期刊文献+
共找到388,527篇文章
< 1 2 250 >
每页显示 20 50 100
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
1
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks robustNESS algorithm integration
原文传递
Distributionally robust optimization-based scheduling for a hydrogen-coupled integrated energy system considering carbon trading and demand response
2
作者 Zhichun Yang Lin Cheng +2 位作者 Huaidong Min Yang Lei Yanfeng Yang 《Global Energy Interconnection》 2025年第2期175-187,共13页
Addressing climate change and facilitating the large-scale integration of renewable energy sources(RESs)have driven the development of hydrogen-coupled integrated energy systems(HIES),which enhance energy sustainabili... Addressing climate change and facilitating the large-scale integration of renewable energy sources(RESs)have driven the development of hydrogen-coupled integrated energy systems(HIES),which enhance energy sustainability through coordinated electricity,thermal,natural gas,and hydrogen utilization.This study proposes a two-stage distributionally robust optimization(DRO)-based scheduling method to improve the economic efficiency and reduce carbon emissions of HIES.The framework incorporates a ladder-type carbon trading mechanism to regulate emissions and implements a demand response(DR)program to adjustflexible multi-energy loads,thereby prioritizing RES consumption.Uncertainties from RES generation and load demand are addressed through an ambiguity set,enabling robust decision-making.The column-and-constraint generation(C&CG)algorithm efficiently solves the two-stage DRO model.Case studies demonstrate that the proposed method reduces operational costs by 3.56%,increases photovoltaic consumption rates by 5.44%,and significantly lowers carbon emissions compared to conventional approaches.Furthermore,the DRO framework achieves a superior balance between conservativeness and robustness over conventional stochastic and robust optimization methods,highlighting its potential to advance cost-effective,low-carbon energy systems while ensuring grid stability under uncertainty. 展开更多
关键词 Hydrogen-coupled integrated energy system(HIES) Low-carbon operation Distributionally robust optimization(DRO) Carbon trading Demand response(DR) ECONOMY
在线阅读 下载PDF
Optimal scheduling method for multi-regional integrated energy system based on dynamic robust optimization algorithm and bi-level Stackelberg model
3
作者 Bo Zhou Erchao Li Wenjing Liang 《Global Energy Interconnection》 2025年第3期510-521,共12页
In this study,we construct a bi-level optimization model based on the Stackelberg game and propose a robust optimization algorithm for solving the bi-level model,assuming an actual situation with several participants ... In this study,we construct a bi-level optimization model based on the Stackelberg game and propose a robust optimization algorithm for solving the bi-level model,assuming an actual situation with several participants in energy trading.Firstly,the energy trading process is analyzed between each subject based on the establishment of the operation framework of multi-agent participation in energy trading.Secondly,the optimal operation model of each energy trading agent is established to develop a bi-level game model including each energy participant.Finally,a combination algorithm of improved robust optimization over time(ROOT)and CPLEX is proposed to solve the established game model.The experimental results indicate that under different fitness thresholds,the robust optimization results of the proposed algorithm are increased by 56.91%and 68.54%,respectively.The established bi-level game model effectively balances the benefits of different energy trading entities.The proposed algorithm proposed can increase the income of each participant in the game by an average of 8.59%. 展开更多
关键词 robust optimization over time Integrated energy system Dynamic problem Stackelberg game
在线阅读 下载PDF
Robust quantum gate optimization with first-order derivatives of ion–phonon and ion–ion couplings in trapped ions
4
作者 Jing-Bo Wang 《Chinese Physics B》 2025年第4期287-294,共8页
Trapped ion hardware has made significant progress recently and is now one of the leading platforms for quantum computing.To construct two-qubit gates in trapped ions,experimentalmanipulation approaches for ion chains... Trapped ion hardware has made significant progress recently and is now one of the leading platforms for quantum computing.To construct two-qubit gates in trapped ions,experimentalmanipulation approaches for ion chains are becoming increasingly prevalent.Given the restricted control technology,how implementing high-fidelity quantum gate operations is crucial.Many works in current pulse design optimization focus on ion–phonon and effective ion–ion couplings while ignoring the first-order derivative terms expansion impacts of these two terms brought on by experiment defects.This paper proposes a novel robust quantum control optimization method in trapped ions.By introducing the first-order derivative terms caused by the error into the optimization cost function,we generate an extremely robust Mølmer–Sørensen gate with infidelity below 10^(−3) under a drift noise range of±10 kHz,the relative robustness achieves a tolerance of±5%,compared to the 200-kHz frequency spacing between phonon modes,and for time noise drift,the tolerance reached to 2%.Our work reveals the vital role of the first-order derivative terms of coupling in trapped ion pulse control optimization,especially the first-order derivative terms of ion–ion coupling.It provides a robust optimization scheme for realizing more efficient entangled states in trapped ion platforms. 展开更多
