Root-knot nematodes(RKNs,Meloidogyne spp.) are obligate biotrophic parasites that settle close to the vascular tissues in plant roots.The diseases resulting from RKN infections cause serious damage to agricultural p...Root-knot nematodes(RKNs,Meloidogyne spp.) are obligate biotrophic parasites that settle close to the vascular tissues in plant roots.The diseases resulting from RKN infections cause serious damage to agricultural production worldwide.In the present paper,the resistance of Chinese leek(Allium tuberosum Rottler ex Sprengel) against RKNs,its suppressive effect on nematode disease,its nematicidal activity and its component profile were studied to identify an efficient disease control method.In soil heavily infected by nematodes,Chinese leek showed strong resistance to RKNs.Additionally,the gall indexes of cucumber plants rotated with Chinese leek and of tomato plants intercropped with Chinese leek were reduced by 70.2 and 41.1%,respectively.In a pot experiment,the gall indexes of Chinese leek extract-treated tomato and cucumber plants were reduced by 88.9 and 75.9%,respectively.In an in vitro experiment,the mortality rate of a RKN(Meloidogyne incognita J2) treated with Chinese leek extract was significantly higher than that of the control.The gas chromatography-mass spectrometry(GC-MS) analysis revealed that glycosides,carboxylic acids,ketones and organic sulfides are the main components in the Chinese leek extract.This study revealed that Chinese leek possesses a high resistance to RKNs,has strong nematicidal activity against M.incognita and can significantly reduce the incidence of disease caused by nematodes.展开更多
Cellulosic bioethanol produced from non-edible plants reduces potential food-fuel competition and, as such, is receiving increasing attention. In the raw material production of cellulosic bioethanol, the aboveground b...Cellulosic bioethanol produced from non-edible plants reduces potential food-fuel competition and, as such, is receiving increasing attention. In the raw material production of cellulosic bioethanol, the aboveground biomass of plants is entirely harvested;consequently, the plant roots represent the major source of organic matter incorporated into the soil. We selected Erianthus and Napier grass as the raw materials for cultivation in Asia. However, information about whether these 2 species provide sufficient root volume to sustain soil fertility is limited. Therefore, we examined the spatial distribution of the roots of these 2 plants, and quantified root mass and length. Erianthus and Napier grass were either grown in fields or greenhouses in Tokyo (Japan) and Lampung (Indonesia), and then their roots were exposed from adjacent soil profiles. Both species developed large, deep roots, penetrating 2.0-2.6 m deep into the soil. Root depth indexes showed that the roots of both species penetrated much deeper into the soil compared to monocot crop species, being more comparable to dicot species. Erianthus developed a root mass and length of 384-850 g·m-2 and 28.8-35.8 km·m-2, while the values for Napier grass were 183-448 g·m-2 and 15.6-43.6 km·m-2, respectively. These values exceeded the maximum values previously recorded for common crop species. Our study confirmed that Erianthus and Napier grass develop deep root systems, with substantially large biomass;hence, we suggest that both plants supply root biomass in large quantities, representing possible major sources of soil organic matter.展开更多
This paper considers practical, high-order methods for the iterative location of the roots of nonlinear equations, one at a time. Special attention is being paid to algorithms also applicable to multiple roots of init...This paper considers practical, high-order methods for the iterative location of the roots of nonlinear equations, one at a time. Special attention is being paid to algorithms also applicable to multiple roots of initially known and unknown multiplicity. Efficient methods are presented in this note for the evaluation of the multiplicity index of the root being sought. Also reviewed here are super-linear and super-cubic methods that converge contrarily or alternatingly, enabling us, not only to approach the root briskly and confidently but also to actually bound and bracket it as we progress.展开更多
基金supported by the National Natural Science Foundation of China(31272151,31471864)the Agro-scientific Research in the Public Interest,China(201103018)the China Agriculture Research System(CARS-25)
文摘Root-knot nematodes(RKNs,Meloidogyne spp.) are obligate biotrophic parasites that settle close to the vascular tissues in plant roots.The diseases resulting from RKN infections cause serious damage to agricultural production worldwide.In the present paper,the resistance of Chinese leek(Allium tuberosum Rottler ex Sprengel) against RKNs,its suppressive effect on nematode disease,its nematicidal activity and its component profile were studied to identify an efficient disease control method.In soil heavily infected by nematodes,Chinese leek showed strong resistance to RKNs.Additionally,the gall indexes of cucumber plants rotated with Chinese leek and of tomato plants intercropped with Chinese leek were reduced by 70.2 and 41.1%,respectively.In a pot experiment,the gall indexes of Chinese leek extract-treated tomato and cucumber plants were reduced by 88.9 and 75.9%,respectively.In an in vitro experiment,the mortality rate of a RKN(Meloidogyne incognita J2) treated with Chinese leek extract was significantly higher than that of the control.The gas chromatography-mass spectrometry(GC-MS) analysis revealed that glycosides,carboxylic acids,ketones and organic sulfides are the main components in the Chinese leek extract.This study revealed that Chinese leek possesses a high resistance to RKNs,has strong nematicidal activity against M.incognita and can significantly reduce the incidence of disease caused by nematodes.
文摘Cellulosic bioethanol produced from non-edible plants reduces potential food-fuel competition and, as such, is receiving increasing attention. In the raw material production of cellulosic bioethanol, the aboveground biomass of plants is entirely harvested;consequently, the plant roots represent the major source of organic matter incorporated into the soil. We selected Erianthus and Napier grass as the raw materials for cultivation in Asia. However, information about whether these 2 species provide sufficient root volume to sustain soil fertility is limited. Therefore, we examined the spatial distribution of the roots of these 2 plants, and quantified root mass and length. Erianthus and Napier grass were either grown in fields or greenhouses in Tokyo (Japan) and Lampung (Indonesia), and then their roots were exposed from adjacent soil profiles. Both species developed large, deep roots, penetrating 2.0-2.6 m deep into the soil. Root depth indexes showed that the roots of both species penetrated much deeper into the soil compared to monocot crop species, being more comparable to dicot species. Erianthus developed a root mass and length of 384-850 g·m-2 and 28.8-35.8 km·m-2, while the values for Napier grass were 183-448 g·m-2 and 15.6-43.6 km·m-2, respectively. These values exceeded the maximum values previously recorded for common crop species. Our study confirmed that Erianthus and Napier grass develop deep root systems, with substantially large biomass;hence, we suggest that both plants supply root biomass in large quantities, representing possible major sources of soil organic matter.
文摘This paper considers practical, high-order methods for the iterative location of the roots of nonlinear equations, one at a time. Special attention is being paid to algorithms also applicable to multiple roots of initially known and unknown multiplicity. Efficient methods are presented in this note for the evaluation of the multiplicity index of the root being sought. Also reviewed here are super-linear and super-cubic methods that converge contrarily or alternatingly, enabling us, not only to approach the root briskly and confidently but also to actually bound and bracket it as we progress.