For classical TCAR(three carrier ambiguity resolution)algorithm is affected by ionospheric delay and measurement noise,it is difficult to reliably fix ambiguity at medium and long baselines.An improved TCAR algorithm ...For classical TCAR(three carrier ambiguity resolution)algorithm is affected by ionospheric delay and measurement noise,it is difficult to reliably fix ambiguity at medium and long baselines.An improved TCAR algorithm which takes the influence of ionospheric delay into account and has good adaptive robustness is proposed.On the basis of the non-geometric TCAR model,ionospheric delay is obtained by linearly combining extra-wide-lane with fixed ambiguity,and then wide-lane ambiguity is solved.Solving narrow-lane ambiguity by adaptive robust filtering by constructing optimal combination observation,which can effectively improve the fixed success rate of narrow-lane ambiguity and reduce the adverse effects of gross error.Experimental results show that the improved TCAR algorithm can guarantee a high fixed correct rate of wide-lane ambiguity,effectively improve fixed success rate of narrow-lane ambiguity,and has a good ability to resist gross error.展开更多
This paper is concerned with the adaptive robust cubature Kalman filtering problem for the case that the dynamics model error and the measurement model error exist simultaneously in the satellite attitude estimation s...This paper is concerned with the adaptive robust cubature Kalman filtering problem for the case that the dynamics model error and the measurement model error exist simultaneously in the satellite attitude estimation system. By using Hubel-based robust filtering methodology to correct the measurement covariance formulation of cubature Kalman filter, the proposed filtering algorithm could effectively suppress the measurement model error. To further enhance this effect and reduce the impact of the dynamics model error, two different adaptively robust filtering algorithms,one with the optimal adaptive factor based on the estimated covariance matrix of the predicted residuals and the other with multiple fading factors based on strong tracking algorithm, are developed and applied for the satellite attitude estimation. The quaternion is employed to represent the global attitude parameter, and three-dimensional generalized Rodrigues parameters are introduced to define the local attitude error. A multiplicative quaternion error is derived from the local attitude error to maintain quaternion normalization constraint in the filter. Simulation results indicate that the proposed novel algorithm could exhibit higher accuracy and faster convergence compared with the multiplicative extended Kalman filter, the unscented quaternion estimator, and the adaptive robust unscented Kalman filter.展开更多
In kinematic navigation and positioning,abnormal observations and kinematic model disturbances are one of the key factors affecting the stability and reliability of positioning performance.Generally,robust adaptive fi...In kinematic navigation and positioning,abnormal observations and kinematic model disturbances are one of the key factors affecting the stability and reliability of positioning performance.Generally,robust adaptive filtering algorithm is used to reduce the influence of them on positioning results.However,it is difficult to accurately identify and separate the influence of abnormal observations and kinematic model disturbances on positioning results,especially in the application of kinematic Precise Point Positioning(PPP).This has always been a key factor limiting the performance of conventional robust adaptive filtering algorithms.To address this problem,this paper proposes a two-step robust adaptive filtering algorithm,which includes two filtering steps:without considering the kinematic model information,the first step of filtering only detects the abnormal observations.Based on the filtering results of the first step,the second step makes further detection on the kinematic model disturbances and conducts adaptive processing.Theoretical analysis and experiment results indicate that the two-step robust adaptive filtering algorithm can further enhance the robustness of the filtering against the influence of abnormal observations and kinematic model disturbances on the positioning results.Ultimately,improvement of the stability and reliability of kinematic PPP is significant.展开更多
This paper is concerned with the robust H ∞ filter problem for networked environments, which are subject to both transmission delay and packet dropouts randomly. By employing random series which have Bernoulli distri...This paper is concerned with the robust H ∞ filter problem for networked environments, which are subject to both transmission delay and packet dropouts randomly. By employing random series which have Bernoulli distributions taking value of 0 or 1, the data transmission model is obtained. Based on state augmentation and stochastic theory, the sufficient condition for robust stability with H ∞ constraints is derived for the filtering error system. The robust filter is designed in terms of feasibility of one certain linear matrix inequality (LMI), which is formed by adopting matrix congruence transformations. A numerical example is given to show the effectiveness of the proposed filtering method.展开更多