关键词 trapped ion quantum computing robust optimization high-fidelity quantum gates magnus expansion
原文传递
Distributed stochastic model predictive control for energy dispatch with distributionally robust optimization
5
作者 Mengting LIN Bin LI C.C.ECATI 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期323-340,共18页
A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncer... A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved. 展开更多
关键词 distributed stochastic model predictive control(DSMPC) distributionally robust optimization(DRO) islanded multi-microgrid energy dispatch strategy
在线阅读 下载PDF
Development of a deviation package method for low-cost robust optimization in compressor blade design 被引量:1
6
作者 Mingzhi LI Xianjun YU +2 位作者 Dejun MENG Guangfeng AN Baojie LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第4期166-180,共15页
Manufacture variations can greatly increase the performance variability of compressor blades. Current robust design optimization methods have a critical role in reducing the adverse impact of the variations, but can b... Manufacture variations can greatly increase the performance variability of compressor blades. Current robust design optimization methods have a critical role in reducing the adverse impact of the variations, but can be affected by errors if the assumptions of the deviation models and distribution parameters are inaccurate. A new approach for robust design optimization without the employment of the deviation models is proposed. The deviation package method and the interval estimation method are exploited in this new approach. Simultaneously, a stratified strategy is used to reduce the computational cost and assure the optimization accuracy. The test case employed for this study is a typical transonic compressor blade profile, which resembles most of the manufacture features of modern compressor blades. A set of 96 newly manufactured blades was measured using a coordinate measurement machine to obtain the manufacture variations and produce a deviation package. The optimization results show that the scatter of the aerodynamic performance for the optimal robust design is 20% less than the baseline value. By comparing the optimization results obtained from the deviation package method with those obtained from widely-used methods employing the deviation model, the efficiency and accuracy of the deviation package method are demonstrated. Finally, the physical mechanisms that control the robustness of different designs were further investigated, and some statistical laws of robust design were extracted. 展开更多
关键词 Manufacture variations robust design optimization Compressor leading edge AERODYNAMICS Physical mechanism
原文传递
Distributed Robust Scheduling Optimization of Wind-Thermal-Storage System Based on Hybrid Carbon Trading and Wasserstein Fuzzy Set 被引量:1
7
作者 Gang Wang Yuedong Wu +1 位作者 Xiaoyi Qian Yi Zhao 《Energy Engineering》 EI 2024年第11期3417-3435,共19页
A robust scheduling optimization method for wind–fire storage system distribution based on the mixed carbon trading mechanism is proposed to improve the rationality of carbon emission quota allocation while reducing ... A robust scheduling optimization method for wind–fire storage system distribution based on the mixed carbon trading mechanism is proposed to improve the rationality of carbon emission quota allocation while reducing the instability of large-scale wind power access systems.A hybrid carbon trading mechanism that combines shortterm and long-term carbon trading is constructed,and a fuzzy set based onWasserstein measurement is proposed to address the uncertainty of wind power access.Moreover,a robust scheduling optimization method for wind–fire storage systems is formed.Results of the multi scenario comparative analysis of practical cases show that the proposed method can deal with the uncertainty of large-scale wind power access and can effectively reduce operating costs and carbon emissions. 展开更多
关键词 Carbon trading wind power uncertainty optimal scheduling robust optimization
在线阅读 下载PDF
A Two-Stage Scenario-Based Robust Optimization Model and a Column-Row Generation Method for Integrated Aircraft Maintenance-Routing and Crew Rostering
