The Jaynes-Cummings model (JCM) is studied in the absence of the rotating-wave approximation (RWA) by a coherent-state expansion technique. In comparison with the previous paper in which the coherent-state expansi...The Jaynes-Cummings model (JCM) is studied in the absence of the rotating-wave approximation (RWA) by a coherent-state expansion technique. In comparison with the previous paper in which the coherent-state expansion was performed only to the third order, we carry out in this paper a complete expansion to demonstrate exactly the dynamics of the JCM without the RWA. Our study gives a systematic method to solve the non-RWA problem, which would be useful in various physical systems, e.g., in a system with an ultracold trapped ion experiencing the running waves of lasers.展开更多
We present a weak-coupling theory of semiclassical periodically driven two-level systems. The explicit analytical approximating solution is shown to reproduce highly accurately the exact results well beyond the regime...We present a weak-coupling theory of semiclassical periodically driven two-level systems. The explicit analytical approximating solution is shown to reproduce highly accurately the exact results well beyond the regime of the rotating-wave approximation.展开更多
In this work we investigated the geometric phases of a qubit-oscillator system beyond the conventional rotating- wave approximation. We find that in the limiting of weak coupling the results coincide with that obtaine...In this work we investigated the geometric phases of a qubit-oscillator system beyond the conventional rotating- wave approximation. We find that in the limiting of weak coupling the results coincide with that obtained under rotating-wave approximation while there exists an increasing difference with the increase of coupling constant. It was shown that the geometric phase is symmetric with respect to the sign of the detuning of the quantized field from the one-photon resonance under the conventional rotating-wave approximation while a red-blue detuning asymmetry occurs beyond the conventional rotating-wave approximation.展开更多
The entanglement property of two identical atoms, initially entangled in Bell states, coupled to a single-mode cavity is considered. Based on the reduced non-perturbative quantum master equation method, the entangleme...The entanglement property of two identical atoms, initially entangled in Bell states, coupled to a single-mode cavity is considered. Based on the reduced non-perturbative quantum master equation method, the entanglement evolution of the two atoms with decay is investigated beyond the conventional rotating-wave approximation. We show that the counter-rotating wave terms, usually neglected, have a great influence on the disentanglement behaviour of the system. The phenomena of entanglement sudden death and entanglement sudden birth will occur. In addition, we show that the entanglement can be strengthened by introducing the dipole-dipole interaction of the two atoms.展开更多
Effects of the antirotating coupling on the absorption resonances are presented for a microwave driven three-level system. It is shown that nonlinear sideband generation, selective suppression and switching between pe...Effects of the antirotating coupling on the absorption resonances are presented for a microwave driven three-level system. It is shown that nonlinear sideband generation, selective suppression and switching between peaks and dips in the absorption spectrum are obtained as the microwave Rabi frequency is varied. A physical explanation is given in terms of the coherent superposition of an infinite set of transitions that are associated with an infinite set of dressed states, which are created by the rotating and nonrotating couplings as the equivalent bichromatic excitation.展开更多
The concurrence evolution of two qubits coupled with one-mode cavity separately is investigated exactly without adopting the rotating-wave approximation. The results show that for the resonant case, the concurrence ev...The concurrence evolution of two qubits coupled with one-mode cavity separately is investigated exactly without adopting the rotating-wave approximation. The results show that for the resonant case, the concurrence evolution behaviour of the system is similar to that of the Markovian case when the coupling strength is weak, while the concurrence vanishes in a finite time and might revive fractional initial entanglement before it permanently vanishes when the coupling strength is strong. And for the detuning case, the entanglement could periodically recover after complete disentanglement. These results are quite different from those of system subjected to Jaynes-Cummings model.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10474118 and 10274093, the National Fundamental Research Program of China under Grant No. 2005CB724502, and the Foundation from Educational Department of Sichuan Province of China under Grant No. 2004C017
文摘The Jaynes-Cummings model (JCM) is studied in the absence of the rotating-wave approximation (RWA) by a coherent-state expansion technique. In comparison with the previous paper in which the coherent-state expansion was performed only to the third order, we carry out in this paper a complete expansion to demonstrate exactly the dynamics of the JCM without the RWA. Our study gives a systematic method to solve the non-RWA problem, which would be useful in various physical systems, e.g., in a system with an ultracold trapped ion experiencing the running waves of lasers.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10575040, 90503010, 60478029, and 10634060, and by the State Key Basic Research Program under Grant No. 2005CB724508
文摘We present a weak-coupling theory of semiclassical periodically driven two-level systems. The explicit analytical approximating solution is shown to reproduce highly accurately the exact results well beyond the regime of the rotating-wave approximation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11075099, 11047167, and 11105087)the Programme of State Key Laboratory of Quantum Optics and Quantum Optics Devices (Grant No. KF201002)+1 种基金the National Fundamental Fund of Personnel Training (Grant No. J1103210)the Youth Science Foundation of Shanxi Province of China (Grant No. 2010021003-2)
文摘In this work we investigated the geometric phases of a qubit-oscillator system beyond the conventional rotating- wave approximation. We find that in the limiting of weak coupling the results coincide with that obtained under rotating-wave approximation while there exists an increasing difference with the increase of coupling constant. It was shown that the geometric phase is symmetric with respect to the sign of the detuning of the quantized field from the one-photon resonance under the conventional rotating-wave approximation while a red-blue detuning asymmetry occurs beyond the conventional rotating-wave approximation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60678022 and 10704001)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No 20060357008)+2 种基金Anhui Provincial Natural Science Foundation of China (Grant No 070412060)the Key Program of the Education Department of Anhui Province of China (Grant No KJ2008A28ZC)Anhui Key Laboratory of Information Materials and Devices (Anhui University of China)
文摘The entanglement property of two identical atoms, initially entangled in Bell states, coupled to a single-mode cavity is considered. Based on the reduced non-perturbative quantum master equation method, the entanglement evolution of the two atoms with decay is investigated beyond the conventional rotating-wave approximation. We show that the counter-rotating wave terms, usually neglected, have a great influence on the disentanglement behaviour of the system. The phenomena of entanglement sudden death and entanglement sudden birth will occur. In addition, we show that the entanglement can be strengthened by introducing the dipole-dipole interaction of the two atoms.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60378008 and 10574052.
文摘Effects of the antirotating coupling on the absorption resonances are presented for a microwave driven three-level system. It is shown that nonlinear sideband generation, selective suppression and switching between peaks and dips in the absorption spectrum are obtained as the microwave Rabi frequency is varied. A physical explanation is given in terms of the coherent superposition of an infinite set of transitions that are associated with an infinite set of dressed states, which are created by the rotating and nonrotating couplings as the equivalent bichromatic excitation.
基金supported by the State Key Program for Basic Research of China(Grant No.2007CB307002)the Natural Science Foundation of Guangdong Province of China(Grant No.8151063201000051)
文摘The concurrence evolution of two qubits coupled with one-mode cavity separately is investigated exactly without adopting the rotating-wave approximation. The results show that for the resonant case, the concurrence evolution behaviour of the system is similar to that of the Markovian case when the coupling strength is weak, while the concurrence vanishes in a finite time and might revive fractional initial entanglement before it permanently vanishes when the coupling strength is strong. And for the detuning case, the entanglement could periodically recover after complete disentanglement. These results are quite different from those of system subjected to Jaynes-Cummings model.