liu Xiaozhao Li Yun Wu Ma Dan 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期810-826,共17页
The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle o... The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles. 展开更多
关键词 GRANITE Thermal cycles High temperature Fracture surface roughness ANISOTROPIC Thermal damage
在线阅读 下载PDF
Effect of stochastic fracture surface roughness on water flow and heat transfer in fractured rocks
3
作者 LIU Dongdong SONG Wenjie +2 位作者 LU Wei ZHONG Guo YANG Tao 《中国水利水电科学研究院学报(中英文)》 北大核心 2025年第4期449-459,共11页
As the dominant seepage channel in rock masses,it is of great significance to study the influence of fracture roughness distribution on seepage and heat transfer in rock masses.In this paper,the fracture roughness dis... As the dominant seepage channel in rock masses,it is of great significance to study the influence of fracture roughness distribution on seepage and heat transfer in rock masses.In this paper,the fracture roughness distribution functions of the Bakhtiary dam site and Oskarshamn/Forsmark mountain were fitted using statistical methods.The COMSOL Multiphysics finite element software was utilized to analyze the effects of fracture roughness distribution types and empirical formulas for fracture hydraulic aperture on the seepage field and temperature field of rock masses.The results show that:(1)The fracture roughness at the Bakhtiary dam site and Oskarshamn/Forsmark mountain follows lognormal and normal distributions,respectively;(2)For rock masses with the same expected value and standard deviation of fracture roughness,the outflow from rock masses with lognormal distribution of fracture roughness is significantly larger than that of rock masses with normal distribution of fracture roughness;(3)The fracture hydraulic aperture,outflow,and cold front distance of the Li and Jiang model are significantly larger than those of the Barton model;(4)The outflow,hydraulic pressure distribution,and temperature distribution of the Barton model are more sensitive to the fracture roughness distribution type than those of the Li and Jiang model. 展开更多
关键词 discrete fracture networks roughness distribution hydro-mechanical aperture model seepage and heat transfer
在线阅读 下载PDF
Spatiotemporal Analysis of Pavement Roughness Using Connected Vehicle Data for Asset Management
4
作者 Jijo K. Mathew Jairaj Desai +2 位作者 Rahul Suryakant Sakhare Jeremy Hunter Darcy M. Bullock 《Journal of Transportation Technologies》 2025年第1期1-16,共16页
Pavement condition monitoring and its timely maintenance is necessary to ensure the safety and quality of the roadway infrastructure. The International Roughness Index (IRI) is a commonly used measure to quantify road... Pavement condition monitoring and its timely maintenance is necessary to ensure the safety and quality of the roadway infrastructure. The International Roughness Index (IRI) is a commonly used measure to quantify road surface roughness and is a critical input to asset management. In Indiana, the IRI statistic contributes to roughly half of the pavement quality index computation used for asset management. Most agencies inventory IRI once a year, however, pavement conditions vary much more frequently. The objective of this paper is to develop a framework using crowdsourced connected vehicle data to identify and detect temporal changes in IRI. Over 3 billion connected vehicle records in Indiana were analyzed across 30 months between 2022 and 2024 to understand the spatiotemporal variations in roughness. Annual comparisons across all major interstates in Indiana showed the miles of interstates classified as “Good” decreased from 1896 to 1661 miles between 2022 and 2024. The miles of interstate classified as “Needs Maintenance” increased from 82 to 120 miles. A detailed case study showing monthly and daily changes of estimated IRI on I-65 are presented along with supporting dashcam images. Although the crowdsourced IRI estimates are not as robust as traditional specialized pavement profilers, they can be obtained on a monthly, weekly, or even daily basis. The paper concludes by suggesting a combination of frequent crowdsourced IRI and commercially available dashcam imagery of roadway can provide an agile and responsive mechanism for agencies to implement pavement asset management programs that can complement existing annual programs. 展开更多
关键词 Connected Vehicles PAVEMENT Pavement Quality roughness IRI Dashcam
暂未订购
Predictive models for the surface roughness and subsurface damage depth of semiconductor materials in precision grinding
5
