The security challenges from room and pillar gobs include land subsidence, spontaneous combustion of coal pillars and mine flood caused by gob water. To explore the instability mechanism of room and pillar gob, we est...The security challenges from room and pillar gobs include land subsidence, spontaneous combustion of coal pillars and mine flood caused by gob water. To explore the instability mechanism of room and pillar gob, we established a mechanical model of elastic plate on elastic foundation in which pillars and hard roofs were considered as continuous Winkler foundations and elastic plates, respectively. The synergetic instability of pillar and roof system was analyzed based on plate bending theory and catastrophe theory. In addition, mechanical conditions and math criterion of roof failure and overall instability of coal pillar and roof system were given. Through analyzing both advantages and disadvantages of some technologies such as induced caving, filling, gob sealing and isolation, we presented a new filling method named box-filling, in view of box foundation theory, to control the disasters of ground collapse, water inrush and mine fire. In a gob's treatment project in Ordos, safety assessment and filling design of a room and pillar gob have been done by the mechanical model. The results show that the gob will collapse when the pillars' average yield band is wider than 0.93 m, and box-filling can control land collapse, mine flood and mine fire economically and efficiently. So it is worth to study further and popularize.展开更多
Based on the open stope method,the stability of the gob area was decided bypillars and stiff roof.Therefore,it was dispensable to leave pillars with long-term strengthand enough size to support the stiff roof during m...Based on the open stope method,the stability of the gob area was decided bypillars and stiff roof.Therefore,it was dispensable to leave pillars with long-term strengthand enough size to support the stiff roof during mining activities.Based on the miningconditions of Baixiang wollastonite mine in Changxing County of Zhejiang,while consideringpillars with different shape,irregular size,and distribution,the load imposed on the pillarswas analyzed,and the safety coefficient was calculated in order to determine theirsupport status.The strength of stiff roof was calculated by means of analytical solution-theory of rectangle thin plate rested on elastic foundation.The system stability ofpillar and stiff roof was analyzed according to the proportion of the total cross section areaof pillars to the stiff roof area above the mined area.展开更多
Energy disaster is one of the major obstacles in the progress of human society. There are some on-going researches to overcome this for a sustainable environment. Green roof system is one of them which assist to reduc...Energy disaster is one of the major obstacles in the progress of human society. There are some on-going researches to overcome this for a sustainable environment. Green roof system is one of them which assist to reduce energy consumption of the buildings. The green roof system for a building involves a green roof that is partially or completely covered with vegetation and plant over a waterproofing membrane. Green roofs provide shade and remove heat from the air through evapotranspiration, reducing temperatures of the roof surface and the surrounding air. This paper reports the thermal performance of hybrid green roof system for a hot and humid subtropical climatic zone in Queensland, Australia. A thermal model is developed for the green roof system using ANSYS Fluent. Data were collected from two modelled rooms, one connected with green roof system and other non-green roof system. The rooms were built from two shipping containers and?installed at Central Queensland University, Rockhampton, Australia. Impact of air temperature on room cooling performance is assessed in this study. A temperature reduction of 0.95°C was observed in the room with green roof which will save energy cost in buildings. Only 1.7% variation in temperature was found in numerical result in comparison with experimental result.展开更多
Considering the characteristics of deep thick top coal roadway,in which the high ground stress,coal seam with low strength,and a large range of surrounding rock fragmentation,the pressure relief anchor box beam suppor...Considering the characteristics of deep thick top coal roadway,in which the high ground stress,coal seam with low strength,and a large range of surrounding rock fragmentation,the pressure relief anchor box beam support system with high strength is developed.The high-strength bearing characteristics and coupling yielding support mechanism of this support system are studied by the mechanical tests of composite members and the combined support system.The test results show that under the coupling effect of support members,the peak stress of the box-shaped support beam in the anchor box beam is reduced by 21.9%,and the average deformation is increased by 135.0%.The ultimate bending bearing capacity of the box-shaped support beam is 3.5 times that of traditional channel beam.The effective compressive stress zone applied by the high prestressed cable is expanded by 26.4%.On this basis,the field support comparison test by the anchor channel beam,the anchor I-shaped beam and the anchor box beam are carried out.Compared with those of the previous two,the surrounding rock convergence of the latter is decreased by 41.2%and 22.2%,respectively.The field test verifies the effectiveness of the anchor box beam support system.展开更多
