[Objective] The experiment aimed to study the growth characteristics of hydroponic bowl lotus. [Method] The lotus variety Hongxia was chosen as the experimental material. Two treatments, hydroponics and soil culture w...[Objective] The experiment aimed to study the growth characteristics of hydroponic bowl lotus. [Method] The lotus variety Hongxia was chosen as the experimental material. Two treatments, hydroponics and soil culture were set to measure their photosynthetic indices, chlorophyll content and root vigor, and to observe their leaf tissue structure and stomatal characteristics. [Result] The findings indicated that there are no differences in the leaf physiological indices between bowl lotus under hydroponics and soil culture, while the leaf stomata of hydroponic bowl lotus is bigger and its amount is larger than that of soil-culture bowl lotus. At the same time, the ratio of the palisade tissue thickness to spongy tissue thickness is small,and its leaf tissue structure is loose. The root vigor of hydroponic bowl lotus reached its summit earlier, then began to drop. Whereas, the root activity of soil-culture lotus sustained increasing, with vigorous growth. [Conclusion] Therefore, it indicated that hydroponic bowl lotus can adapt to the aquatic-culture environment well and quickly, meanwhile, it also enters into its aging period quickly and its growth cycle gets shorter.展开更多
[Objective] The aim was to research the effect of concentration of NO-3-N on root vigor and rhizosphere pH of winter wheat seedlings under water culture.[Method]By selecting Hoagland's nutritional solution as cult...[Objective] The aim was to research the effect of concentration of NO-3-N on root vigor and rhizosphere pH of winter wheat seedlings under water culture.[Method]By selecting Hoagland's nutritional solution as cultural medium and winter wheat as material of experiment,on the basis,testing root vigor,nutrient solution NO-3 and change of pH values under the different level of disposal,such as high(containing NO-3-N 15 mmol/L),medium(containing NO-3-N 7.5 mmol/L)and lower(containing NO-3-N 2.5 mmol/L).[Result]The results of this research showed that the effect of different nitrogen level on the wastage of nutrient solution NO-3,the changes of pH values and root vigor is obvious under the hydroponics condition.[Conclusion]Though NO-3 is a safe nitrogen sources when it was supplied to plants too more,it would restrain assimilation on nitrate nitrogen farther,but when it was supplied to plants too little,it would lead to deficiency of NO-3 that plants uptake and decrease of root activity,so it isn't useful to wheat young seedling to absorb nitrogen nutrition.展开更多
The physiological responses of Paspalum vaginatum Sw. to Cd stress and its Cd accumulation characteristics were studied by investigating the effects of different concentrations of Cd on the growth, root vigor, leaf me...The physiological responses of Paspalum vaginatum Sw. to Cd stress and its Cd accumulation characteristics were studied by investigating the effects of different concentrations of Cd on the growth, root vigor, leaf membrane permeability, membrane lipid peroxidation, protective enzyme activity and Cd accumulation of P. vaginatum. When the Cd concentration was over 50.00 mg/kg, with the increased Cd concentration, the CAT activity declined significantly, the synergistic effect between SOD and CAT was weakened, the MDA content increased greatly, and the root vigor decreased, leading to inhibited growth of P. vaginatum. When the Cd concentration was in the range of 0-50 mg/kg, the root vigor of P. vaginatum did not decline obviously, the activity of protective enzymes (SOD and CAT) was enhanced, and the MDA accumulation and cell membrane permeability did not increase significantly, thus the damage of Cd to P. vaginatum was lighter. Roots of P. vaginatum showed strong enrichment capacity for Cd. When the Cd concentration was up to 200.00 mg/kg, the Cd contents in shoot and root of P. vaginatum reached 39.15 and 1 097.38 mg/kg, respectively. It suggests that in the concentration range of 0-50.00 mg/kg, P. vaginatum can make effective responses to Cd stress and grow normally, and it can be planted as a candidate material to remediate Cd-contaminated soil.展开更多
基金Supported by Key Scientific and Technological Project of Henan Province(072102150001)~~
文摘[Objective] The experiment aimed to study the growth characteristics of hydroponic bowl lotus. [Method] The lotus variety Hongxia was chosen as the experimental material. Two treatments, hydroponics and soil culture were set to measure their photosynthetic indices, chlorophyll content and root vigor, and to observe their leaf tissue structure and stomatal characteristics. [Result] The findings indicated that there are no differences in the leaf physiological indices between bowl lotus under hydroponics and soil culture, while the leaf stomata of hydroponic bowl lotus is bigger and its amount is larger than that of soil-culture bowl lotus. At the same time, the ratio of the palisade tissue thickness to spongy tissue thickness is small,and its leaf tissue structure is loose. The root vigor of hydroponic bowl lotus reached its summit earlier, then began to drop. Whereas, the root activity of soil-culture lotus sustained increasing, with vigorous growth. [Conclusion] Therefore, it indicated that hydroponic bowl lotus can adapt to the aquatic-culture environment well and quickly, meanwhile, it also enters into its aging period quickly and its growth cycle gets shorter.
基金Supported by the Key Programfromthe National Natural Science Foundation of China(30230230)the National Natural Science Foundation Agricultural Program of China(30070429)Scientific Research Program for Universities in Inner Mongolia Autonomous Region(NJZY07120)~~
文摘[Objective] The aim was to research the effect of concentration of NO-3-N on root vigor and rhizosphere pH of winter wheat seedlings under water culture.[Method]By selecting Hoagland's nutritional solution as cultural medium and winter wheat as material of experiment,on the basis,testing root vigor,nutrient solution NO-3 and change of pH values under the different level of disposal,such as high(containing NO-3-N 15 mmol/L),medium(containing NO-3-N 7.5 mmol/L)and lower(containing NO-3-N 2.5 mmol/L).[Result]The results of this research showed that the effect of different nitrogen level on the wastage of nutrient solution NO-3,the changes of pH values and root vigor is obvious under the hydroponics condition.[Conclusion]Though NO-3 is a safe nitrogen sources when it was supplied to plants too more,it would restrain assimilation on nitrate nitrogen farther,but when it was supplied to plants too little,it would lead to deficiency of NO-3 that plants uptake and decrease of root activity,so it isn't useful to wheat young seedling to absorb nitrogen nutrition.
文摘The physiological responses of Paspalum vaginatum Sw. to Cd stress and its Cd accumulation characteristics were studied by investigating the effects of different concentrations of Cd on the growth, root vigor, leaf membrane permeability, membrane lipid peroxidation, protective enzyme activity and Cd accumulation of P. vaginatum. When the Cd concentration was over 50.00 mg/kg, with the increased Cd concentration, the CAT activity declined significantly, the synergistic effect between SOD and CAT was weakened, the MDA content increased greatly, and the root vigor decreased, leading to inhibited growth of P. vaginatum. When the Cd concentration was in the range of 0-50 mg/kg, the root vigor of P. vaginatum did not decline obviously, the activity of protective enzymes (SOD and CAT) was enhanced, and the MDA accumulation and cell membrane permeability did not increase significantly, thus the damage of Cd to P. vaginatum was lighter. Roots of P. vaginatum showed strong enrichment capacity for Cd. When the Cd concentration was up to 200.00 mg/kg, the Cd contents in shoot and root of P. vaginatum reached 39.15 and 1 097.38 mg/kg, respectively. It suggests that in the concentration range of 0-50.00 mg/kg, P. vaginatum can make effective responses to Cd stress and grow normally, and it can be planted as a candidate material to remediate Cd-contaminated soil.