作者 Shang Gao Haoxiang Wang +2 位作者 Han Huang Zhigang Dong Renke Kang 《International Journal of Extreme Manufacturing》 2025年第3期423-449,共27页
Workpiece rotational grinding is widely used in the ultra-precision machining of hard and brittle semiconductor materials,including single-crystal silicon,silicon carbide,and gallium arsenide.Surface roughness and sub... Workpiece rotational grinding is widely used in the ultra-precision machining of hard and brittle semiconductor materials,including single-crystal silicon,silicon carbide,and gallium arsenide.Surface roughness and subsurface damage depth(SDD)are crucial indicators for evaluating the surface quality of these materials after grinding.Existing prediction models lack general applicability and do not accurately account for the complex material behavior under grinding conditions.This paper introduces novel models for predicting both surface roughness and SDD in hard and brittle semiconductor materials.The surface roughness model uniquely incorporates the material’s elastic recovery properties,revealing the significant impact of these properties on prediction accuracy.The SDD model is distinguished by its analysis of the interactions between abrasive grits and the workpiece,as well as the mechanisms governing stress-induced damage evolution.The surface roughness model and SDD model both establish a stable relationship with the grit depth of cut(GDC).Additionally,we have developed an analytical relationship between the GDC and grinding process parameters.This,in turn,enables the establishment of an analytical framework for predicting surface roughness and SDD based on grinding process parameters,which cannot be achieved by previous models.The models were validated through systematic experiments on three different semiconductor materials,demonstrating excellent agreement with experimental data,with prediction errors of 6.3%for surface roughness and6.9%for SDD.Additionally,this study identifies variations in elastic recovery and material plasticity as critical factors influencing surface roughness and SDD across different materials.These findings significantly advance the accuracy of predictive models and broaden their applicability for grinding hard and brittle semiconductor materials. 展开更多
关键词 surface quality GRINDING predictive models semiconductor materials surface roughness subsurface damage depth
在线阅读 下载PDF
New peak shear strength criterion of rock joints based on two-order roughness
6
作者 HONG Chenjie TAO Zhigang +3 位作者 YANG Shengqi WANG Kai WENG Hanqian HUANG Man 《Journal of Mountain Science》 2025年第5期1859-1870,共12页
The primary objective of this work is to improve our understanding of the mechanical involvements of two-order roughness in shear.First,wavelet analysis is used to separate the waviness(first-order)and unevenness(seco... The primary objective of this work is to improve our understanding of the mechanical involvements of two-order roughness in shear.First,wavelet analysis is used to separate the waviness(first-order)and unevenness(second-order)from four granite joint surfaces,with roughness characterized using Grasselli’s 3D morphology parameters.The results reveal that first-order roughness is more pronounced than second-order roughness,highlighting the dominant role of waviness in joint surface roughness.Additionally,the variation in first-order roughness with strike direction corresponds to the total roughness,while second-order roughness remains largely constant,indicating that roughness anisotropy is primarily driven by waviness.Then,direct shear tests on joint replicas are performed to investigate the contributions of both roughness orders to peak shear strength.The results show that the peak dilation angle is closely related to first-order roughness,while the shear component angle is closely associated with second-order roughness,both exhibiting a linear correlation.Based on these findings,relationships are established between the angles and their respective roughness orders.Finally,a joint shear strength criterion based on two-order roughness is proposed.A comparative analysis of prediction accuracy reveals that the average relative error for the proposed criterion is 13.79%,while the errors for Xia's,Yang's,and Ban's criteria are 15.19%,16.29%,and 13.87%,respectively.It demonstrates the proposed criterion can predict the peak shear strength of rock joints. 展开更多
关键词 Rock joint WAVINESS Unevenness Surface roughness Peak shear strength
原文传递
Effect of Photoresist Biomimetic Surface Roughness on Droplet Evaporation Dynamics
7