In order to accurately estimate the runoff coefficient for the quantity assessment of the roof rainwater harvesting system RRHS great differences in the value of event runoff coefficient ψERC were observed by field m...In order to accurately estimate the runoff coefficient for the quantity assessment of the roof rainwater harvesting system RRHS great differences in the value of event runoff coefficient ψERC were observed by field monitoring under different roof types roof slope and material and diverse rainfall distributions rainfall depth and intensity in three years 2010 to 2012 in Handan Hebei China.The results indicate that the distribution of ψERC is more highly correlated with the event rainfall depth than other factors. The relationship between ψERC and the rainfall depth can be well represented by the piecewise linear function.Further based on the daily rainfall data over the period from 1960 to 2008 the value of the annual runoff coefficient ψARC is calculated. Although the total rainfall depth in each year is different ψARC in Handan can be considered as a constant 0.62 approximately. The results can be used for the quantity assessment and performance analysis of the RRHS.展开更多
Based on the special site conditions of roof gardens,it was put forward to introduce automatic water-saving irrigation system into the roof garden constructions,such as the solar energy and microcomputer auto water-sa...Based on the special site conditions of roof gardens,it was put forward to introduce automatic water-saving irrigation system into the roof garden constructions,such as the solar energy and microcomputer auto water-saving irrigation system,aiming to solve the photosynthetic noon break phenomenon of plants and relieve the stress from high temperature.展开更多
Due to the rapid industrialization and the development of the economy in each country,the demand for energy is increasing rapidly.The coal mines have to pace up the mining operations with large production to meet the ...Due to the rapid industrialization and the development of the economy in each country,the demand for energy is increasing rapidly.The coal mines have to pace up the mining operations with large production to meet the energy demand.This requirement has led underground coal mines to go deeper with more difficult conditions,especially the mining hazards,such as large deformations,rockburst,coal burst,roof collapse,to name a few.Therefore,this study aims at investigating and predicting the stability of the roadways in underground coal mines exploited by longwall mining method,using various novel intelligent techniques based on physics-based optimization algorithms(i.e.multi-verse optimizer(MVO),equilibrium optimizer(EO),simulated annealing(SA),and Henry gas solubility optimization(HGSO)) and adaptive neuro-fuzzy inference system(ANFIS),named as MVO-ANFIS,EO-ANFIS,SA-ANFIS and HGSOANFIS models.Accordingly,162 roof displacement events were investigated based on the characteristics of surrounding rocks,such as cohesion,Young’s modulus,density,shear strength,angle of internal friction,uniaxial compressive strength,quench durability index,rock mass rating,and tensile strength.The MVO-ANFIS,EO-ANFIS,SA-ANFIS and HGSO-ANFIS models were then developed and evaluated based on this dataset for predicting roof displacements in roadways of underground mines.The results indicated that the proposed intelligent techniques could accurately predict the roof displacements in roadways of underground mines with an accuracy in the range of 83%-92%.Remarkably,the SA-ANFIS model yielded the most dominant accuracy(i.e.92%).Based on the accurate predictions from the proposed techniques,the reinforced solutions can be timely suggested to ensure the stability of roadways during exploiting coal,especially in the underground coal mines exploited by the longwall mining.展开更多
With the help of similar material simulation test,time series system for induced caving of roof in continuous mining under complex backfill in ore body No.92 of Tongkeng Tin Mine was studied. According to the similari...With the help of similar material simulation test,time series system for induced caving of roof in continuous mining under complex backfill in ore body No.92 of Tongkeng Tin Mine was studied. According to the similarity theory,a two-dimensional similar simulation test-bed was constructed. The stress and displacement that change along with the advance of mining were acquired and analyzed automatically by data system. The processes of continuous mining of ore-block in 5 intervals and artificial induced caving of roof were simulated. The results of the test show that ore body remained as safety roof in thickness of 15 m guarantees the safe advance of stoping work face. Caving of safety roof puts in practice at the first two mining intervals when the third interval of continuous mining is finished,and one interval as the safety distance should be kept all the time between stopping and caving. While mining in the last interval,pre-slotting should be implemented first of all,and the roof of the last two mining intervals is caved simultaneously. Only this kind of time series system can be an efficient and safe way for induced caving of roof in continuous mining.展开更多
In order to solve the surrounding rock control problem of large section gangue replacement roadway under complicated conditions, this paper analyzed the impact to the roadway controlling produced by the geological con...In order to solve the surrounding rock control problem of large section gangue replacement roadway under complicated conditions, this paper analyzed the impact to the roadway controlling produced by the geological conditions such as high ground stress, folded structure tilted roof asymmetry and soft wall rock, and built the tilt layered roof structural mechanics model to clarify the increase span mechanism of the weak coal instability. Then, we proposed the combined control system including roof inclined truss cable, coal-side cable-channel steel and intensive bolt support. And then by building the structural mechanics model of roof inclined truss cable system, the support principle was described. Besides, according to this model, we deduced the calculation formula of cable anchoring force and its tensile stress. Finally surrounding rock control technology of large section roadway in fold coal pillar area was formed. Field practice shows that the greatest roof convergence of gangue replacement roadway is 158 mm and coal-side deformation is 243 mm. Roadway deformation is controlled effectively and technical support is provided for replacement mining.展开更多
