期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Experimental investigation of transient characteristics of mild surge and diffuser rotating stall in a centrifugal compressor with vaned diffuser 被引量:4
1
作者 ZHAO Yang XI Guang +2 位作者 ZOU HanSen SUN Ya Wei WANG ZhiHeng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第7期1212-1223,共12页
The centrifugal compressor is widely used for gas compression in various industrial fields such as aero-engine, gas turbine and turbocharger. However, the stable operating range is usually restricted by the occurrence... The centrifugal compressor is widely used for gas compression in various industrial fields such as aero-engine, gas turbine and turbocharger. However, the stable operating range is usually restricted by the occurrence of flow instability such as stall and surge. The paper experimentally examines the developing process of surge and stall occurring in a centrifugal compressor to advance the understanding on flow mechanism of flow instability. It is found that three types of pressure fluctuation can be observed at low flowrate region. At the critical point, the local stall firstly occurs in some specific diffuser passages and the enlarged local diffuser stall eventually induces the mild surge of compression system indicated by the sinusoidal pressure fluctuation. At lower mass flow rate, the diffuser stall cell begins to circumferentially propagate along the impeller rotating direction at 11% of rotor speed with the existence of mild surge. In comparative analysis of IGV pre-swirl angle on the occurrence of mild surge, the mild surge still occurs at the operating condition when the slope of the characteristic map of test stage is still obviously negative, in which the compression system is supposed to be stable in previous study. And a new suggested criterion for the prediction of mild surge is demonstrated that the occurrence of mild surge depends on the destabilization effect of downstream components about diffuser and volute. Combined with the experimental data, the streamwise distribution characteristic of diffuser stall can be used to develop the simplified model of lumped parameters for the analysis on the generation mechanism of the diffuser rotating stall. The quantitative investigation on the relation between the pressure-rise characteristic of subcomponents and the occurrence of mild surge and diffuser rotating stall not only advances the prediction of stability limit but also lays the theoretic foundation for controlling these unsteady behaviors to improve the operating range. 展开更多
关键词 centrifugal compressor mild surge diffuser rotating stall transient measurement
原文传递
Electron microscopic observation and rotational diffusion measurement of bacteriorhodopsin in lipid vesicles 被引量:1
2
作者 胡坤生 王敖金 +1 位作者 lanE.G.Morrison RichardJ.Cherry 《Science China Chemistry》 SCIE EI CAS 2001年第6期663-669,共7页
The morphology of bacteriorhodopsin reconstituted into dimyristoylphosphatidylcholine and egg-phosphatidylcholine vesicles was observed by freeze-fracture electron microscopy. The rotational diffusion of bacteriorhodo... The morphology of bacteriorhodopsin reconstituted into dimyristoylphosphatidylcholine and egg-phosphatidylcholine vesicles was observed by freeze-fracture electron microscopy. The rotational diffusion of bacteriorhodopsin at different concentrations of melittin was measured by observing flash-induced transient dichroism in dimyristoylphosphatidylcholine vesicles. In the presence of melittin, bacteriorhodopsin molecules in dimyristoylphosphatidylcholine vesicles were aggregated into large particles or patches, and the ability of rotational diffusion of bacteriorhodopsin in vesicles was decreased. This suggests that melittin produces its effect via direct electrostatic interaction with bacteriorhodopsin. Low temperature-induced aggregation of bacteriorhodopsin was also observed in dimyristoylphosphatidylcholine vesicles. Low temperature may cause phase separation. Bacteriorhodopsin was also successfully reconstituted into egg-phosphatidylcholine vesicles, but low temperature-induced aggregation of bacteriorhodopsin in dimyristoylphosphatidylcholine cannot appear in egg-phosphatidylcholine vesicles. This suggests that different lipids have different effects on bacteriorhodopsin in vesicles. 展开更多
关键词 BACTERIORHODOPSIN MELITTIN electron microscopy rotational diffusion
原文传递
Unsteady Behavior of Leading-edge Vortex and Diffuser Stall in a Centrifugal Compressor with Vaned Diffuser 被引量:9
3
作者 Nobumichi FUJISAWA Shotaro HARA Yutaka OHTA 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第1期13-21,共9页
The characteristics of a rotating stall of an impeller and diffuser and the evolution of a vortex generated at the diffuser leading-edge(i.e., the leading-edge vortex(LEV)) in a centrifugal compressor were investigate... The characteristics of a rotating stall of an impeller and diffuser and the evolution of a vortex generated at the diffuser leading-edge(i.e., the leading-edge vortex(LEV)) in a centrifugal compressor were investigated by experiments and numerical analysis. The results of the experiments revealed that both the impeller and diffuser rotating stalls occurred at 55 and 25 Hz during off-design flow operation. For both, stall cells existed only on the shroud side of the flow passages, which is very close to the source location of the LEV. According to the CFD results, the LEV is made up of multiple vortices. The LEV is a combination of a separated vortex near the leading-edge and a longitudinal vortex generated by the extended tip-leakage flow from the impeller. Therefore, the LEV is generated by the accumulation of vorticity caused by the velocity gradient of the impeller discharge flow. In partial-flow operation, the spanwise extent and the position of the LEV origin are temporarily transmuted. The LEV develops with a drop in the velocity in the diffuser passage and forms a significant blockage within the diffuser passage. Therefore, the LEV may be regarded as being one of the causes of a diffuser stall in a centrifugal compressor. 展开更多
关键词 Centrifugal Compressor Vaned Diffuser rotating Stall Leading-edge Vortex CFD DES
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部