作者 Zhihao Zhang Xiangcheng Gao Yuying Yan 《Journal of Bionic Engineering》 2025年第3期1338-1351,共14页
Control of the wetting properties of biomimetic functional surfaces is a desired functionality in many applications.In this paper,the photoresist SU-8 was used as fabrication material.A silicon wafer was used as a sub... Control of the wetting properties of biomimetic functional surfaces is a desired functionality in many applications.In this paper,the photoresist SU-8 was used as fabrication material.A silicon wafer was used as a substrate to prepare a biomimetic surface with different surface roughness and micro-pillars arranged in array morphology.The evaporation dynamics and interfacial heat transfer processes of deionised water droplets on the bioinspired microstructure surface were experimentally studied.The study not only proves the feasibility of preparing hydrophilic biomimetic functional surfaces directly through photoresist materials and photolithography technology but also shows that by adjusting the structural parameters and arrangement of the surface micro-pillar structure,the wettability of the biomimetic surface can be significantly linearly regulated,thereby effectively affecting the heat and mass transfer process at the droplet liquid-vapour interface.Analysis of the results shows that by controlling the biomimetic surface microstructure,the wettability can be enhanced by about 22%at most,the uniformity of the temperature distribution at the liquid-vapour interface can be improved by about 34%,and the average evaporation rate can be increased by about 28%.This study aims to provide some guidance for the research on bionic surface design based on photoresist materials. 展开更多
关键词 Biomimetics Droplet evaporation Surface roughness WETTABILITY Interfacial phenomenon
在线阅读 下载PDF
Internal surface finishing and roughness measurement:A critical review
8
作者 Jiang GUO Qikai LI +5 位作者 Pu QIN Ankang YUAN Mingyang LU Xiaolong KE Yicha ZHANG Benny CFCHEUNG 《Chinese Journal of Aeronautics》 2025年第8期563-587,共25页
Modern industrial equipment is increasingly characterized by miniaturization,integration,and high performance,necessitating the production of complex structural parts with exceptionally high internal surface quality.D... Modern industrial equipment is increasingly characterized by miniaturization,integration,and high performance,necessitating the production of complex structural parts with exceptionally high internal surface quality.Direct manufacturing often leads to high internal surface roughness,which traditional finishing and measuring methods cannot adequately address due to the decreasing size and increasing complexity of internal structures.This is especially true for components like pipes with large aspect ratios,extremely small deep holes,multi-stage bends,cross pipes,and array holes.To meet the high-performance manufacturing demands of these parts,advanced internal surface finishing and roughness measurement technologies have gained significant attention.This review focuses on the challenges and solutions related to internal surface parts with various apertures and complex structures.Internal surface finishing methods are categorized into mechanical finishing,fluid-based finishing,and energy-field-based finishing based on their characteristics.Roughness measurement technologies are divided into tool-probing and non-probing methods.The principles,required equipment,and key parameters of each finishing and measurement approach are discussed in detail.Additionally,the advantages and limitations of these methods are summarized,and future trends are forecasted.This paper serves as a comprehensive guide for researchers and engineers aiming to enhance the internal surface quality of complex structure parts. 展开更多
关键词 Internal surface finishing roughness measurement Small aperture Complex structure Tool-probing
原文传递
Electro-chemo-mechanics interplays caused by solid electrolyte-lithium anode interface roughness in all-solid-state batteries
9
作者 Chunhao Yuan Jing Wu +2 位作者 Wenjing Zhang Menghui Han Yikai Jia 《Journal of Energy Chemistry》 2025年第9期495-507,I0013,共14页