Lightweight roof greening is an important way for improving urban ecological environment and has good ecological and social benefits, but the investment is- too-high for the investors. Therefore, it is necessary to im...Lightweight roof greening is an important way for improving urban ecological environment and has good ecological and social benefits, but the investment is- too-high for the investors. Therefore, it is necessary to improve the system of lightweight roof greening. This study introduced a lightweight roof greening mode with low cost, simple construction, rapid formation, good economic benefit and convenient curing.展开更多
Based on the similarity theory,a scale effect model of the spraying water cooling system of Shanghai expo Theme Pavilion's roof was set up.According to the typical weather conditions in Shanghai city,different mod...Based on the similarity theory,a scale effect model of the spraying water cooling system of Shanghai expo Theme Pavilion's roof was set up.According to the typical weather conditions in Shanghai city,different models were analyzed on solar radiation,and different heat transfer amount was obtained.And the following conclusions could be made:At the sunny day of summer in Shanghai,the temperature of inner roof with sprinkling system descended about 3 ℃,and the air conditioning load of the whole Theme Pavilion descend more than 320 kW.展开更多
Siphonic roof drainage systems (SRDS’s) have been widespread used now for approximately 40 years and are an efficient method of removing rainwater rapidly from roofs. SRDS’s are designed to run full-bore, resulting ...Siphonic roof drainage systems (SRDS’s) have been widespread used now for approximately 40 years and are an efficient method of removing rainwater rapidly from roofs. SRDS’s are designed to run full-bore, resulting in sub-atmospheric system pressures with high hydraulic driving heads and higher system flow velocities than conventionally guttered systems. Hence, SRDS’s normally require far fewer downpipes, and the depressurised conditions also mean that much of the collection pipework can be routed at a high level, thus reducing the extent of any underground pipework. But, they work properly at only one roof run-off rate and therefore suffer from sizing and operational problems including noise and vibration which limit their performance and adoption rate. Climate change is creating situations where normal ranges of rainfall intensity are being frequently exceeded, so the typical:storm ratios (rTS) are large increasing. Current SRDS’s typically operate within a small rTS range of 2. This may have an impact on the future uptake of SRDS’s. This paper describes the development of a novel SRDS which includes a small mobile cap at the roof of outlet appears to offer benefits and avoids sizing problems associated with current SRDS’s. The cap has the potential to avoid noise associated with making and breaking siphonic action through flow modulation. Laboratory scale tests demonstrate the basic feasibility of the cap system and indicate that the cap functions reliably. This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. Basic on sizing and design optimiza-tion factors are suggested. The rTS range is increased from approximately 2 to approximately 6.展开更多
One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operati...One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules.展开更多
With the development of the times,the contradiction between human living and the natural environment becomes increasingly prominent.People pay more and more attention to the protection of the natural environment while...With the development of the times,the contradiction between human living and the natural environment becomes increasingly prominent.People pay more and more attention to the protection of the natural environment while improving the living standard.While,the emergence of the ecological roof can greatly improve the urban ecological environment and make full use of the architectural space.On the premise of analyzing the current status and significance of research on the ecological roof,this paper puts forward some ideas about the research on the design of the ecological roof with intelligent management system which can be used as a reference for the design of the ecological roof in the future,based on giving full consideration to the factors of ecological energy-saving,environmental protection,economic development,etc.,and summarizing the shortcomings of the traditional ecological roof.展开更多
The stability and fracture behavior of a goaf roof beneath an open-pit bench are critical concerns,especially under impact loading.However,the effect of the thickness-to-span ratio on dynamic failure modes remains lar...The stability and fracture behavior of a goaf roof beneath an open-pit bench are critical concerns,especially under impact loading.However,the effect of the thickness-to-span ratio on dynamic failure modes remains largely unexplored,as existing research focuses mainly on static stability.Energy dissipation and instability evolution under impact loading require further study.To address this gap,this study conducts drop-weight impact experiments on specimens with circular perforations,complemented by numerical simulations.By integrating dimensional analysis,cusp catastrophe theory,and strength reduction techniques,the dynamic instability mechanism of goaf roofs with varying thickness-to-span ratios is revealed.Results show that the thickness-to-span ratio significantly influences energy accumulation and dissipation during roof failure.A higher ratio increases both the magnitude and rate of energy dissipation,particularly during crack initiation and stable propagation,while its impact diminishes in the final failure stage.Optimizing the thickness-to-span ratio within a critical range enhances structural stability,improving the safety factor by up to 83%.However,beyond a certain threshold,additional thickness yields diminishing benefits.This study provides new insights into the energy-based instability mechanism of goaf roofs under impact loads,establishing a theoretical foundation for early warning systems and optimized safety design.展开更多
