期刊文献+
共找到179篇文章
< 1 2 9 >
每页显示 20 50 100
Robust Forecasting-Aided State Estimation Considering Uncertainty in Distribution System
1
作者 Dongchen Hou Yonghui Sun +1 位作者 Linchuang Zhang Sen Wang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第4期1632-1641,共10页
With the development of the smart grid,the distribution system operation conditions become more complex and changeable.Furthermore,due to the influence of observation outliers and uncertain noise statistics,it is more... With the development of the smart grid,the distribution system operation conditions become more complex and changeable.Furthermore,due to the influence of observation outliers and uncertain noise statistics,it is more difficult to grasp the dynamic operation characteristics of distribution system.In order to address these problems,by using projection statistics and the noise covariance updating technology based on the Sage-Husa noise estimator,for distribution power system with outliers and uncertain noise statistics,a robust adaptive cubature Kalman filter forecasting-aided state estimation method is proposed based on generalized-maximum likelihood type estimator.Furthermore,an adaptive strategy,which can enhance the filtering accuracy under normal conditions,is presented.In the simulation part,the branch parameters and node load parameters of the test system are appropriately modified to simulate the asymmetry of the three-phase branch parameters and the asymmetry of the three-phase loads.Finally,through simulation experiments on the improved test system,it is verified that the robust forecasting-aided state estimation method,presented in this paper,can effectively perceive the actual operating state of the distribution network in different simulation scenarios. 展开更多
关键词 Cubature Kalman filter distribution power system forecasting-aided state estimation projection statistics
原文传递
Non-cooperative target recognition and relative motion estimation with inertial measurement unit assistance
2
作者 Xiangtian ZHAO Shiqiang WANG +2 位作者 Chao ZHANG Shijie ZHANG Yafei ZHAO 《Chinese Journal of Aeronautics》 2025年第4期469-483,共15页
This study investigated the problems of non-cooperative target recognition and relative motion estimation during spacecraft rendezvous maneuvers.A structure integrating an Inertial Measurement Unit(IMU)and a visual ca... This study investigated the problems of non-cooperative target recognition and relative motion estimation during spacecraft rendezvous maneuvers.A structure integrating an Inertial Measurement Unit(IMU)and a visual camera was presented.The angular velocity output of the IMU was used to calculate the motion trajectories of star points in multiple image frames,which can highlight the motion of non-cooperative targets with respect to the image background to improve the probability of target recognition.To solve the problem of target misidentification caused by new star points entering the field of view,a target-tracking link based on IMU prediction was introduced to track the position of the target in the image.Furthermore,a measurement model was constructed using the line-of-sight vector generated from target recognition,and the relative motion state was estimated using a Huber-based non-linear filter.Semi-physical and numerical simulations were performed to evaluate the effectiveness and efficiency of the proposed method. 展开更多
关键词 Non-cooperative target Target recognition and tracking Vision/IMU fusion Block matching robust state estimation
原文传递
Multi-Time Interval Forecasting-Aided State Estimation Incorporating Phasor Measurements for Power Systems with Renewable Energy Sources
3
作者 Ye Guo Yifei Xu +1 位作者 Hongbin Sun Boming Zhang 《CSEE Journal of Power and Energy Systems》 2025年第1期115-123,共9页