Solid-to-solid interfacial issues are one of the most intractable problems hindering the practical application of all-solid-state batteries(ASSBs).The interfacial instability behaviors caused by the rough interface be... Solid-to-solid interfacial issues are one of the most intractable problems hindering the practical application of all-solid-state batteries(ASSBs).The interfacial instability behaviors caused by the rough interface between lithium anode and solid electrolyte(SE)involve complicated electro-chemo-mechanics interplays and their quantitative relationships still remain unclear.The three-dimensional electro-chemomechanical coupled model with randomly generated rough lithium-SE interface is developed in this study to investigate the effects of interface roughness on the interfacial failure behaviors.Results demonstrate that the existence of a rough lithium-SE interface causes the highly concentrated strain,GPa-level stress,and localized current density at the protruding tips,probably inducing dendrite formation and interface cracking.The interface roughness effect is much more pronounced in lithium anode than graphite anode due to their different Li storage mechanisms,i.e.,surface deposition and Li intercalation.Excessive stack pressure(>50 MPa)magnifies the stress effect on overpotential to enlarge the current density localization and deteriorate the interfacial instability issues.Reducing interface roughness through surface treatment,together with regulation of external operation conditions,can effectively improve interfacial stability performance.The results provide an in-depth understanding of the underlying electro-chemo-mechanical coupling mechanism caused by the rough anode-SE interface and bring more insights into further improvement of ASSBs'enhanced reliability and longevity. 展开更多
关键词 All-solid-state battery Interface roughness Electro-chemo-mechanical coupling Multiphysics modeling Interfacial failure mechanisms
在线阅读 下载PDF
Grid-growth method for the reconstruction of 3D rock joints with arbitrary joint roughness and persistence
10
作者 Hanyu CHEN Peng GUO +1 位作者 Guangyao LI Lifeng FAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第5期393-406,共14页
We present a grid-growth method to reconstruct 3D rock joints with arbitrary joint roughness and persistence.In the first step of this workflow,the joint model is divided into uniform grids.Then by adjusting the posit... We present a grid-growth method to reconstruct 3D rock joints with arbitrary joint roughness and persistence.In the first step of this workflow,the joint model is divided into uniform grids.Then by adjusting the positions of the grids,the joint morphology can be modified to construct models with desired joint roughness and persistence.Accordingly,numerous joint models with different joint roughness and persistence were built.The effects of relevant parameters(such as the number,height,slope of asperities,and the number,area of rock bridges)on the joint roughness coefficient(JRC)and joint persistence were investigated.Finally,an artificially split joint was reconstructed using the method,and the method's accuracy was evaluated by comparing the JRC of the models with that of the artificially split joint.The results showed that the proposed method can effectively control the JRC of joint models by adjusting the number,height,and slope of asperities.The method can also modify the joint persistence of joint models by adjusting the number and area of rock bridges.Additionally,the JRC of models obtained by our method agrees with that of the artificially split surface.Overall,the method demonstrated high accuracy for 3D rock joint reconstruction. 展开更多
关键词 3D rock joint reconstruction Joint roughness Joint persistence ASPERITY Rock bridge
原文传递
Surface Roughness Model and Process of Brazed Diamond Tool Milling and Grinding Sapphire Dome
11
作者 FENG Wei SUN Xiaokang +1 位作者 ZHANG Lingling ZHU Nannan 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第4期554-564,共11页
Sapphire hemispherical domes are machined through milling and shaping using brazed diamond tools.A mathematical model describing roughness for this processing method is established,and the relationship between roughne... Sapphire hemispherical domes are machined through milling and shaping using brazed diamond tools.A mathematical model describing roughness for this processing method is established,and the relationship between roughness and its influencing factors is analyzed.Experiments on the hemispherical dome shaping process are conducted to validate the model,analyzing the variation in roughness under different tool and workpiece rotational speeds.The results are consistent with the predictions of the established roughness model,suggesting that the model can be used to guide subsequent process experiments.Milling and shaping efficiency using brazed diamond tools typically can reach 14 g/min.The machined sapphire surfaces exhibit relatively few microcracks and minimal damage,with almost all exclusively visible grooves resulting from brittle fracture removal.The surface roughness after machining is below 2.5μm.Milling sapphire domes with brazed diamond tools represents a novel shaping technique characterized by high efficiency and high quality. 展开更多