The design of roof frame is one of the most important parts of LNG tank design.In China,however,the calculation of roof frame system of extra-large LNG tanks is currently faced with a series of problems.For example,th...The design of roof frame is one of the most important parts of LNG tank design.In China,however,the calculation of roof frame system of extra-large LNG tanks is currently faced with a series of problems.For example,there is no united yardstick on buckling characteristic value,the calculation is based on many assumptions,and the calculation is inconsistent with domestic specifications and stipulations.In view of these problems,the material non-linearity and structural non-linearity were introduced and the initial defect was taken into consideration.Then,the large non-linear finite element calculation software ABAQUS was adopted to carry out modeling on the roof frame and liner system of extra-large LNG tanks and calculate and analyze the force applied on them and their stability.Finally,a complete set of design algorithm for the roof frame and liner system of extra-large LNG tanks was established and applied to the design of a certain LNG tank(20×10^(4)m^(3))in China.It is indicated that this design algorithm can simulate the actual situations accurately.This design algorithm is structurally composed of shell units and beam units,and it is connected in the pattern of common node.Besides,force calculation is conducted in 10 operational modes and the buckling calculation in 7 operational modes,including all operational modes in the construction process of roof frame and liner system of LNG tanks.It is also revealed that the maximum stress on the roof frame is 125.7 MPa,that on the liner is 101.4 MPa and the minimum safety coefficient used for buckling calculation is 2.57.Under this system,the force and stability of the roof frame of LNG tanks are satisfactory.The research results can be used as reference for relevant design and calculation.展开更多
This study analyzes the energy impact of applying green roofs on flat roofs of existing buildings,assessing their potential to reduce the demand for non-renewable primary energy for heating and cooling.Through dynamic...This study analyzes the energy impact of applying green roofs on flat roofs of existing buildings,assessing their potential to reduce the demand for non-renewable primary energy for heating and cooling.Through dynamic numerical simulations conducted on two real buildings located near Florence,Italy,and modeled in 130 different European locations,with a particular focus on the Mediterranean climate,it was possible to quantify the energy benefits derived from the application of green roofs on existing structures.The results show that,while the effect on heating is limited,with an average reduction in energy demand of only a few percentage points,the impact on cooling is significantly more pronounced,with average savings of 20%in non-renewable primary energy,particularly in Mediterranean climates with high CDD(cooling degree days)values.The study confirms that green roofs can be an effective solution to improve the energy efficiency of existing buildings with flat roofs in the Mediterranean climate,in line with European goals for reducing CO_(2) emissions and promoting renewable energy.展开更多
As complex and diverse ecosystems,cities encounter numerous challenges posed by both nature and humanity.Architecture,serving as the framework and texture of the city,has undoubtedly emerged as a crucial guide in addr...As complex and diverse ecosystems,cities encounter numerous challenges posed by both nature and humanity.Architecture,serving as the framework and texture of the city,has undoubtedly emerged as a crucial guide in addressing urban resilience issues.Roof greening and vertical greening of buildings,as ecofriendly urban green infrastructures,hold significant potential for mitigating these challenges.This paper explores the methods and strategies for implementing roof greening and vertical greening as solutions to enhance urban resilience.The objective is to offer valuable insights for sustainable urban development,encourage the widespread adoption of these greening techniques in urban construction,and ultimately strengthen urban resilience.展开更多
Phillip Katuve,a landlord who owns a six-storey apartment complex in Kileleshwa,an upmarket Nairobi suburb,embraced green roofing two years ago.His building now boasts a vibrant rooftop garden with integrated solar pa...Phillip Katuve,a landlord who owns a six-storey apartment complex in Kileleshwa,an upmarket Nairobi suburb,embraced green roofing two years ago.His building now boasts a vibrant rooftop garden with integrated solar panels,supplying energy to all 24 units.“Initially,the idea sounded expensive,but the long-term benefits have been remarkable,”said Katuve.展开更多