The problem of robust L 1 filtering with pole constraint in a disk for linear continuous polytopic uncertain systems is discussed. The attention is focused on design a linear asymptotically stable filter such that th...The problem of robust L 1 filtering with pole constraint in a disk for linear continuous polytopic uncertain systems is discussed. The attention is focused on design a linear asymptotically stable filter such that the filtering error system remains robustly stable, and has a L 1 performance constraint and pole constraint in a disk. The new robust L 1 performance criteria and regional pole placement condition are obtained via parameter-dependent Lyapunov functions method. Upon the proposed multiobjective performance criteria and by means of LMI technique, both full-order and reduced-order robust L 1 filter with suitable dynamic behavior can be obtained from the solution of convex optimization problems. Compared with earlier result in the quadratic framework, this approach turns out to be less conservative. The efficiency of the proposed technique is demonstrated by a numerical example.展开更多
Addresses the design problems of robust L2-L∞ filters with pole constraint in a disk for uncertain continuous-time linear systems. The uncertain parameters are assumed to belong to convex bounded domains. The aim is ...Addresses the design problems of robust L2-L∞ filters with pole constraint in a disk for uncertain continuous-time linear systems. The uncertain parameters are assumed to belong to convex bounded domains. The aim is to determine a stable linear filter such that the filtering error system possesses a prescribed L2-L∞ noise attenuation level and expected poles location. The filtering strategies are based on parameter-dependent Lyapunov stability results to derive new robust L2-L∞ performance criteria and the regional pole placement conditions. From the proposed multi-objective performance criteria, we derive sufficient conditions for the existence of robust L2-L∞ filters with pole constraint in a disk, and cast the filter design into a convex optimization problem subject to a set of linear matrix inequality constraints. This filtering method exhibits less conservativeness than previous results in the quadratic framework. The advantages of the filter design procedures are demonstrated by means of numerical examples.展开更多
This paper is concerned with the problem of robust H-infinity filtering on uncertain systems under sampled measurements, both continuous disturbance and discrete disturbance are considered in the systems. The paramete...This paper is concerned with the problem of robust H-infinity filtering on uncertain systems under sampled measurements, both continuous disturbance and discrete disturbance are considered in the systems. The parameter uncertainty is assumed to be time-varying norm-bounded. The aim is to design an asymptotically stable filter, using the locally sampled measurements, which ensures both the robust asymptotic stability and a prescribed level of H-infinity performance for the filtering error dynamics for all admissible uncertainties. The derivation process is simplified by introducing auxiliary systems and the sufficient condition for the existence of such a filter is proposed. During the study, the main results were expressed as LMIs by employing various matrix techniques. Using LMI toolbox of Matlab software, it is very convenient to obtain the appropriate filter. Finally, a numerical example shows that the method is effective and feasible.展开更多
The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensure...The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensures robust stochastic stability while achieving a prescribed H∞ performance level of the resulting filtering error system, for all admissible uncertainties. The key features of the approach include the introduction of a new type of stochastic Lyapunov functional and some free weighting matrix variables. Sufficient conditions for the solvability of this problem are obtained in terms of a set of linear matrix inequalities. Numerical examples are provided to demonstrate the reduced conservatism of the proposed approach.展开更多
Robust H-infinity filtering for a class of uncertain discrete-time linear systems with time delays and missing measurements is studied in this paper. The uncertain parameters are supposed to reside in a convex polytop...Robust H-infinity filtering for a class of uncertain discrete-time linear systems with time delays and missing measurements is studied in this paper. The uncertain parameters are supposed to reside in a convex polytope and the missing measurements are described by a binary switching sequence satisfying a Bernoulli distribution. Our attention is focused on the analysis and design of robust H-infinity filters such that, for all admissible parameter uncertainties and all possible missing measurements, the filtering error system is exponentially mean-square stable with a prescribed H-infinity disturbance attenuation level. A parameter-dependent approach is proposed to derive a less conservative result. Sufficient conditions are established for the existence of the desired filter in terms of certain linear matrix inequalities (LMIs). When these LMIs are feasible, an explicit expression of the desired filter is also provided. Finally, a numerical example is presented to illustrate the effectiveness and applicability of the proposed method.展开更多
This paper investigates robust filter design for linear discrete-time impulsive systems with uncertainty under H∞ performance. First, an impulsive linear filter and a robust H∞ filtering problem are introduced for a...This paper investigates robust filter design for linear discrete-time impulsive systems with uncertainty under H∞ performance. First, an impulsive linear filter and a robust H∞ filtering problem are introduced for a discrete-time impulsive systems. Then, a sufficient condition of asymptotical stability and H∞ performance for the filtering error systems are provided by the discrete-time Lyapunov function method. The filter gains can be obtained by solving a set of linear matrix inequalities (LMIs). Finally, a numerical example is presented to show effectiveness of the obtained result.展开更多