关键词 diamond tools sapphire dome milling and grinding roughness
在线阅读 下载PDF
Prediction of turned surface roughness based on GADF of multi-channel signal fusion and MA-ResNet
12
作者 SHI Lichen LIU Tengfei WANG Haitao 《Journal of Measurement Science and Instrumentation》 2025年第2期302-312,共11页
In order to achieve high precision online prediction of surface roughness during turning process and improve cutting quality,a prediction method of turned surface roughness based on Gramian angular difference field(GA... In order to achieve high precision online prediction of surface roughness during turning process and improve cutting quality,a prediction method of turned surface roughness based on Gramian angular difference field(GADF)of multi-channel signal fusion and multi-scale attention residual network(MA-ResNet)was proposed.Firstly,the multi-channel vibration signals were subdivided into various frequency bands using wavelet packet decomposition,and the sensitive channels were selected for signal fusion by doing correlation analysis between the signals of various frequency bands and the surface roughness.Then the fused signals were converted into pictures using GADF image encoding.Finally,the pictures were inputted into the residual network model combining the parallel dilation convolution and attention module for training and verifying the effectiveness of the model performance.The proposed method has a root mean square error of 0.0187,a mean absolute error of 0.0143,and a coefficient of determination of 0.8694 in predicting the surface roughness,which is close to the actual value.Therefore,the proposed method had good engineering significance for high-precision prediction and was conducive to on-line monitoring of surface quality during workpiece processing. 展开更多
关键词 signal fusion Gramian angular difference field dilated convolution residual network roughness prediction
在线阅读 下载PDF
Entropy Consistency-Based Adaptive Sampling Method for Determining the Scale Effect in the Joint Roughness Coefficient
13
作者 Jibo Qin Jun Ye +1 位作者 Xiaoming Sun Shigui Du 《Journal of Earth Science》 2025年第2期644-653,共10页
The joint roughness coefficient(JRC) is one of the key parameters for evaluating the shear strength of rock joints.Because of the scale effect in the JRC,reliable JRC values are of great importance for most rock engin... The joint roughness coefficient(JRC) is one of the key parameters for evaluating the shear strength of rock joints.Because of the scale effect in the JRC,reliable JRC values are of great importance for most rock engineering projects.During the collection process of JRC samples,the redundancy or insufficiency of representative rock joint surface topography(RJST) information in serial length JRC samples is the essential reason that affects the reliability of the scale effect results.Therefore,this paper proposes an adaptive sampling method,in which we use the entropy consistency measure Q(a) to evaluate the consistency of the joint morphology information contained in adjacent JRC samples.Then the sampling interval is automatically adjusted according to the threshold Q(at) of the entropy consistency measure to ensure that the degree of change of RJST information between JRC samples is the same,and ultimately makes the representative RJST information in the collected JRC samples more balanced.The application results of actual cases show that the proposed method can obtain the scale effect in the JRC efficiently and reliably. 展开更多
关键词 sampling method joint roughness coefficient(JRC) scale effect entropy consistency measure rock joint engineering geology
原文传递
Analysis of meshing characteristics of planetary gear system considering tooth surface roughness and elastohydrodynamic lubrication
14
作者 LIU Ning MA Hui +4 位作者 GUAN Hong ZHOU Sai-nan ZHAO Tian-yu CAO Peng WU Yu-ping 《Journal of Central South University》 2025年第7期2511-2534,共24页