8
作者 Khalilallah Memarzadeh Hamed Kazemipoor +1 位作者 Mohammad Fallah Babak Farhang Moghaddam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1275-1304,共30页
Motivated by a critical issue of airline planning process,this paper addresses a new two-stage scenario-based robust optimization in operational airline planning to cope with uncertainty and possible flight disruption... Motivated by a critical issue of airline planning process,this paper addresses a new two-stage scenario-based robust optimization in operational airline planning to cope with uncertainty and possible flight disruptions.Following the route network scheme and generated flight timetables,aircraft maintenance routing and crew scheduling are critical factors in airline planning and operations cost management.This study considers the simultaneous assignment of aircraft fleet and crew to the scheduled flight while satisfying a set of operational constraints,rules,and regulations.Considering multiple locations for airline maintenance and crew bases,we solve the problem of integrated Aircraft Maintenance Routing and Crew Rostering(AMRCR)to achieve the minimum airline cost.One real challenge to the efficiency of the planning results is the possible disruptions in the initial scheduled flights.Due to the fact that disruption scenarios are expressed discretely with a specified probability,and we provide adjustable decisions under disruption to deal with this disruption risk,we provide a Two-Stage Scenario-Based Robust Optimization(TSRO)model.In this model,here-and-now or first-stage variables are the initial resource assignment.Furthermore,to adapt itself to different disruption scenarios,the model considers some adjustable variables,such as the decision to cancel the flight in case of disruption,as wait-and-see or second-stage variables.Considering the complexity of integrated models,and the scenario-based decomposable structure of the TRSO model to solve it with better computational performance,we apply the column and row generation(CRG)method that iteratively considers the disruption scenarios.The numerical results confirm the applicability of the proposed TSRO model in providing the AMRCR problem with an integrated and robust solution with an acceptable level of computational tractability.To evaluate the proposed TSRO model,which solves the AMRCR problem in an integrated and robust manner,five Key Performance Indicators(KPIs)like Number of delayed/canceled flights,Average delay time,and Average profit are taken into account.As key results driven by conducting a case study,we show the proposed TSRO model has substantially improved the solutions at all indicators compared with those of the sequential/non-integrated and nominal/non-robust models.The simulated instances used to assess the performance of the proposed model and CRG method reveal that both CPLEX and the CRG method exhibit comparable and nearly optimal performance for small-scale problems.However,for large-scale instances the proposed TSRO model falls short in terms of computational efficiency.Conversely,the proposed CRG method is capable of significantly reducing computational time and the optimality gap to an acceptable level. 展开更多
关键词 Aircraft maintenance routing crew scheduling ROSTERING uncertainty scenario-based robust optimization column and row generation
在线阅读 下载PDF
Research on Regulation Method of Energy Storage System Based on Multi-Stage Robust Optimization
9
作者 Zaihe Yang Shuling Wang +3 位作者 Runhang Zhu Jiao Cui Ji Su Liling Chen 《Energy Engineering》 EI 2024年第3期807-820,共14页
To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a ... To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems. 展开更多
关键词 Multi-stage robust optimization energy storage system regulation methods output uncertainty
在线阅读 下载PDF
Integrated fire/flight control of armed helicopters based on C-BFGS and distributionally robust optimization
10
作者 ZHOU Zeyu WANG Yuhui WU Qingxian 《Journal of Systems Engineering and Electronics》 CSCD 2024年第6期1604-1620,共17页
To meet the requirements of modern air combat,an integrated fire/flight control(IFFC)system is designed to achieve automatic precision tracking and aiming for armed helicopters and release the pilot from heavy target ... To meet the requirements of modern air combat,an integrated fire/flight control(IFFC)system is designed to achieve automatic precision tracking and aiming for armed helicopters and release the pilot from heavy target burden.Considering the complex dynamic characteristics and the couplings of armed helicopters,an improved automatic attack system is con-structed to integrate the fire control system with the flight con-trol system into a unit.To obtain the optimal command signals,the algorithm is investigated to solve nonconvex optimization problems by the contracting Broyden Fletcher Goldfarb Shanno(C-BFGS)algorithm combined with the trust region method.To address the uncertainties in the automatic attack system,the memory nominal distribution and Wasserstein distance are introduced to accurately characterize the uncertainties,and the dual solvable problem is analyzed by using the duality the-ory,conjugate function,and dual norm.Simulation results verify the practicality and validity of the proposed method in solving the IFFC problem on the premise of satisfactory aiming accu-racy. 展开更多