To achieve more precise monitoring of state fluctuations in the power network close to renewable energy sources, it is necessary to utilize phasor measurements and shorten the time interval between state estimations. ... To achieve more precise monitoring of state fluctuations in the power network close to renewable energy sources, it is necessary to utilize phasor measurements and shorten the time interval between state estimations. For large-scale power systems, however, estimating all of their states with shorter time intervals means a drastic increase in computational burden. As a tradeoff between accuracy and computational efficiency, a multi-time interval forecasting-aided state estimation approach is proposed in this paper, where states with various degrees of fluctuations are estimated asynchronously with different time intervals. Based on the newest state estimate, forecasting-aided state estimators are employed to predict states at time moments prior to the next round of measurement update and state estimation. Extensive numerical tests have demonstrated the effectiveness of the proposed approach. 展开更多
关键词 forecasting-aided state estimation phasor measurement renewable energy sources state estimation time interval
原文传递
A Bayesian expectation maximization algorithm for state estimation of intelligent vehicles considering data loss and noise uncertainty
4
作者 Yan WANG Feng TIAN +1 位作者 Jianqiang WANG Keqiang LI 《Science China(Technological Sciences)》 2025年第2期257-268,共12页
Sideslip angle,yaw rate,and vehicle velocity are essential for intelligent vehicle control.Since these vehicle states are not measured directly,some Kalman-based approaches have been developed to estimate these states... Sideslip angle,yaw rate,and vehicle velocity are essential for intelligent vehicle control.Since these vehicle states are not measured directly,some Kalman-based approaches have been developed to estimate these states using in-vehicle sensors.However,the existing studies seldom account for the influence of sensor data loss on estimation accuracy.In addition,the process and measurement noise change during the estimation process because of the various driving conditions.To address these problems,an expectation-maximization robust extended Kalman filter(EMREKF)is proposed.Firstly,a robust extended Kalman filter(REKF)is developed to deal with the impact of missing measurements.Then,an improved expectation maximization(EM)algorithm that considers data loss is presented to update the noise parameter of the REKF dynamically.Finally,the improved EM is fused with the REKF to form the EMREKF to estimate vehicle state.The experimental results demonstrate that the EMREKF outperforms EKF,REKF,and maximum correntropy criterion EKF for various degrees of data loss and the proposed algorithm has a strong adaptive ability to different driving conditions. 展开更多
关键词 intelligent vehicles state estimation expectation maximization method robust extended Kalman filter
原文传递
An Embedded Consensus ADMM Distribution Algorithm Based on Outer Approximation for Improved Robust State Estimation of Networked Microgrids 被引量:1
5
作者 Zifeng Zhang Yuntao Ju 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第4期1217-1226,共10页