The contact characteristics of the rough tooth surface during the meshing process are significantly affected by the lubrication state.The coupling effect of tooth surface roughness and lubrication on meshing character... The contact characteristics of the rough tooth surface during the meshing process are significantly affected by the lubrication state.The coupling effect of tooth surface roughness and lubrication on meshing characteristics of planetary gear is studied.An improved three-dimensional(3 D)anisotropic tooth surface roughness fractal model is proposed based on the experimental parameters.Considering asperity contact and elastohydrodynamic lubrication(EHL),the contact load and flexibility deformation of the tooth surface are derived,and the deformation compatibility equation of the 3 D loaded tooth contact analysis(3 D-LTCA)method is improved.The asperity of the tooth surface changes the system from EHL to mixed lubrication and reduces the stiffness of the oil film.Compared with the sun planet gear,the asperity has a greater effect on the meshing characteristics of the ring-planet gear.Compared with the proposed method,the comprehensive stiffness obtained by the traditional calculation method considering the lubrication effect is smaller,especially for the ring-planet gear.Compared with roughness,speed and viscosity,the meshing characteristics of planetary gears are most sensitive to torque. 展开更多
关键词 planetary gear tooth surface roughness three-dimensional loaded tooth contact analysis elastohydrodynamic lubrication meshing stiffness
在线阅读 下载PDF
A back-propagation neural network optimized by genetic algorithm for rock joint roughness evaluation
15
作者 Leibo Song Jieru Xie +4 位作者 Quan Jiang Gang Wang Shan Zhong Guansheng Han Jinzhong Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3054-3072,共19页
The joint roughness coefficient(JRC)is a key parameter in the assessment of mechanical properties and the stability of rock masses.This paper presents a novel approach to JRC evaluation using a genetic algorithm-optim... The joint roughness coefficient(JRC)is a key parameter in the assessment of mechanical properties and the stability of rock masses.This paper presents a novel approach to JRC evaluation using a genetic algorithm-optimized backpropagation(GA-BP)neural network.Conventional JRC evaluations have typically depended on two-dimensional(2D)and three-dimensional(3D)parameter calculation methods,which fail to fully capture the nonlinear relationship between the complex surface morphology of joints and their roughness.Our analysis from shear tests on eight different joint types revealed that the strength and failure characteristics of the joints not only exhibit directional dependence but also positively correlate with surface dip angles,heights,and back slope morphological features.Subsequently,five simple statistical parameters,i.e.average dip angle,median dip angle,average height,height coefficient of variation,and back slope feature value(K),were utilized to quantify these characteristics.For the prediction of JRC,we compiled and analyzed 105 datasets,each containing these five statistical parameters and their corresponding JRC values.A GA-BP neural network model was then constructed using this dataset,with the five morphological characteristic statistics serving as inputs and the JRC values as outputs.A comparative analysis was performed between the GA-BP neural network model,the statistical parameter method,and the fractal parameter method.This analysis confirmed that our proposed method offers higher accuracy in evaluating the roughness coefficient and shear strength of joints. 展开更多
关键词 Rock joint Joint roughness coefficient Genetic algorithm-optimized backpropagation(GA-BP)neural network Shear strength
在线阅读 下载PDF
Quantitative Detection of Micro Hole Wall Roughness in PCBs Based on Improved U-Net Model
16
作者 Lijuan Zheng Yonghao Li +5 位作者 Zhuangzhuang Sun Yangquan Luo Ying Xu Jun Wang Chengyong Wang Xin Wei 《Chinese Journal of Mechanical Engineering》 2025年第3期1-11,共11页
The current method for inspecting microholes in printed circuit boards(PCBs)involves preparing slices followed by optical microscope measurements.However,this approach suffers from low detection efficiency,poor reliab... The current method for inspecting microholes in printed circuit boards(PCBs)involves preparing slices followed by optical microscope measurements.However,this approach suffers from low detection efficiency,poor reliability,and insufficient measurement stability.Micro-CT enables the observation of the internal structures of the sample without the need for slicing,thereby presenting a promising new method for assessing the quality of microholes in PCBs.This study integrates computer vision technology with computed tomography(CT)to propose a method for detecting microhole wall roughness using a U-Net model and image processing algorithms.This study established an unplated copper PCB CT image dataset and trained an improved U-Net model.Validation of the test set demonstrated that the improved model effectively segmented microholes in the PCB CT images.Subsequently,the roughness of the holes’walls was assessed using a customized image-processing algorithm.Comparative analysis between CT detection based on various edge detection algorithms and slice detection revealed that CT detection employing the Canny algorithm closely approximates slice detection,yielding range and average errors of 2.92 and 1.64μm,respectively.Hence,the detection method proposed in this paper offers a novel approach for nondestructive testing of hole wall roughness in the PCB industry. 展开更多