关键词 integrated fire/flight control(IFFC) armed helicopter improved contracting Broyden Fletcher Goldfarb Shanno(C-BFGS)algorithm memory nominal distribution Wasserstein dis-tance distributionally robust optimization
在线阅读 下载PDF
Data-driven Wasserstein distributionally robust chance-constrained optimization for crude oil scheduling under uncertainty
11
作者 Xin Dai Liang Zhao +4 位作者 Renchu He Wenli Du Weimin Zhong Zhi Li Feng Qian 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期152-166,共15页
Crude oil scheduling optimization is an effective method to enhance the economic benefits of oil refining.But uncertainties,including uncertain demands of crude distillation units(CDUs),might make the production plans... Crude oil scheduling optimization is an effective method to enhance the economic benefits of oil refining.But uncertainties,including uncertain demands of crude distillation units(CDUs),might make the production plans made by the traditional deterministic optimization models infeasible.A data-driven Wasserstein distributionally robust chance-constrained(WDRCC)optimization approach is proposed in this paper to deal with demand uncertainty in crude oil scheduling.First,a new deterministic crude oil scheduling optimization model is developed as the basis of this approach.The Wasserstein distance is then used to build ambiguity sets from historical data to describe the possible realizations of probability distributions of uncertain demands.A cross-validation method is advanced to choose suitable radii for these ambiguity sets.The deterministic model is reformulated as a WDRCC optimization model for crude oil scheduling to guarantee the demand constraints hold with a desired high probability even in the worst situation in ambiguity sets.The proposed WDRCC model is transferred into an equivalent conditional value-at-risk representation and further derived as a mixed-integer nonlinear programming counterpart.Industrial case studies from a real-world refinery are conducted to show the effectiveness of the proposed method.Out-of-sample tests demonstrate that the solution of the WDRCC model is more robust than those of the deterministic model and the chance-constrained model. 展开更多
关键词 DISTRIBUTIONS Model optimization Crude oil scheduling Wasserstein distance Distributionally robust chance constraints
在线阅读 下载PDF
Prediction and optimization of flue pressure in sintering process based on SHAP 被引量:1
12
作者 Mingyu Wang Jue Tang +2 位作者 Mansheng Chu Quan Shi Zhen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期346-359,共14页
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a... Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect. 展开更多
关键词 sintering process flue pressure shapley additive explanation PREDICTION optimization
在线阅读 下载PDF
Enhanced Chimp Optimization Algorithm Using Attack Defense Strategy and Golden Update Mechanism for Robust COVID-19 Medical Image Segmentation
13
作者 Amir Hamza Morad Grimes +1 位作者 Abdelkrim Boukabou Samira Dib 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期2086-2109,共24页
Medical image segmentation is a powerful and evolving technology in medical diagnosis.In fact,it has been identified as a very effective tool to support and accompany doctors in their fight against the spread of the c... Medical image segmentation is a powerful and evolving technology in medical diagnosis.In fact,it has been identified as a very effective tool to support and accompany doctors in their fight against the spread of the coronavirus(COVID-19).Various techniques have been utilized for COVID-19 image segmentation,including Multilevel Thresholding(MLT)-based meta-heuristics,which are considered crucial in addressing this issue.However,despite their importance,meta-heuristics have significant limitations.Specifically,the imbalance between exploration and exploitation,as well as premature convergence,can cause the optimization process to become stuck in local optima,resulting in unsatisfactory segmentation results.In this paper,an enhanced War Strategy Chimp Optimization Algorithm(WSChOA)is proposed to address MLT problems.Two strategies are incorporated into the traditional Chimp Optimization Algorithm.Golden update mechanism that provides diversity in the population.Additionally,the attack and defense strategies are incorporated to improve the search space leading to avoiding local optima.The experimental results were conducted by comparing WSChoA with recent and well-known algorithms using various evaluation metrics such as Feature Similarity Index(FSIM),Structural Similarity Index(SSIM),Peak signal-to-Noise Ratio(PSNR),Standard deviation(STD),Freidman Test(FT),and Wilcoxon Sign Rank Test(WSRT).The results obtained by WSChoA surpassed those of other optimization techniques in terms of robustness and accuracy,indicating that it is a powerful tool for image segmentation. 展开更多