Networked microgrids(NMGs)are critical in theaccommodation of distributed renewable energy.However,theexisting centralized state estimation(SE)cannot meet the demandsof NMGs in distributed energy management.The curren... Networked microgrids(NMGs)are critical in theaccommodation of distributed renewable energy.However,theexisting centralized state estimation(SE)cannot meet the demandsof NMGs in distributed energy management.The currentestimator is also not robust against bad data.This study introducesthe concepts of relative error to construct an improvedrobust SE(IRSE)optimization model with mixed-integer nonlinearprogramming(MINLP)that overcomes the disadvantage ofinaccurate results derived from different measurements whenthe same tolerance range is considered in the robust SE(RSE).To improve the computation efficiency of the IRSE optimizationmodel,the number of binary variables is reduced based on theprojection statistics and normalized residual methods,which effectivelyavoid the problem of slow convergence or divergenceof the algorithm caused by too many integer variables.Finally,an embedded consensus alternating direction of multiplier method(ADMM)distribution algorithm based on outer approximation(OA)is proposed to solve the IRSE optimization model.This algorithm can accurately detect bad data and obtain SE resultsthat communicate only the boundary coupling informationwith neighbors.Numerical tests show that the proposed algorithmeffectively detects bad data,obtains more accurate SE results,and ensures the protection of private information in all microgrids. 展开更多
关键词 Distributed optimization alternating direction of multiplier methods(ADMM) robust state estimation(RSE) mixed-integer nonlinear programming(MINLP) networked microgrid(NMG)
原文传递
Machine Learning-Based Channel State Estimators for 5G Wireless Communication Systems
6
作者 Mohamed Hassan Essai Ali Fahad Alraddady +1 位作者 Mo’ath Y.Al-Thunaibat Shaima Elnazer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期755-778,共24页
For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pa... For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pairs through offline training to estimate the channel state information.Also,it utilizes pilots to offer more helpful information about the communication channel.The proposedCNN-CSE performance is compared with previously published results for Bidirectional/long short-term memory(BiLSTM/LSTM)NNs-based CSEs.The CNN-CSE achieves outstanding performance using sufficient pilots only and loses its functionality at limited pilots compared with BiLSTM and LSTM-based estimators.Using three different loss function-based classification layers and the Adam optimization algorithm,a comparative study was conducted to assess the performance of the presented DNNs-based CSEs.The BiLSTM-CSE outperforms LSTM,CNN,conventional least squares(LS),and minimum mean square error(MMSE)CSEs.In addition,the computational and learning time complexities for DNN-CSEs are provided.These estimators are promising for 5G and future communication systems because they can analyze large amounts of data,discover statistical dependencies,learn correlations between features,and generalize the gotten knowledge. 展开更多
关键词 DLNNs channel state estimator 5G and beyond communication systems robust loss functions
在线阅读 下载PDF
基于改进Crossformer伪量测构建的主动配电网预测辅助状态估计方法 被引量:1
7
作者 王玥 于越 +1 位作者 郭嘉辉 金朝阳 《高电压技术》 北大核心 2025年第6期2999-3009,I0031-I0033,共14页
为了解决高比例分布式电源(distributed generation,DG)大规模并网后实时量测数目缺失、传统预测辅助状态估计方法(forecasting-aided state estimation,FASE)估计精度有限等问题,提出了基于改进Crossformer伪量测构建的主动配电网FASE... 为了解决高比例分布式电源(distributed generation,DG)大规模并网后实时量测数目缺失、传统预测辅助状态估计方法(forecasting-aided state estimation,FASE)估计精度有限等问题,提出了基于改进Crossformer伪量测构建的主动配电网FASE方法。首先,基于最大信息系数法(maximal information coefficient,MIC)筛选出高相关性的输入特征,提高预测模型的精度;然后,通过全变差正则化技术(total variation regularized,TV)优化鲁棒主成分分析法(robust principal component analysis,RPCA),构建TRPCA层,并将其嵌入到Crossformer中,以填补Crossformer无法有效处理非高斯噪声的空白;最后,利用改进的预测模型进行超短期负荷预测,经潮流计算得到节点伪量测,在量测不足情况下补全缺失数据,并结合扩展卡尔曼滤波器(extended Kalman filter,EKF)进行状态估计。在IEEE 33节点和IEEE 118节点标准配电网上进行仿真测试,结果表明所提方法在估计精度和鲁棒性等方面具有一定优势,可为主动配电网FASE提供参考。 展开更多
关键词 主动配电网 预测辅助状态估计 伪量测构建 Crossformer 鲁棒主成分分析 扩展卡尔曼滤波器
原文传递
基于混合量测的电力系统自适应抗差动态状态估计方法