The problem of robust H∞ filtering for a class of neutral jump systems with time-delay and norm- bounded uncertainties is considered. By re-constructing the system, the dynamics of overall augmented error systems is ...The problem of robust H∞ filtering for a class of neutral jump systems with time-delay and norm- bounded uncertainties is considered. By re-constructing the system, the dynamics of overall augmented error systems is obtained which involves unknown inputs represented by disturbances, model uncertainties and time-delays. As to the nominal system, sufficient conditions are provided for the existence of the mode-dependent H∞ filter by selecting the appropriate Lyapunov-Krasovskii function and the robust H∞ filter is proposed for the jump system while considering the time-delays and uncertainties. Both of above conditions for the existence of the H∞ filter and roust H∞ filter are presented in terms of linear matrix inequalities, and convex optimization problems are formulated to design the desired filters. By employing the proposed mode-dependent H∞ filter, the systems have the stochastic stability and better ability of restraining disturbances stochastically, and the given prescribed H∞ performance is guaranteed. Simulation resuhs illustrate the effectiveness of developed techniques.展开更多
A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then...A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then a Krein space approach is used to tackle the robust H∞ filtering problem. To this end, a new Krein space formal system is designed according to the original sum quadratic constraint (SQC) without introducing any nonzero factors into it and, consequently, the estimate recursion is obtained through the filter gain in Krein space. Finally, a numerical example is given to demonstrate the effectiveness of the proposed approach.展开更多
A robust H∞ approach to filtering for a class of uncertain linear systems with time-delayed measurement is investigated. The parameter uncertainties are described by real time-varying norm-bounded form. A methodology...A robust H∞ approach to filtering for a class of uncertain linear systems with time-delayed measurement is investigated. The parameter uncertainties are described by real time-varying norm-bounded form. A methodology is developed for designing linear filters such that the filtering process remains robustly stable and the transfer function from the disturbance inputs to error state outputs meets the prescribed H∞-norm upper-bound constraints. The filter can be obtained and parameterized by solving two Riccati equations based on the lemma of robust stability for control system with delay. Simulation example proves the method to be effective and feasible.展开更多
State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modele...State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modeled dynamics,parameter sensitivity,etc.This paper discusses the principles and characteristics of three different approaches,extended Kalman filters,strong tracking filters and unscented transformation based Kalman filters.By introducing the unscented transformation method and a sub-optimal fading factor to correct the prediction error covariance,an improved Kalman filter,unscented transformation based robust Kalman filter,is proposed. The performance of the algorithm is compared with the strong tracking filter and unscented transformation based Kalman filter and illustrated in a typical case study for glutathione fermentation process.The results show that the proposed algorithm presents better accuracy and stability on the state estimation in numerical calculations.展开更多
Aiming at the problem that the traditional Unscented Kalman Filtering(UKF) algorithm can't solve the problem that the measurement covariance matrix is unknown and the measured value contains outliers,this paper pr...Aiming at the problem that the traditional Unscented Kalman Filtering(UKF) algorithm can't solve the problem that the measurement covariance matrix is unknown and the measured value contains outliers,this paper proposes a robust adaptive UKF algorithm based on Support Vector Regression(SVR).The algorithm combines the advantages of support vector regression with small samples,nonlinear learning ability and online estimation capability of adaptive algorithm based on innovation.Firstly,the SVR model is trained by using the innovation in the sliding window,and the new innovation is monitored.If the deviation between the estimated innovation and the measured innovation exceeds a given threshold,then measured innovation will be replaced by the predicted innovation,and then the processed innovation is used to calculate the measurement noise covariance matrix using the adaptive estimation algorithm.Simulation experiments and measured data experiments show that SVRUKF is significantly better than the traditional UKF,robust UKF and adaptive UKF algorithms for the case where the covariance matrix is unknown and the measured values have outliers.展开更多
A modified regularized robust filter is proposed for spacecraft attitude determination in the presence of relative misalignment of attitude sensors. The filter is designed to minimize the worst-possible residual norm ...A modified regularized robust filter is proposed for spacecraft attitude determination in the presence of relative misalignment of attitude sensors. The filter is designed to minimize the worst-possible residual norm on condition that there is parametric uncertainty in the measurement model. The weighting matrix of the residual norm is designed to minimize the upper bound of the estimation error variance. The performance of the proposed attitude determination robust filter is illustrated with the use of real test data from a real three-floated gyroscope. Simulation results demonstrate that the attitude estimation accuracy is improved by using the proposed algorithm.展开更多