关键词 Image processing Segmentation optimization Chimp Golden update mechanism Attack-defense strategy COVID-19
在线阅读 下载PDF
Recent Advancements in the Optimization Capacity Configuration and Coordination Operation Strategy of Wind-Solar Hybrid Storage System 被引量:1
14
作者 Hongliang Hao Caifeng Wen +5 位作者 Feifei Xue Hao Qiu Ning Yang Yuwen Zhang Chaoyu Wang Edwin E.Nyakilla 《Energy Engineering》 EI 2025年第1期285-306,共22页
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe... Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems. 展开更多
关键词 Electric-thermal hybrid storage modal decomposition multi-objective genetic algorithm capacity optimization allocation operation strategy
在线阅读 下载PDF
Fast Ion Gates without the Lamb-Dicke Approximation by Robust Quantum Optimal Control
15
作者 Ran Liu Xiaodong Yang +2 位作者 Yiheng Lin Yao Lu Jun Li 《Chinese Physics Letters》 2025年第8期75-82,共8页
We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of ... We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of the ions to create phonon-mediated entangling gates and,unlike the state of the art,requires neither weakcoupling Lamb-Dicke approximation nor perturbation treatment.With the application of gradient-based optimal control,it enables finding amplitude-and phase-modulated laser control protocols that work without the Lamb-Dicke approximation,promising gate speeds on the order of microseconds comparable to the characteristic trap frequencies.Also,robustness requirements on the temperature of the ions and initial optical phase can be conveniently included to pursue high-quality fast gates against experimental imperfections.Our approach represents a step in speeding up quantum gates to achieve larger quantum circuits for quantum computation and simulation,and thus can find applications in near-future experiments. 展开更多
关键词 quantum optimal control framework gradient based optimal control quantum computation Lamb Dicke approximation fast ion gates tailored laser pulses entangling gates robust quantum optimal control
原文传递
Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection 被引量:4
16
作者 Pengfei Yin Di Lan +7 位作者 Changfang Lu Zirui Jia Ailing Feng Panbo Liu Xuetao Shi Hua Guo Guanglei Wu Jian Wang 《Journal of Materials Science & Technology》 2025年第1期204-223,共20页
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro... With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well. 展开更多
关键词 Microwave absorption Structural regulation Performance optimization Emerging composites Synthetic strategy
原文传递
Robust Particle Swarm Optimization Algorithm for Modeling the Effectof Oxides Thermal Properties on AMIG 304L Stainless Steel Welds
17
作者 Rachid Djoudjou Abdeljlil Chihaoui Hedhibi +3 位作者 Kamel Touileb Abousoufiane Ouis Sahbi Boubaker Hani Said Abdo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1809-1825,共17页
There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipmen... There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipment is employed except for the deposition of a thin layer of flux before the welding operation,is the AMIG(Activated Metal Inert Gas)technique.This study focuses on investigating the impact of physical properties ofindividual metallic oxide fluxes for 304L stainless steel welding joint morphology and to what extent it can helpdetermine a relationship among weld depth penetration,the aspect ratio,and the input physical properties ofthe oxides.Five types of oxides,TiO_(2),SiO_(2),Fe_(2)O_(3),Cr_(2)O_(3),and Mn_(2)O_(3),are tested on butt joint design withoutpreparation of the edges.A robust algorithm based on the particle swarm optimization(PSO)technique is appliedto optimally tune the models’parameters,such as the quadratic error between the actual outputs(depth and aspectratio),and the error estimated by the models’outputs is minimized.The results showed that the proposed PSOmodel is first and foremost robust against uncertainties in measurement devices and modeling errors,and second,that it is capable of accurately representing and quantifying the weld depth penetration and the weld aspect ratioto the oxides’thermal properties. 展开更多
关键词 Activated metal inert gas welding stainless steel activating flux oxides’thermal properties particle swarm optimization
在线阅读 下载PDF
A survey on multi-objective,model-based,oil and gas field development optimization:Current status and future directions 被引量:1
18
作者 Auref Rostamian Matheus Bernardelli de Moraes +1 位作者 Denis Jose Schiozer Guilherme Palermo Coelho 《Petroleum Science》 2025年第1期508-526,共19页