8
作者 林俊杰 洪宏彬 +2 位作者 宋文超 江昌旭 陆超 《电工技术学报》 北大核心 2025年第15期4694-4707,4721,共15页
快速准确地获取整个系统的实时状态,对于随机性和波动性大大增强的新型电力系统变得更为重要。为减小未知测量噪声的影响,准确获取系统状态,该文提出了一种基于自适应抗差扩展卡尔曼滤波(IAREKF)算法的混合测量状态估计方法。首先,通过... 快速准确地获取整个系统的实时状态,对于随机性和波动性大大增强的新型电力系统变得更为重要。为减小未知测量噪声的影响,准确获取系统状态,该文提出了一种基于自适应抗差扩展卡尔曼滤波(IAREKF)算法的混合测量状态估计方法。首先,通过量测变换技术实现混合量测的融合,并基于系统的时空特性构造伪量测;其次,引入自适应遗忘因子,改进噪声估计算法,能够更快速准确地估计时变系统噪声,提高算法的动态跟踪能力;然后,分析量测装置特性来估计量测噪声,并基于标准新息构造抗差因子以抑制不良数据;最后,基于IEEE 39节点系统进行仿真验证,结果表明所提方法在模型参数未知、系统状态变化和不良数据的影响下,均有良好的估计性能及较强的抗差性。 展开更多
关键词 状态估计 混合量测 卡尔曼滤波 抗差估计
在线阅读 下载PDF
非高斯系统鲁棒自适应估计方法综述
9
作者 葛泉波 白雪飞 +1 位作者 张宇康 陆振宇 《控制与信息技术》 2025年第5期1-14,共14页
状态估计是现代控制与信息融合系统的核心环节,其精度与鲁棒性直接关乎整个系统的稳定性与可靠性。在实际应用中,系统噪声往往呈现非高斯特性(如脉冲、重尾、偏态等),导致传统基于高斯假设的状态估计方法在非高斯系统中应用性能显著下... 状态估计是现代控制与信息融合系统的核心环节,其精度与鲁棒性直接关乎整个系统的稳定性与可靠性。在实际应用中,系统噪声往往呈现非高斯特性(如脉冲、重尾、偏态等),导致传统基于高斯假设的状态估计方法在非高斯系统中应用性能显著下降。为此,面向非高斯系统的鲁棒自适应估计方法研究逐渐成为行业热点。本文通过对该领域的研究进展进行系统梳理与综述,研究行业所面临的挑战并指出未来的研究方向。首先,深入剖析了非高斯噪声的内在特性及其对状态估计的影响机理;继而,从鲁棒性驱动、自适应机制驱动两个维度,系统性地综述了非高斯系统状态估计主流方法的原理、进展与融合策略,重点探讨了基于最大相关熵准则的滤波方法中核函数与核宽度自适应技术的发展以及变分贝叶斯等自适应框架;最后,在总结现有方法局限性的基础上,从泛化能力、计算实时性、算法可解释性及工程标准化等多个维度,对非高斯系统状态估计方法的未来研究方向进行了前瞻性展望。 展开更多
关键词 非高斯系统 状态估计 鲁棒估计 自适应滤波 最大相关熵准则
在线阅读 下载PDF
基于LQR和卡尔曼滤波的倒立摆系统鲁棒性分析 被引量:1
10
作者 霍婷婷 李艳 张庆 《自动化与仪表》 2025年第1期11-16,22,共7页
一级倒立摆系统作为经典的控制理论实验装置,具有高度非线性和不稳定性,因此对其进行精确控制和状态估计具有重要的研究意义。该研究旨在提高倒立摆系统的鲁棒性,提出了一种基于LQR控制和卡尔曼滤波的综合方法。首先,建立倒立摆系统的... 一级倒立摆系统作为经典的控制理论实验装置,具有高度非线性和不稳定性,因此对其进行精确控制和状态估计具有重要的研究意义。该研究旨在提高倒立摆系统的鲁棒性,提出了一种基于LQR控制和卡尔曼滤波的综合方法。首先,建立倒立摆系统的数学模型,通过线性二次调节器(LQR)设计了最优控制器,以实现系统的稳定控制。其次,增加卡尔曼滤波器对系统状态进行实时估计,提高系统的动态响应性能。通过仿真研究对比分析了不同控制策略下系统的鲁棒性表现。结果表明,融合LQR控制和卡尔曼滤波的方法使得倒立摆的摆杆角度响应时间控制在1 s内,其均方差提高93%,显著改善了倒立摆系统的鲁棒性和控制精度,有效抑制外部扰动的影响。 展开更多
关键词 倒立摆系统 LQR控制 卡尔曼滤波 鲁棒性 状态估计 最优控制
在线阅读 下载PDF
Analytical Verification of Performance of Deep Neural Network Based Time-synchronized Distribution System State Estimation 被引量:1
11
作者 Behrouz Azimian Shiva Moshtagh +1 位作者 Anamitra Pal Shanshan Ma 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第4期1126-1134,共9页
Recently,we demonstrated the success of a time-synchronized state estimator using deep neural networks(DNNs)for real-time unobservable distribution systems.In this paper,we provide analytical bounds on the performance... Recently,we demonstrated the success of a time-synchronized state estimator using deep neural networks(DNNs)for real-time unobservable distribution systems.In this paper,we provide analytical bounds on the performance of the state estimator as a function of perturbations in the input measurements.It has already been shown that evaluating performance based only on the test dataset might not effectively indicate the ability of a trained DNN to handle input perturbations.As such,we analytically verify the robustness and trustworthiness of DNNs to input perturbations by treating them as mixed-integer linear programming(MILP)problems.The ability of batch normalization in addressing the scalability limitations of the MILP formulation is also highlighted.The framework is validated by performing time-synchronized distribution system state estimation for a modified IEEE 34-node system and a real-world large distribution system,both of which are incompletely observed by micro-phasor measurement units. 展开更多
关键词 Deep neural network(DNN) distribution system state estimation(DSSE) mixed-integer linear programming(MILP) robustNESS trustworthiness
原文传递
Data-driven Robust State Estimation Through Off-line Learning and On-line Matching 被引量:10
12
作者 Yanbo Chen Hao Chen +2 位作者 Yang Jiao Jin Ma Yuzhang Lin 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第4期897-909,共13页