The present paper investigates the methods for estimating the maximum(positive)and the minimum(negative)peak wind force coefficients on domed free roofs based on the quasi-steady theory and the peak factor method,in w...The present paper investigates the methods for estimating the maximum(positive)and the minimum(negative)peak wind force coefficients on domed free roofs based on the quasi-steady theory and the peak factor method,in which the experimental results obtained from our previous studies(2019,2025)are used.Focus is on the distributions of the peak wind force coefficients along the centerline parallel to the wind direction considering that domed free roof is an axisymmetric body.Empirical formulas are provided to the distributions of mean wind force coefficient,RMS(root mean square)fluctuating wind force coefficient and peak factors as a function of the rise/span ratio of the roof and the turbulence intensity of the approach flow in the along-wind direction at the mean roof height.The proposed methods are validated by the experimental results for the peak wind force coefficients.The methods would provide useful information to structural engineers when estimating the design wind loads on cladding/components of domed free roofs.展开更多
基金provided by the National Natural Science Foundation of China (No. 41071273)
文摘The security challenges from room and pillar gobs include land subsidence, spontaneous combustion of coal pillars and mine flood caused by gob water. To explore the instability mechanism of room and pillar gob, we established a mechanical model of elastic plate on elastic foundation in which pillars and hard roofs were considered as continuous Winkler foundations and elastic plates, respectively. The synergetic instability of pillar and roof system was analyzed based on plate bending theory and catastrophe theory. In addition, mechanical conditions and math criterion of roof failure and overall instability of coal pillar and roof system were given. Through analyzing both advantages and disadvantages of some technologies such as induced caving, filling, gob sealing and isolation, we presented a new filling method named box-filling, in view of box foundation theory, to control the disasters of ground collapse, water inrush and mine fire. In a gob's treatment project in Ordos, safety assessment and filling design of a room and pillar gob have been done by the mechanical model. The results show that the gob will collapse when the pillars' average yield band is wider than 0.93 m, and box-filling can control land collapse, mine flood and mine fire economically and efficiently. So it is worth to study further and popularize.
文摘Based on the open stope method,the stability of the gob area was decided bypillars and stiff roof.Therefore,it was dispensable to leave pillars with long-term strengthand enough size to support the stiff roof during mining activities.Based on the miningconditions of Baixiang wollastonite mine in Changxing County of Zhejiang,while consideringpillars with different shape,irregular size,and distribution,the load imposed on the pillarswas analyzed,and the safety coefficient was calculated in order to determine theirsupport status.The strength of stiff roof was calculated by means of analytical solution-theory of rectangle thin plate rested on elastic foundation.The system stability ofpillar and stiff roof was analyzed according to the proportion of the total cross section areaof pillars to the stiff roof area above the mined area.
文摘Energy disaster is one of the major obstacles in the progress of human society. There are some on-going researches to overcome this for a sustainable environment. Green roof system is one of them which assist to reduce energy consumption of the buildings. The green roof system for a building involves a green roof that is partially or completely covered with vegetation and plant over a waterproofing membrane. Green roofs provide shade and remove heat from the air through evapotranspiration, reducing temperatures of the roof surface and the surrounding air. This paper reports the thermal performance of hybrid green roof system for a hot and humid subtropical climatic zone in Queensland, Australia. A thermal model is developed for the green roof system using ANSYS Fluent. Data were collected from two modelled rooms, one connected with green roof system and other non-green roof system. The rooms were built from two shipping containers and?installed at Central Queensland University, Rockhampton, Australia. Impact of air temperature on room cooling performance is assessed in this study. A temperature reduction of 0.95°C was observed in the room with green roof which will save energy cost in buildings. Only 1.7% variation in temperature was found in numerical result in comparison with experimental result.
基金Project(2023YFC2907600)supported by the National Key Research and Development Program of ChinaProjects(42277174,42477166)supported by the National Natural Science Foundation of China+1 种基金Project(2024JCCXSB01)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(KFJJ24-01M)supported by the State Key Laboratory of Explosion Science and Safety Protection,Beijing Institute of Technology,China。
文摘Considering the characteristics of deep thick top coal roadway,in which the high ground stress,coal seam with low strength,and a large range of surrounding rock fragmentation,the pressure relief anchor box beam support system with high strength is developed.The high-strength bearing characteristics and coupling yielding support mechanism of this support system are studied by the mechanical tests of composite members and the combined support system.The test results show that under the coupling effect of support members,the peak stress of the box-shaped support beam in the anchor box beam is reduced by 21.9%,and the average deformation is increased by 135.0%.The ultimate bending bearing capacity of the box-shaped support beam is 3.5 times that of traditional channel beam.The effective compressive stress zone applied by the high prestressed cable is expanded by 26.4%.On this basis,the field support comparison test by the anchor channel beam,the anchor I-shaped beam and the anchor box beam are carried out.Compared with those of the previous two,the surrounding rock convergence of the latter is decreased by 41.2%and 22.2%,respectively.The field test verifies the effectiveness of the anchor box beam support system.