关键词 PCB CT image segmentation Improved U-Net model Hole wall roughness Micro-CT non-destructive testing
在线阅读 下载PDF
Revisiting scale effect on joint roughness coefficient and shear strength considering sampling methods and geometric characteristics
17
作者 Qing Lü Xueheng Cai +2 位作者 Luxiang Wu Jun Zheng Bo Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2843-2856,共14页
The scale effect on shear strength of rock joints is well-documented.However,whether scale effects are negative,positive,or even exist or not is still controversial.Joint roughness significantly influences the shear s... The scale effect on shear strength of rock joints is well-documented.However,whether scale effects are negative,positive,or even exist or not is still controversial.Joint roughness significantly influences the shear strength of rock joints.Compared to the shear tests,using the joint roughness coefficient(JRC)and its roughness parameters offers a more convenient method for describing the scale effect on shear strength.However,it is crucial to understand that the scale effect mechanisms of JRC are distinct from those of shear strength.Therefore,this paper aims to clarify these distinct mechanisms.By digitally extracting roughness parameters from granite samples,it is found that the scale effect of roughness parameters mainly comes from the sampling methods and the geometric characteristics of parameters.Furthermore,a full data sampling method considering heterogeneity is proposed to obtain more representative roughness parameters.To reveal the scale effect mechanisms of shear strength,Gaussian filtering is firstly used to separate the waviness and unevenness components of roughness,facilitating a deeper understanding of the geometric characteristics of roughness.It is suggested that the wavelength of the waviness component can reflect the scale effect on shear strength.Secondly,numerical simulations of ideal artificial joint models are conducted to validate that the wavelength of the waviness component serves as the dividing point between positive and negative scale effects.The mechanical mechanisms of positive and negative scale effects are also interpreted.Finally,these mechanisms successfully elucidate the occurrence patterns of the scale effect on natural joint profiles. 展开更多
关键词 Rock joint Joint roughness coefficient(JRC) Shear strength Scale effect
在线阅读 下载PDF
Impacts of bed roughness and orientation on hydraulic jump:A review
18
作者 Nishank Agrawal Ellora Padhi 《Water Science and Engineering》 2025年第1期90-101,共12页
Hydraulic jumps are a prevalent phenomenon in flows through spillways,chutes,and sluice gates.As hydraulic jumps exhibit substantial kinetic energy,the downstream of a hydraulic structure is prone to scour.To mitigate... Hydraulic jumps are a prevalent phenomenon in flows through spillways,chutes,and sluice gates.As hydraulic jumps exhibit substantial kinetic energy,the downstream of a hydraulic structure is prone to scour.To mitigate downstream scour and enhance energy dissipation,hydraulic jumps are often directed into stilling basins with various bed configurations,including horizontal,sloping,rough,and their combinations.This review compiles numerous analytical and experimental studies on hydraulic jumps under various bed conditions.The effect of bed roughness on sequent depth ratio,roller and jump lengths,shear stress,and energy dissipation is critically reviewed.The impacts of roughness height,flow Froude number,and bed angle on jump characteristics are discussed,substantiated by comparative analyses for distinct roughness heights.The results indicate that bed roughness intensifies shear stress,resulting in augmented energy dissipation and reductions in jump length and sequent depth.Additionally,the analytical and empirical equations proposed by researchers for different jump scenarios are discussed,and their applicability under various conditions is summarized.Finally,it suggests considering the scale effect in future research to refine the comprehension of jump stability over adverse slopes. 展开更多