To overcome the shortcomings of model-driven state estimation methods, this paper proposes a data-driven robust state estimation (DDSE) method through off-line learning and on-line matching. At the off-line learning s... To overcome the shortcomings of model-driven state estimation methods, this paper proposes a data-driven robust state estimation (DDSE) method through off-line learning and on-line matching. At the off-line learning stage, a linear regression equation is presented by clustering historical data from supervisory control and data acquisition (SCADA), which provides a guarantee for solving the over-learning problem of the existing DDSE methods;then a novel robust state estimation method that can be transformed into quadratic programming (QP) models is proposed to obtain the mapping relationship between the measurements and the state variables (MRBMS). The proposed QP models can well solve the problem of collinearity in historical data. Furthermore, the off-line learning stage is greatly accelerated from three aspects including reducing historical categories, constructing tree retrieval structure for known topologies, and using sensitivity analysis when solving QP models. At the on-line matching stage, by quickly matching the current snapshot with the historical ones, the corresponding MRBMS can be obtained, and then the estimation values of the state variables can be obtained. Simulations demonstrate that the proposed DDSE method has obvious advantages in terms of suppressing over-learning problems, dealing with collinearity problems, robustness, and computation efficiency. 展开更多
关键词 robust state estimation historical snapshot off-line learning on-line matching COLLINEARITY
原文传递
Robust Control for Static Loading of Electro-hydraulic Load Simulator with Friction Compensation 被引量:22
13
作者 YAO Jianyong JIAO Zongxia YAO Bin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第6期954-962,共9页
Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness t... Load simulator is a key test equipment for aircraft actuation systems in hardware-in-the-loop-simulation. Static loading is an essential function of the load simulator and widely used in the static/dynamic stiffness test of aircraft actuation systems. The tracking performance of the static loading is studied in this paper. Firstly, the nonlinear mathematical models of the hydraulic load simulator are derived, and the feedback linearization method is employed to construct a feed-forward controller to improve the force tracking performance. Considering the effect of the friction, a LuGre model based friction compensation is synthesized, in which the unmeasurable state is estimated by a dual state observer via a controlled learning mechanism to guarantee that the estimation is bounded. The modeling errors are attenuated by a well-designed robust controller with a control accuracy measured by a design parameter. Employing the dual state observer is to capture the different effects of the unmeasured state and hence can improve the friction compensation accuracy. The tracking performance is summarized by a derived theorem. Experimental results are also obtained to verify the high performance nature of the proposed control strategy. 展开更多
关键词 electro-hydraulic load simulator robust control friction compensation feedback linearization LuGre model nonlinear control state estimation
原文传递
A mixed-integer linear programming approach for robust state estimation 被引量:3
14
作者 Yanbo CHEN Jin MA 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2014年第4期366-373,共8页