基金The National Science and Technology Major Project of China(No.2012ZX07203-003)the Major Basic Research Program of Hebei Province(No.12966738D)the Natural Science Foundation of Hebei Province(No.E2014402101)
文摘In order to accurately estimate the runoff coefficient for the quantity assessment of the roof rainwater harvesting system RRHS great differences in the value of event runoff coefficient ψERC were observed by field monitoring under different roof types roof slope and material and diverse rainfall distributions rainfall depth and intensity in three years 2010 to 2012 in Handan Hebei China.The results indicate that the distribution of ψERC is more highly correlated with the event rainfall depth than other factors. The relationship between ψERC and the rainfall depth can be well represented by the piecewise linear function.Further based on the daily rainfall data over the period from 1960 to 2008 the value of the annual runoff coefficient ψARC is calculated. Although the total rainfall depth in each year is different ψARC in Handan can be considered as a constant 0.62 approximately. The results can be used for the quantity assessment and performance analysis of the RRHS.
文摘Based on the special site conditions of roof gardens,it was put forward to introduce automatic water-saving irrigation system into the roof garden constructions,such as the solar energy and microcomputer auto water-saving irrigation system,aiming to solve the photosynthetic noon break phenomenon of plants and relieve the stress from high temperature.
基金funded by the Natural Science Foundation of Hunan Province,China(Grant No.2021JJ30679)the Center for Mining,Electro-Mechanical Research,Hanoi University of Mining and Geology,Hanoi,Vietnam,for the kind supports。
文摘Due to the rapid industrialization and the development of the economy in each country,the demand for energy is increasing rapidly.The coal mines have to pace up the mining operations with large production to meet the energy demand.This requirement has led underground coal mines to go deeper with more difficult conditions,especially the mining hazards,such as large deformations,rockburst,coal burst,roof collapse,to name a few.Therefore,this study aims at investigating and predicting the stability of the roadways in underground coal mines exploited by longwall mining method,using various novel intelligent techniques based on physics-based optimization algorithms(i.e.multi-verse optimizer(MVO),equilibrium optimizer(EO),simulated annealing(SA),and Henry gas solubility optimization(HGSO)) and adaptive neuro-fuzzy inference system(ANFIS),named as MVO-ANFIS,EO-ANFIS,SA-ANFIS and HGSOANFIS models.Accordingly,162 roof displacement events were investigated based on the characteristics of surrounding rocks,such as cohesion,Young’s modulus,density,shear strength,angle of internal friction,uniaxial compressive strength,quench durability index,rock mass rating,and tensile strength.The MVO-ANFIS,EO-ANFIS,SA-ANFIS and HGSO-ANFIS models were then developed and evaluated based on this dataset for predicting roof displacements in roadways of underground mines.The results indicated that the proposed intelligent techniques could accurately predict the roof displacements in roadways of underground mines with an accuracy in the range of 83%-92%.Remarkably,the SA-ANFIS model yielded the most dominant accuracy(i.e.92%).Based on the accurate predictions from the proposed techniques,the reinforced solutions can be timely suggested to ensure the stability of roadways during exploiting coal,especially in the underground coal mines exploited by the longwall mining.
基金Project(50490274) supported by the National Natural Science Foundation of ChinaProject(20050533035) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(1343-77236) supported by the Doctor Degree Paper Innovation Engineering of Central South University, China
文摘With the help of similar material simulation test,time series system for induced caving of roof in continuous mining under complex backfill in ore body No.92 of Tongkeng Tin Mine was studied. According to the similarity theory,a two-dimensional similar simulation test-bed was constructed. The stress and displacement that change along with the advance of mining were acquired and analyzed automatically by data system. The processes of continuous mining of ore-block in 5 intervals and artificial induced caving of roof were simulated. The results of the test show that ore body remained as safety roof in thickness of 15 m guarantees the safe advance of stoping work face. Caving of safety roof puts in practice at the first two mining intervals when the third interval of continuous mining is finished,and one interval as the safety distance should be kept all the time between stopping and caving. While mining in the last interval,pre-slotting should be implemented first of all,and the roof of the last two mining intervals is caved simultaneously. Only this kind of time series system can be an efficient and safe way for induced caving of roof in continuous mining.
文摘In order to solve the surrounding rock control problem of large section gangue replacement roadway under complicated conditions, this paper analyzed the impact to the roadway controlling produced by the geological conditions such as high ground stress, folded structure tilted roof asymmetry and soft wall rock, and built the tilt layered roof structural mechanics model to clarify the increase span mechanism of the weak coal instability. Then, we proposed the combined control system including roof inclined truss cable, coal-side cable-channel steel and intensive bolt support. And then by building the structural mechanics model of roof inclined truss cable system, the support principle was described. Besides, according to this model, we deduced the calculation formula of cable anchoring force and its tensile stress. Finally surrounding rock control technology of large section roadway in fold coal pillar area was formed. Field practice shows that the greatest roof convergence of gangue replacement roadway is 158 mm and coal-side deformation is 243 mm. Roadway deformation is controlled effectively and technical support is provided for replacement mining.