In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionall... In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionally,this optimization process was centered on a single objective,such as net present value,return on investment,cumulative oil production,or cumulative water production.However,the inherent complexity of reservoir exploration necessitates a departure from this single-objective approach.Mul-tiple conflicting production and economic indicators must now be considered to enable more precise and robust decision-making.In response to this challenge,researchers have embarked on a journey to explore field development optimization of multiple conflicting criteria,employing the formidable tools of multi-objective optimization algorithms.These algorithms delve into the intricate terrain of production strategy design,seeking to strike a delicate balance between the often-contrasting objectives.Over the years,a plethora of these algorithms have emerged,ranging from a priori methods to a posteriori approach,each offering unique insights and capabilities.This survey endeavors to encapsulate,catego-rize,and scrutinize these invaluable contributions to field development optimization,which grapple with the complexities of multiple conflicting objective functions.Beyond the overview of existing methodologies,we delve into the persisting challenges faced by researchers and practitioners alike.Notably,the application of multi-objective optimization techniques to production optimization is hin-dered by the resource-intensive nature of reservoir simulation,especially when confronted with inherent uncertainties.As a result of this survey,emerging opportunities have been identified that will serve as catalysts for pivotal research endeavors in the future.As intelligent and more efficient algo-rithms continue to evolve,the potential for addressing hitherto insurmountable field development optimization obstacles becomes increasingly viable.This discussion on future prospects aims to inspire critical research,guiding the way toward innovative solutions in the ever-evolving landscape of oil and gas production optimization. 展开更多
关键词 Derivative-free algorithms Ensemble-based optimization Gradient-based methods Life-cycle optimization Reservoir field development and management
原文传递
Reactive Power Optimization Model of Active Distribution Network with New Energy and Electric Vehicles 被引量:1
19
作者 Chenxu Wang Jing Bian Rui Yuan 《Energy Engineering》 2025年第3期985-1003,共19页
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o... Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem. 展开更多
关键词 Active distribution network new energy electric vehicles dynamic reactive power optimization kmedoids clustering hybrid optimization algorithm
在线阅读 下载PDF
A Multi-Objective Particle Swarm Optimization Algorithm Based on Decomposition and Multi-Selection Strategy
20
作者 Li Ma Cai Dai +1 位作者 Xingsi Xue Cheng Peng 《Computers, Materials & Continua》 SCIE EI 2025年第1期997-1026,共30页
The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition... The multi-objective particle swarm optimization algorithm(MOPSO)is widely used to solve multi-objective optimization problems.In the article,amulti-objective particle swarm optimization algorithmbased on decomposition and multi-selection strategy is proposed to improve the search efficiency.First,two update strategies based on decomposition are used to update the evolving population and external archive,respectively.Second,a multiselection strategy is designed.The first strategy is for the subspace without a non-dominated solution.Among the neighbor particles,the particle with the smallest penalty-based boundary intersection value is selected as the global optimal solution and the particle far away fromthe search particle and the global optimal solution is selected as the personal optimal solution to enhance global search.The second strategy is for the subspace with a non-dominated solution.In the neighbor particles,two particles are randomly selected,one as the global optimal solution and the other as the personal optimal solution,to enhance local search.The third strategy is for Pareto optimal front(PF)discontinuity,which is identified by the cumulative number of iterations of the subspace without non-dominated solutions.In the subsequent iteration,a new probability distribution is used to select from the remaining subspaces to search.Third,an adaptive inertia weight update strategy based on the dominated degree is designed to further improve the search efficiency.Finally,the proposed algorithmis compared with fivemulti-objective particle swarm optimization algorithms and five multi-objective evolutionary algorithms on 22 test problems.The results show that the proposed algorithm has better performance. 展开更多
关键词 Multi-objective optimization multi-objective particle swarm optimization DECOMPOSITION multi-selection strategy
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部