In this paper,a mixed integer linear programming(MILP)formulation for robust state estimation(RSE)is proposed.By using the exactly linearized measurement equations instead of the original nonlinear ones,the existingmi... In this paper,a mixed integer linear programming(MILP)formulation for robust state estimation(RSE)is proposed.By using the exactly linearized measurement equations instead of the original nonlinear ones,the existingmixed integer nonlinear programming formulation for RSE is converted to a MILP problem.The proposed approach not only guarantees to find the global optimum,but also does not have convergence problems.Simulation results on a rudimentary 3-bus system and several IEEE standard test systems fully illustrate that the proposed methodology is effective with high efficiency. 展开更多
关键词 state estimation robustNESS Leverage point Mathematical programming Mixed integer linear programming(MILP)
原文传递
An event-triggered approach to robust state estimation for wireless sensor networks 被引量:4
15
作者 Huabo Liu Haisheng Yu 《Journal of Control and Decision》 EI 2017年第4期263-275,共13页
Robust state estimation problem for wireless sensor networks consisting of multiple remote units and a fusion unit is investigated subject to a limitation on the communication rate.An analytical robust fusion estimato... Robust state estimation problem for wireless sensor networks consisting of multiple remote units and a fusion unit is investigated subject to a limitation on the communication rate.An analytical robust fusion estimator based on an event-triggered transmission approach is derived to reduce the network traffic congestion and save the energy consumption of the sensor units.Some conditions guaranteeing the uniformly bounded estimation errors of the robust fusion estimator are investigated.Numerical simulations are provided to show the effectiveness of the proposed approach. 展开更多
关键词 Sensor fusion wireless sensor network event-triggered robust state estimation Kalman filter
原文传递
Dynamic State Estimation of Power Systems with Uncertainties Based on Robust Adaptive Unscented Kalman Filter 被引量:2
16
作者 Dongchen Hou Yonghui Sun +2 位作者 Jianxi Wang Linchuang Zhang Sen Wang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第4期1065-1074,共10页
In this paper,a robust adaptive unscented Kalman filter(RAUKF)is developed to mitigate the unfavorable effects derived from uncertainties in noise and in the model.To address these issues,a robust M-estimator is first... In this paper,a robust adaptive unscented Kalman filter(RAUKF)is developed to mitigate the unfavorable effects derived from uncertainties in noise and in the model.To address these issues,a robust M-estimator is first utilized to update the measurement noise covariance.Next,to deal with the effects of model parameter errors while considering the computational complexity and real-time requirements of dynamic state estimation,an adaptive update method is produced.The proposed method is integrated with spherical simplex unscented transformation technology,and then a novel derivative-free filter is proposed to dynamically track the states of the power system against uncertainties.Finally,the effectiveness and robustness of the proposed method are demonstrated through extensive simulation experiments on an IEEE 39-bus test system.Compared with other methods,the proposed method can capture the dynamic characteristics of a synchronous generator more reliably. 展开更多
关键词 Dynamic state estimation Kalman filter synchronous generator unscented transformation robust estimation
原文传递
Robust State Estimation of Active Distribution Networks with Multi-source Measurements 被引量:2
17
作者 Zhelin Liu Peng Li +4 位作者 Chengshan Wang Hao Yu Haoran Ji Wei Xi Jianzhong Wu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第5期1540-1552,共13页
