Abstract In this paper, we propose an uncertainty analysis and design optimization method and its applications on a hybrid rocket motor (HRM) powered vehicle. The multidisciplinary design model of the rocket system ...Abstract In this paper, we propose an uncertainty analysis and design optimization method and its applications on a hybrid rocket motor (HRM) powered vehicle. The multidisciplinary design model of the rocket system is established and the design uncertainties are quantified. The sensitivity anal- ysis of the uncertainties shows that the uncertainty generated from the error of fuel regression rate model has the most significant effect on the system performances. Then the differences between deterministic design optimization (DDO) and uncertainty-based design optimization (UDO) are discussed. Two newly formed uncertainty analysis methods, including the Kriging-based Monte Carlo simulation (KMCS) and Kriging-based Taylor series approximation (KTSA), are carried out using a global approximation Kriging modeling method. Based on the system design model and the results of design uncertainty analysis, the design optimization of an HRM powered vehicle for suborbital flight is implemented using three design optimization methods: DDO, KMCS and KTSA. The comparisons indicate that the two UDO methods can enhance the design reliability and robustness. The researches and methods proposed in this paper can provide a better way for the general design of HRM powered vehicles.展开更多
Design reliability and robustness are getting increasingly important for the general design of aerospace systems with many inherently uncertain design parameters.This paper presents a hybrid uncertainty-based design o...Design reliability and robustness are getting increasingly important for the general design of aerospace systems with many inherently uncertain design parameters.This paper presents a hybrid uncertainty-based design optimization(UDO) method developed from probability theory and interval theory.Most of the uncertain design parameters which have sufficient information or experimental data are classified as random variables using probability theory,while the others are defined as interval variables with interval theory.Then a hybrid uncertainty analysis method based on Monte Carlo simulation and Taylor series interval analysis is developed to obtain the uncertainty propagation from the design parameters to system responses.Three design optimization strategies,including deterministic design optimization(DDO),probabilistic UDO and hybrid UDO,are applied to the conceptual design of a hybrid rocket motor(HRM) used as the ascent propulsion system in Apollo lunar module.By comparison,the hybrid UDO is a feasible method and can be effectively applied to the general design of aerospace systems.展开更多
Different multidisciplinary design optimization (MDO) problems are formulated and compared. Two MDO formulations are applied to a sounding rocket in order to optimize the performance of the rocket. In the MDO of the...Different multidisciplinary design optimization (MDO) problems are formulated and compared. Two MDO formulations are applied to a sounding rocket in order to optimize the performance of the rocket. In the MDO of the referred vehicle, three disciplines have been considered, which are trajectory, propulsion and aerodynamics. A special design structure matrix is developed to assist data exchange between disciplines. This design process uses response surface method (RSM) for multidisciplinary optimization of the rocket. The RSM is applied to the design in two categories: the propulsion model and the system level. In the propulsion model, RSM determines an approximate mathematical model of the engine output parameters as a function of design variables. In the system level, RSM fits a surface of objective function versus design variables. In the first MDO problem formulation, two design variables are selected to form propulsion discipline. In the second one, three new design variables from geometry are added and finally, an optimization method is applied to the response surface in the system level in order to find the best result. Application of the first developed multidisciplinary design optimization procedure increased accessible altitude (performance index) of the referred sounding rocket by twenty five percents and the second one twenty nine.展开更多
Solid propellant air-turbo-rocket(SPATR) is an air-breathing propulsion system.A numerical model of performance and characteristics analysis for SPATR was presented and the corresponding computer program was written a...Solid propellant air-turbo-rocket(SPATR) is an air-breathing propulsion system.A numerical model of performance and characteristics analysis for SPATR was presented and the corresponding computer program was written according to the operation characteristics of SPATR.The influence on the SPATR performance at design point caused by the gas generator exit parameters and compressor pressure ratio had been computed and analyzed in detail.The off-design performance of SPATR at sea level and high altitude had also been computed.The performance of thrust and specific impulse for SPATR with different solid propellant had been compared at off-design points,and the off-design performance comparison had been made between fuel-rich and oxygen-rich.The computation results indicated that SPATR operates within wide range of Mach number(0~3) and altitude(0~12 km),and SPATR possesses high specific thrust(1 200 N/(kg/s)) and high specific impulse(7 000 N/(kg/s)) when fuel-air ratio of combustor equals fuel-air ratio.展开更多