关键词 Rough sloping bed Sequent depth Roller length Bed shear stress Energy dissipation
在线阅读 下载PDF
Roughness characterization and shearing dislocation failure for rock-backfill interface 被引量:3
19
作者 Meifeng Cai Zhilou Feng +3 位作者 Qifeng Guo Xiong Yin Minghui Ma Xun Xi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1167-1176,共10页
Shearing dislocation is a common failure type for rock–backfill interfaces because of backfill sedimentation and rock strata movement in backfill mining goaf.This paper designed a test method for rock–backfill shear... Shearing dislocation is a common failure type for rock–backfill interfaces because of backfill sedimentation and rock strata movement in backfill mining goaf.This paper designed a test method for rock–backfill shearing dislocation.Using digital image techno-logy and three-dimensional(3D)laser morphology scanning techniques,a set of 3D models with rough joint surfaces was established.Further,the mechanical behavior of rock–backfill shearing dislocation was investigated using a direct shear test.The effects of interface roughness on the shear–displacement curve and failure characteristics of rock–backfill specimens were considered.The 3D fractal dimen-sion,profile line joint roughness coefficient(JRC),profile line two-dimensional fractal dimension,and the surface curvature of the frac-tures were obtained.The correlation characterization of surface roughness was then analyzed,and the shear strength could be measured and calculated using JRC.The results showed the following:there were three failure threshold value points in rock–backfill shearing dis-location:30%–50%displacement before the peak,70%–90%displacement before the peak,and 100%displacement before the peak to post-peak,which could be a sign for rock–backfill shearing dislocation failure.The surface JRC could be used to judge the rock–backfill shearing dislocation failure,including post-peak sliding,uniform variations,and gradient change,corresponding to rock–backfill disloca-tion failure on the field site.The research reveals the damage mechanism for rock–backfill complexes based on the free joint surface,fills the gap of existing shearing theoretical systems for isomerism complexes,and provides a theoretical basis for the prevention and control of possible disasters in backfill mining. 展开更多
关键词 rock–backfill roughness correlation characterization shearing dislocation interface failure
在线阅读 下载PDF
Enhancing the anti-corrosion performance and biocompatibility of AZ91D Mg alloy by applying roughness pretreatment and coating with in-situ Mg(OH)_(2)/Mg-Al LDH 被引量:3
20
作者 Zexi Shao Pubo Li +3 位作者 Chao Zhang Bintao Wu Chan Tang Mangmang Gao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2520-2533,共14页
Corrosion-resistant and biocompatible films were fabricated on AZ91D Mg alloy substrates by varying their roughness levels using met-allographic preparation and subsequent hydrothermal procedures.The coated films comp... Corrosion-resistant and biocompatible films were fabricated on AZ91D Mg alloy substrates by varying their roughness levels using met-allographic preparation and subsequent hydrothermal procedures.The coated films comprised a mixed structure of Mg(OH)_(2)and Mg-Al layered double hydroxides(LDH)and exhibited excellent compactness.Coating film thickness increased with decreasing surface roughness.Corrosion resistance was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy.Metallographic pretreat-ment influenced the chemical activity of the Mg alloy surface and helped modulate the dissolution rate of the Mg_(17)Al_(12)phase during the hydrothermal procedure.With decreasing roughness of the Mg substrate,the Al^(3+)concentration gradually increased,accelerating the in-situ formation of the Mg(OH)_(2)/LDH composite coating and improving its crystallinity.A thick and dense Mg(OH)_(2)/LDH coating was synthesized on the Mg substrate with the least roughness,substantially improving the corrosion resistance of the AZ91D alloy.The lowest corrosion current density((5.73±2.75)×10^(−8)A·cm^(−2))was achieved,which was approximately three orders of magnitude less than that of bare AZ91D.Moreover,the coating demonstrated biocompatibility with no evident cytotoxicity,cellular damage,and hemolytic phenomena.This study provides an effective method for preparing coatings on Mg alloy surfaces with excellent corrosion resistance and biocompatibility. 展开更多
关键词 Magnesium alloy roughness Corrosion resistance Layered double hydroxides BIOCOMPATIBILITY
在线阅读 下载PDF
上一页 1 2 114 下一页 到第
使用帮助 返回顶部