The volatile and intermittent nature of distributed generators(DGs) in active distribution networks(ADNs) increases the uncertainty of operating states. The introduction of distribution phasor measurement units(D-PMUs... The volatile and intermittent nature of distributed generators(DGs) in active distribution networks(ADNs) increases the uncertainty of operating states. The introduction of distribution phasor measurement units(D-PMUs) enhances the monitoring level. The trade-offs of computational performance and robustness of state estimation in monitoring the network states are of great significance for ADNs with D-PMUs and DGs. This paper proposes a second-order cone programming(SOCP) based robust state estimation(RSE) method considering multi-source measurements. Firstly, a linearized state estimation model related to the SOCP state variables is formulated. The phase angle measurements of D-PMUs are converted to equivalent power measurements. Then, a revised SOCP-based RSE method with the weighted least absolute value estimator is proposed to enhance the convergence and bad data identification. Multi-time slots of D-PMU measurements are utilized to improve the estimation accuracy of RSE. Finally, the effectiveness of the proposed method is illustrated in the modified IEEE 33-node and IEEE 123-node systems. 展开更多
关键词 Active distribution network(ADN) robust state estimation(RSE) second-order cone programming(SOCP) multi-source measurement bad data identification
原文传递
采用改进最大相关熵自适应迭代容积卡尔曼滤波算法的锂离子电池荷电状态估计 被引量:6
18
作者 巫春玲 赵玉冰 +2 位作者 马耀 张湧 孟锦豪 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第11期52-64,共13页
针对非高斯噪声干扰下传统滤波算法在估计锂离子电池荷电状态(SOC)时存在不稳定以及精度低的问题,提出一种改进的最大相关熵自适应迭代容积卡尔曼滤波(IMCC-AICKF)算法,用于估计锂离子电池荷电状态。所提算法将加权最小二乘方法与最大... 针对非高斯噪声干扰下传统滤波算法在估计锂离子电池荷电状态(SOC)时存在不稳定以及精度低的问题,提出一种改进的最大相关熵自适应迭代容积卡尔曼滤波(IMCC-AICKF)算法,用于估计锂离子电池荷电状态。所提算法将加权最小二乘方法与最大相关熵准则(MCC)相结合,定义了一种新的代价权函数作为优化准则,通过优化噪声最小协方差矩阵来减小滤波误差,保证长时间滤波的收敛性和稳定性;再与自适应迭代容积卡尔曼滤波(AICKF)算法相结合,对过程噪声协方差和测量噪声协方差进行更新来提高估计的准确性和鲁棒性。基于两种电池数据,在非高斯噪声干扰下,运用所提算法对电池SOC进行估计,仿真结果表明:与容积卡尔曼滤波(CKF)算法和最大相关熵容积卡尔曼滤波(IMCC-CKF)算法相比,IMCC-AICKF算法对荷电状态估计的最大绝对误差、平均绝对误差和均方根误差都是最小的,且平均绝对误差和均方根误差均小于1%;在给定初始值错误的情况下,IMCC-AICKF算法可以准确收敛到真实值,具有较好的鲁棒性。所提算法在非高斯噪声下能实现更准确的估计,是一种估计精度高且鲁棒性好的SOC估计方法。 展开更多
关键词 荷电状态估计 最大相关熵准则 容积卡尔曼滤波 非高斯噪声 鲁棒性
在线阅读 下载PDF
一种高斯-重尾切换分布鲁棒卡尔曼滤波器 被引量:2
19
作者 黄伟 付红坡 +1 位作者 李煜 章卫国 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第4期12-23,共12页
为降低实际应用中由强未知干扰和仪器故障对观测造成的影响,减轻随机和未建模干扰对系统的侵蚀,从而提升系统在非高斯噪声环境下的状态估计精度,提高滤波器的鲁棒性能,提出了一种基于高斯-重尾切换分布的鲁棒卡尔曼滤波器(Gaussian-heav... 为降低实际应用中由强未知干扰和仪器故障对观测造成的影响,减轻随机和未建模干扰对系统的侵蚀,从而提升系统在非高斯噪声环境下的状态估计精度,提高滤波器的鲁棒性能,提出了一种基于高斯-重尾切换分布的鲁棒卡尔曼滤波器(Gaussian-heavy-tailed switching distribution based robust Kalman filter,GHTSRKF)。首先,通过自适应学习高斯分布和一种重尾分布之间的切换概率将噪声建模为GHTS(Gaussian-heavy-tailed switching)分布,所设计的GHTS分布可以通过在线调整高斯分布和新的重尾分布之间的切换概率来对非平稳重尾噪声进行建模,具有虚拟协方差的高斯分布用于处理协方差矩阵不准确的高斯噪声。其次,引入两个分别服从Categorical分布与伯努利分布的辅助参数将GHTS分布表示为一个分层高斯形式,进一步利用变分贝叶斯方法推导了GHTSRKF。最后,利用一个仿真场景对几种不同的RKFs(robust Kalman filters)进行了对比验证。结果表明,所提出的GHTSRKF算法的估计精度对初始状态的选取不敏感,精度优于其他RKFs,它的RMSEs最接近噪声信息准确的KFTNC(KF with true noise covariances)的RMSEs(root mean square errors),且当系统与量测噪声是未知时变高斯噪声时,相比于现有的滤波器,GHTSRKF具有更好的估计性能,从而验证了GHTSRKF的有效性。 展开更多
关键词 状态估计 非平稳重尾噪声 自适应学习 鲁棒滤波器 变分贝叶斯方法
在线阅读 下载PDF
基于平方根UPF的电力系统鲁棒预测状态估计 被引量:1
20
作者 王要强 赵楷 +2 位作者 王义 王克文 梁军 《郑州大学学报(工学版)》 CAS 北大核心 2024年第3期119-126,142,共9页
针对辅助预测状态估计器在迭代计算中会出现状态预测误差协方差矩阵不正定,导致估计精度差甚至发散的问题,提出了基于平方根UPF的电力系统鲁棒辅助预测状态估计。该方法采用两种数学方法:矩阵Cholesky分解因子更新和矩阵QR分解,引入平... 针对辅助预测状态估计器在迭代计算中会出现状态预测误差协方差矩阵不正定,导致估计精度差甚至发散的问题,提出了基于平方根UPF的电力系统鲁棒辅助预测状态估计。该方法采用两种数学方法:矩阵Cholesky分解因子更新和矩阵QR分解,引入平方根技术动态更新状态预测误差协方差矩阵以保持状态预测误差协方差矩阵的正定性。运用MATLAB进行仿真模拟测试,结果表明:IEEE 30节点系统非高斯噪声测试中,平方根UPF电压相角的均方根误差平均值为UPF相应测试值的0.09%,平方根UPF电压幅值的均方根误差平均值为UPF相应测试值的0.14%;IEEE 57节点系统非高斯噪声测试中,平方根UPF电压相角的均方根误差平均值为UPF相应测试值的0.67%,平方根UPF电压幅值的均方根误差平均值为UPF相应测试值的0.57%。所提出的平方根UPF对解决辅助预测状态估计中状态预测误差协方差矩阵不正定的问题具有很好的效果,具有更高估计精度和鲁棒性。 展开更多
关键词 电力系统 无迹粒子滤波 鲁棒辅助预测状态估计 不正定性 平方根UPF
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部