This article proposes a multidisciplinary design and optimization (MDO) strategy for the conceptual design of a multistage ground-based interceptor (GBI) using hybrid optimization algorithm, which associates genet...This article proposes a multidisciplinary design and optimization (MDO) strategy for the conceptual design of a multistage ground-based interceptor (GBI) using hybrid optimization algorithm, which associates genetic algorithm (GA) as a global optimizer with sequential quadratic programming (SQP) as a local optimizer. The interceptor is comprised of a three-stage solid propulsion system for an exoatmospheric boost phase intercept (BPI). The interceptor's duty is to deliver a kinetic kill vehicle (KKV) to the optimal position in space to accomplish the mission of intercept. The modules for propulsion, aerodynamics, mass properties and flight dynamics are integrated to produce a high fidelity model of the entire vehicle. The propulsion module com- prises of solid rocket motor (SRM) grain design, nozzle geometry design and performance prediction analysis. Internal ballistics and performance prediction parameters are calculated by using lumped parameter method. The design objective is to minimize the gross lift off mass (GLOM) of the interceptor under the mission constraints and performance objectives. The proposed design and optimization methodology provide designers with an efficient and powerful approach in computation during designing interceptor systems.展开更多
To seek an inexpensive supersonic target,characteristics of various targets are analyzed,its tactical and technical specifications are drafted,and a refitting scheme using big-caliber supersonic rockets is put forward...To seek an inexpensive supersonic target,characteristics of various targets are analyzed,its tactical and technical specifications are drafted,and a refitting scheme using big-caliber supersonic rockets is put forward. An optimization model to meet tactical and technical requirements is built,in which the speed and the trajectory angle at the end of active phase are used as the design variables and the horizontal flight distance of the target is used as the objective function. The simulated results show that the method is reasonable and feasible.展开更多
In order to measure the instantaneous thrust of a certain attitude-control solid rocket motor, based on the analysis of the measurement principles, the difference between the instantaneous thrust and steady thrust mea...In order to measure the instantaneous thrust of a certain attitude-control solid rocket motor, based on the analysis of the measurement principles, the difference between the instantaneous thrust and steady thrust measurements is pointed out. According to the measurement characteristics, a dynamic digital filter compensation method is presented. Combined the identification-modeling, dynamic compensation and simulation, the system's dynamic mathematic model is established. And then, a compensation digital filter is also designed. Thus, the dynamic response of the system is improved and the instantaneous thrust measurement can be implemented. The measurement results for the rocket motor show that the digital filter compensation is effective in the instantaneous thrust measurement.展开更多
Internal ballistic simulation(IBS)method of multi-burning-rate solid rocket motor(SRM)was developed based on 3-D burning regression method by parameterized feature CAD model(PFCADM)and lumped parameter,in consideratio...Internal ballistic simulation(IBS)method of multi-burning-rate solid rocket motor(SRM)was developed based on 3-D burning regression method by parameterized feature CAD model(PFCADM)and lumped parameter,in consideration of time-dependent,erosive-burning-effect from internal ballistic numerical algorithm.By driving multi-parameter CAD model based on PFCADM,the approach is capable of conducting the geometric regression simulation of various grain combinations of complex configurations with different burning rates.Through suitably simplifying the internal ballistic numerical algorithm,the problems of coupling geometric regression simulation of sub-grains of different burning rates and high computational consumption of internal ballistic calculation were solved.One tri-burning-rate grain motor,which had been firing-tested,was used as the validation case of simulation.The results show that,with the 3-D grain regression model and sufficient accurate internal ballistic algorithm,the method realizes IBS of the case in low computationalconsumption prediction of its performance within the accuracy of 2% during 1hclock-time.The application of the method provides a practical approach to aid SRM design of multi-burning-rate grain.展开更多
The solid rocket motor driven system is one of the common ways for submarines to launch underwater missiles. It has significant advantages in improving the missile’s water exit speed, anti-interference capability, an...The solid rocket motor driven system is one of the common ways for submarines to launch underwater missiles. It has significant advantages in improving the missile’s water exit speed, anti-interference capability, and enemy striking power. The prediction of the underwater loading is a preliminary factor for the power system design of the underwater vehicle. This paper presents a rapid prediction method and validated by the experimental study for the underwater thrust of the solid rocket motor. Based on the potential flow assumption of the water field, a model of the bubble and a one-dimensional quasi-steady model of the nozzle are established to directly solve the flow status of the nozzle. The aerodynamic thrust and hydrodynamic thrust have been calculated and analyzed. The calculation results are within 5% error of the experimental results. Moreover, a design platform to predict the underwater thrust of the solid rocket motor has been developed based on Python and the PyQt library, which shows excellent system adaptability and computational efficiency.展开更多