基金Supported by Science and Technology Planning Project of Guangdong Province,China(No.2015B090904008)Soft Science Planning Project of Guangdong Province(2014B090903015)Ecological Environment Construction and Protection(Techand)Engineering and Technological Research Center(YKHZZ[2013]1589)~~
文摘Lightweight roof greening is an important way for improving urban ecological environment and has good ecological and social benefits, but the investment is- too-high for the investors. Therefore, it is necessary to improve the system of lightweight roof greening. This study introduced a lightweight roof greening mode with low cost, simple construction, rapid formation, good economic benefit and convenient curing.
基金Supported by Innovation Program of Shanghai Municipal Education Commission(09YZ229)Leading Academic Discipline Project of Shanghai Municipal Education Commission(J50502)+2 种基金Fund of National Natural Science Foundation of China(30771245)National Natural Science Foundation of China(50478113)the specific project for the Shanghai World Expo with main scientific and technology(06dz05809)
文摘Based on the similarity theory,a scale effect model of the spraying water cooling system of Shanghai expo Theme Pavilion's roof was set up.According to the typical weather conditions in Shanghai city,different models were analyzed on solar radiation,and different heat transfer amount was obtained.And the following conclusions could be made:At the sunny day of summer in Shanghai,the temperature of inner roof with sprinkling system descended about 3 ℃,and the air conditioning load of the whole Theme Pavilion descend more than 320 kW.
文摘Siphonic roof drainage systems (SRDS’s) have been widespread used now for approximately 40 years and are an efficient method of removing rainwater rapidly from roofs. SRDS’s are designed to run full-bore, resulting in sub-atmospheric system pressures with high hydraulic driving heads and higher system flow velocities than conventionally guttered systems. Hence, SRDS’s normally require far fewer downpipes, and the depressurised conditions also mean that much of the collection pipework can be routed at a high level, thus reducing the extent of any underground pipework. But, they work properly at only one roof run-off rate and therefore suffer from sizing and operational problems including noise and vibration which limit their performance and adoption rate. Climate change is creating situations where normal ranges of rainfall intensity are being frequently exceeded, so the typical:storm ratios (rTS) are large increasing. Current SRDS’s typically operate within a small rTS range of 2. This may have an impact on the future uptake of SRDS’s. This paper describes the development of a novel SRDS which includes a small mobile cap at the roof of outlet appears to offer benefits and avoids sizing problems associated with current SRDS’s. The cap has the potential to avoid noise associated with making and breaking siphonic action through flow modulation. Laboratory scale tests demonstrate the basic feasibility of the cap system and indicate that the cap functions reliably. This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. Basic on sizing and design optimiza-tion factors are suggested. The rTS range is increased from approximately 2 to approximately 6.
文摘One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules.
文摘With the development of the times,the contradiction between human living and the natural environment becomes increasingly prominent.People pay more and more attention to the protection of the natural environment while improving the living standard.While,the emergence of the ecological roof can greatly improve the urban ecological environment and make full use of the architectural space.On the premise of analyzing the current status and significance of research on the ecological roof,this paper puts forward some ideas about the research on the design of the ecological roof with intelligent management system which can be used as a reference for the design of the ecological roof in the future,based on giving full consideration to the factors of ecological energy-saving,environmental protection,economic development,etc.,and summarizing the shortcomings of the traditional ecological roof.
基金support from the Natural Science Foundation of Jiangsu Province(Grant No.BK20242059)the Collaborative Innovation Center for Prevention and Control of Mountain Geological Hazards of Zhejiang Province(PCMGH-2023-02)the opening fund of State Key Laboratory of Coal Mine Disaster Dynamics and Control(2011DA105827-FW202209)are gratefully acknowledged.
文摘The stability and fracture behavior of a goaf roof beneath an open-pit bench are critical concerns,especially under impact loading.However,the effect of the thickness-to-span ratio on dynamic failure modes remains largely unexplored,as existing research focuses mainly on static stability.Energy dissipation and instability evolution under impact loading require further study.To address this gap,this study conducts drop-weight impact experiments on specimens with circular perforations,complemented by numerical simulations.By integrating dimensional analysis,cusp catastrophe theory,and strength reduction techniques,the dynamic instability mechanism of goaf roofs with varying thickness-to-span ratios is revealed.Results show that the thickness-to-span ratio significantly influences energy accumulation and dissipation during roof failure.A higher ratio increases both the magnitude and rate of energy dissipation,particularly during crack initiation and stable propagation,while its impact diminishes in the final failure stage.Optimizing the thickness-to-span ratio within a critical range enhances structural stability,improving the safety factor by up to 83%.However,beyond a certain threshold,additional thickness yields diminishing benefits.This study provides new insights into the energy-based instability mechanism of goaf roofs under impact loads,establishing a theoretical foundation for early warning systems and optimized safety design.