Upper stage solid rocket motors (SRMS) for launch vehicles require a highly efficient propulsion system. Grain design proves to be vital in terms of minimizing inert mass by adopting a high volumetric efficiency wit...Upper stage solid rocket motors (SRMS) for launch vehicles require a highly efficient propulsion system. Grain design proves to be vital in terms of minimizing inert mass by adopting a high volumetric efficiency with minimum possible sliver. In this arti- cle, a methodology has been presented for designing three-dimensional (3D) grain configuration of radial slot for upper stage solid rocket motors. The design process involves parametric modeling of the geometry in computer aided design (CAD) software through dynamic variables that define the complex configuration. Grain bum back is achieved by making new surfaces at each web increment and calculating geometrical properties at each step. Geometrical calculations are based on volume and change-in-volume calculations. Equilibrium pressure method is used to calculate the internal ballistics. Genetic algorithm (GA) has been used as the optimizer because of its robustness and efficient capacity to explore the design space for global optimum solution and eliminate the requirement of an initial guess. Average thrust maximization under design constraints is the objective function.展开更多
基金supported by the National Natural Science Foundation of China(No.51305014)China Postdoctoral Science Foundation(No.2013M540842)
文摘Abstract In this paper, we propose an uncertainty analysis and design optimization method and its applications on a hybrid rocket motor (HRM) powered vehicle. The multidisciplinary design model of the rocket system is established and the design uncertainties are quantified. The sensitivity anal- ysis of the uncertainties shows that the uncertainty generated from the error of fuel regression rate model has the most significant effect on the system performances. Then the differences between deterministic design optimization (DDO) and uncertainty-based design optimization (UDO) are discussed. Two newly formed uncertainty analysis methods, including the Kriging-based Monte Carlo simulation (KMCS) and Kriging-based Taylor series approximation (KTSA), are carried out using a global approximation Kriging modeling method. Based on the system design model and the results of design uncertainty analysis, the design optimization of an HRM powered vehicle for suborbital flight is implemented using three design optimization methods: DDO, KMCS and KTSA. The comparisons indicate that the two UDO methods can enhance the design reliability and robustness. The researches and methods proposed in this paper can provide a better way for the general design of HRM powered vehicles.
基金supported by the National Natural Science Foundation of China(No.51305014)
文摘Design reliability and robustness are getting increasingly important for the general design of aerospace systems with many inherently uncertain design parameters.This paper presents a hybrid uncertainty-based design optimization(UDO) method developed from probability theory and interval theory.Most of the uncertain design parameters which have sufficient information or experimental data are classified as random variables using probability theory,while the others are defined as interval variables with interval theory.Then a hybrid uncertainty analysis method based on Monte Carlo simulation and Taylor series interval analysis is developed to obtain the uncertainty propagation from the design parameters to system responses.Three design optimization strategies,including deterministic design optimization(DDO),probabilistic UDO and hybrid UDO,are applied to the conceptual design of a hybrid rocket motor(HRM) used as the ascent propulsion system in Apollo lunar module.By comparison,the hybrid UDO is a feasible method and can be effectively applied to the general design of aerospace systems.
文摘Different multidisciplinary design optimization (MDO) problems are formulated and compared. Two MDO formulations are applied to a sounding rocket in order to optimize the performance of the rocket. In the MDO of the referred vehicle, three disciplines have been considered, which are trajectory, propulsion and aerodynamics. A special design structure matrix is developed to assist data exchange between disciplines. This design process uses response surface method (RSM) for multidisciplinary optimization of the rocket. The RSM is applied to the design in two categories: the propulsion model and the system level. In the propulsion model, RSM determines an approximate mathematical model of the engine output parameters as a function of design variables. In the system level, RSM fits a surface of objective function versus design variables. In the first MDO problem formulation, two design variables are selected to form propulsion discipline. In the second one, three new design variables from geometry are added and finally, an optimization method is applied to the response surface in the system level in order to find the best result. Application of the first developed multidisciplinary design optimization procedure increased accessible altitude (performance index) of the referred sounding rocket by twenty five percents and the second one twenty nine.
文摘Solid propellant air-turbo-rocket(SPATR) is an air-breathing propulsion system.A numerical model of performance and characteristics analysis for SPATR was presented and the corresponding computer program was written according to the operation characteristics of SPATR.The influence on the SPATR performance at design point caused by the gas generator exit parameters and compressor pressure ratio had been computed and analyzed in detail.The off-design performance of SPATR at sea level and high altitude had also been computed.The performance of thrust and specific impulse for SPATR with different solid propellant had been compared at off-design points,and the off-design performance comparison had been made between fuel-rich and oxygen-rich.The computation results indicated that SPATR operates within wide range of Mach number(0~3) and altitude(0~12 km),and SPATR possesses high specific thrust(1 200 N/(kg/s)) and high specific impulse(7 000 N/(kg/s)) when fuel-air ratio of combustor equals fuel-air ratio.
文摘This article proposes a multidisciplinary design and optimization (MDO) strategy for the conceptual design of a multistage ground-based interceptor (GBI) using hybrid optimization algorithm, which associates genetic algorithm (GA) as a global optimizer with sequential quadratic programming (SQP) as a local optimizer. The interceptor is comprised of a three-stage solid propulsion system for an exoatmospheric boost phase intercept (BPI). The interceptor's duty is to deliver a kinetic kill vehicle (KKV) to the optimal position in space to accomplish the mission of intercept. The modules for propulsion, aerodynamics, mass properties and flight dynamics are integrated to produce a high fidelity model of the entire vehicle. The propulsion module com- prises of solid rocket motor (SRM) grain design, nozzle geometry design and performance prediction analysis. Internal ballistics and performance prediction parameters are calculated by using lumped parameter method. The design objective is to minimize the gross lift off mass (GLOM) of the interceptor under the mission constraints and performance objectives. The proposed design and optimization methodology provide designers with an efficient and powerful approach in computation during designing interceptor systems.
文摘To seek an inexpensive supersonic target,characteristics of various targets are analyzed,its tactical and technical specifications are drafted,and a refitting scheme using big-caliber supersonic rockets is put forward. An optimization model to meet tactical and technical requirements is built,in which the speed and the trajectory angle at the end of active phase are used as the design variables and the horizontal flight distance of the target is used as the objective function. The simulated results show that the method is reasonable and feasible.
文摘In order to measure the instantaneous thrust of a certain attitude-control solid rocket motor, based on the analysis of the measurement principles, the difference between the instantaneous thrust and steady thrust measurements is pointed out. According to the measurement characteristics, a dynamic digital filter compensation method is presented. Combined the identification-modeling, dynamic compensation and simulation, the system's dynamic mathematic model is established. And then, a compensation digital filter is also designed. Thus, the dynamic response of the system is improved and the instantaneous thrust measurement can be implemented. The measurement results for the rocket motor show that the digital filter compensation is effective in the instantaneous thrust measurement.
文摘Internal ballistic simulation(IBS)method of multi-burning-rate solid rocket motor(SRM)was developed based on 3-D burning regression method by parameterized feature CAD model(PFCADM)and lumped parameter,in consideration of time-dependent,erosive-burning-effect from internal ballistic numerical algorithm.By driving multi-parameter CAD model based on PFCADM,the approach is capable of conducting the geometric regression simulation of various grain combinations of complex configurations with different burning rates.Through suitably simplifying the internal ballistic numerical algorithm,the problems of coupling geometric regression simulation of sub-grains of different burning rates and high computational consumption of internal ballistic calculation were solved.One tri-burning-rate grain motor,which had been firing-tested,was used as the validation case of simulation.The results show that,with the 3-D grain regression model and sufficient accurate internal ballistic algorithm,the method realizes IBS of the case in low computationalconsumption prediction of its performance within the accuracy of 2% during 1hclock-time.The application of the method provides a practical approach to aid SRM design of multi-burning-rate grain.
文摘The solid rocket motor driven system is one of the common ways for submarines to launch underwater missiles. It has significant advantages in improving the missile’s water exit speed, anti-interference capability, and enemy striking power. The prediction of the underwater loading is a preliminary factor for the power system design of the underwater vehicle. This paper presents a rapid prediction method and validated by the experimental study for the underwater thrust of the solid rocket motor. Based on the potential flow assumption of the water field, a model of the bubble and a one-dimensional quasi-steady model of the nozzle are established to directly solve the flow status of the nozzle. The aerodynamic thrust and hydrodynamic thrust have been calculated and analyzed. The calculation results are within 5% error of the experimental results. Moreover, a design platform to predict the underwater thrust of the solid rocket motor has been developed based on Python and the PyQt library, which shows excellent system adaptability and computational efficiency.
文摘Upper stage solid rocket motors (SRMS) for launch vehicles require a highly efficient propulsion system. Grain design proves to be vital in terms of minimizing inert mass by adopting a high volumetric efficiency with minimum possible sliver. In this arti- cle, a methodology has been presented for designing three-dimensional (3D) grain configuration of radial slot for upper stage solid rocket motors. The design process involves parametric modeling of the geometry in computer aided design (CAD) software through dynamic variables that define the complex configuration. Grain bum back is achieved by making new surfaces at each web increment and calculating geometrical properties at each step. Geometrical calculations are based on volume and change-in-volume calculations. Equilibrium pressure method is used to calculate the internal ballistics. Genetic algorithm (GA) has been used as the optimizer because of its robustness and efficient capacity to explore the design space for global optimum solution and eliminate the requirement of an initial guess. Average thrust maximization under design constraints is the objective function.