基金Project supported by the Special and Significant Project of China National Offshore Oil Corporation“Study on the design of full-containment large LNG storage tank and engineering applications”(No.:CNOOC-KJ125ZDXM14QD-04QD11).
文摘The design of roof frame is one of the most important parts of LNG tank design.In China,however,the calculation of roof frame system of extra-large LNG tanks is currently faced with a series of problems.For example,there is no united yardstick on buckling characteristic value,the calculation is based on many assumptions,and the calculation is inconsistent with domestic specifications and stipulations.In view of these problems,the material non-linearity and structural non-linearity were introduced and the initial defect was taken into consideration.Then,the large non-linear finite element calculation software ABAQUS was adopted to carry out modeling on the roof frame and liner system of extra-large LNG tanks and calculate and analyze the force applied on them and their stability.Finally,a complete set of design algorithm for the roof frame and liner system of extra-large LNG tanks was established and applied to the design of a certain LNG tank(20×10^(4)m^(3))in China.It is indicated that this design algorithm can simulate the actual situations accurately.This design algorithm is structurally composed of shell units and beam units,and it is connected in the pattern of common node.Besides,force calculation is conducted in 10 operational modes and the buckling calculation in 7 operational modes,including all operational modes in the construction process of roof frame and liner system of LNG tanks.It is also revealed that the maximum stress on the roof frame is 125.7 MPa,that on the liner is 101.4 MPa and the minimum safety coefficient used for buckling calculation is 2.57.Under this system,the force and stability of the roof frame of LNG tanks are satisfactory.The research results can be used as reference for relevant design and calculation.
文摘This study analyzes the energy impact of applying green roofs on flat roofs of existing buildings,assessing their potential to reduce the demand for non-renewable primary energy for heating and cooling.Through dynamic numerical simulations conducted on two real buildings located near Florence,Italy,and modeled in 130 different European locations,with a particular focus on the Mediterranean climate,it was possible to quantify the energy benefits derived from the application of green roofs on existing structures.The results show that,while the effect on heating is limited,with an average reduction in energy demand of only a few percentage points,the impact on cooling is significantly more pronounced,with average savings of 20%in non-renewable primary energy,particularly in Mediterranean climates with high CDD(cooling degree days)values.The study confirms that green roofs can be an effective solution to improve the energy efficiency of existing buildings with flat roofs in the Mediterranean climate,in line with European goals for reducing CO_(2) emissions and promoting renewable energy.
文摘As complex and diverse ecosystems,cities encounter numerous challenges posed by both nature and humanity.Architecture,serving as the framework and texture of the city,has undoubtedly emerged as a crucial guide in addressing urban resilience issues.Roof greening and vertical greening of buildings,as ecofriendly urban green infrastructures,hold significant potential for mitigating these challenges.This paper explores the methods and strategies for implementing roof greening and vertical greening as solutions to enhance urban resilience.The objective is to offer valuable insights for sustainable urban development,encourage the widespread adoption of these greening techniques in urban construction,and ultimately strengthen urban resilience.
文摘Phillip Katuve,a landlord who owns a six-storey apartment complex in Kileleshwa,an upmarket Nairobi suburb,embraced green roofing two years ago.His building now boasts a vibrant rooftop garden with integrated solar panels,supplying energy to all 24 units.“Initially,the idea sounded expensive,but the long-term benefits have been remarkable,”said Katuve.
文摘The present paper investigates the methods for estimating the maximum(positive)and the minimum(negative)peak wind force coefficients on domed free roofs based on the quasi-steady theory and the peak factor method,in which the experimental results obtained from our previous studies(2019,2025)are used.Focus is on the distributions of the peak wind force coefficients along the centerline parallel to the wind direction considering that domed free roof is an axisymmetric body.Empirical formulas are provided to the distributions of mean wind force coefficient,RMS(root mean square)fluctuating wind force coefficient and peak factors as a function of the rise/span ratio of the roof and the turbulence intensity of the approach flow in the along-wind direction at the mean roof height.The proposed methods are validated by the experimental results for the peak wind force coefficients.The methods would provide useful information to structural engineers when estimating the design wind loads on cladding/components of domed free roofs.