This paper deals with the problem of H-infinity filter design for uncertain time-delay singular stochastic systems with Markovian jump. Based on the extended It6 stochastic differential formula, sufficient conditions ...This paper deals with the problem of H-infinity filter design for uncertain time-delay singular stochastic systems with Markovian jump. Based on the extended It6 stochastic differential formula, sufficient conditions for the solvability of these problems are obtained. Furthermore, It is shown that a desired filter can be constructed by solving a set of linear matrix inequalities. Finally, a simulation example is given to demonstrate the effectiveness of the proposed method.展开更多
Filtration is one of the core elements of analysis tools in geometrical metrology. Filtration techniques are progressing along with the advancement of manufacturing technology. Modern filtration techniques are require...Filtration is one of the core elements of analysis tools in geometrical metrology. Filtration techniques are progressing along with the advancement of manufacturing technology. Modern filtration techniques are required to be robust against outliers, applicable to surfaces with complex geometry and reliable in whole range of measurement data. A comparison study is conducted to evaluate commonly used robust filtration techniques in the field of geometrical metrology, including the two-stage Gaussian filter, the robust Gaussian regression filter, the robust spline filter and morphological filters. They are compared in terms of four aspects: functionality, mathematical computation, capability and characterization parameters. As a result, this study offers metrologists a guideline to choose the appropriate filter for various applications.展开更多
In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. First, a reference residual model is introduced to formulate the RFDF design pr...In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. First, a reference residual model is introduced to formulate the RFDF design problem as an H∞ model-matching problem. Then appropriate input/output selection matrices are introduced to extend a performance index to the time-delay systems in time domain. The reference residual model designed according to the performance index is an optimal residual generator, which takes into account the robustness against disturbances and sensitivity to faults simultaneously. Applying robust H∞ optimization control technique, the existence conditions of the RFDF for nonlinear time-delay systems with unknown inputs are presented in terms of linear matrix inequality (LMI) formulation, independently of time delay. An illustrative design example is used to demonstrate the validity and applicability of the proposed approach.展开更多
In this paper, an approach for designing robust fault detection filter (RFDF) of networked control systems (NCSs) with unknown inputs is studied. The design aims at implementing the optimal trade-off between robustnes...In this paper, an approach for designing robust fault detection filter (RFDF) of networked control systems (NCSs) with unknown inputs is studied. The design aims at implementing the optimal trade-off between robustness of unknown inputs (including the item produced by networked-induced delay) and sensitivity of fault. The key design issue is to introduce an optimal fault detection filter based on NCSs with the control law compensation as the reference residual model of NCSs and to formulate the RFDF design as a model-matching problem. By applying H∞ optimization technique, linear matrix inequality (LMI) approach is given to solve the model-matching problem. The validity of the proposed approach is shown by a numerical example.展开更多
文摘For classical TCAR(three carrier ambiguity resolution)algorithm is affected by ionospheric delay and measurement noise,it is difficult to reliably fix ambiguity at medium and long baselines.An improved TCAR algorithm which takes the influence of ionospheric delay into account and has good adaptive robustness is proposed.On the basis of the non-geometric TCAR model,ionospheric delay is obtained by linearly combining extra-wide-lane with fixed ambiguity,and then wide-lane ambiguity is solved.Solving narrow-lane ambiguity by adaptive robust filtering by constructing optimal combination observation,which can effectively improve the fixed success rate of narrow-lane ambiguity and reduce the adverse effects of gross error.Experimental results show that the improved TCAR algorithm can guarantee a high fixed correct rate of wide-lane ambiguity,effectively improve fixed success rate of narrow-lane ambiguity,and has a good ability to resist gross error.
基金co-supported by the National Natural Science Foundation of China (No. 61573113)the Harbin Research Foundation for Leaders of Outstanding Disciplines, China (No. 2014RFXXJ074)
文摘This paper is concerned with the adaptive robust cubature Kalman filtering problem for the case that the dynamics model error and the measurement model error exist simultaneously in the satellite attitude estimation system. By using Hubel-based robust filtering methodology to correct the measurement covariance formulation of cubature Kalman filter, the proposed filtering algorithm could effectively suppress the measurement model error. To further enhance this effect and reduce the impact of the dynamics model error, two different adaptively robust filtering algorithms,one with the optimal adaptive factor based on the estimated covariance matrix of the predicted residuals and the other with multiple fading factors based on strong tracking algorithm, are developed and applied for the satellite attitude estimation. The quaternion is employed to represent the global attitude parameter, and three-dimensional generalized Rodrigues parameters are introduced to define the local attitude error. A multiplicative quaternion error is derived from the local attitude error to maintain quaternion normalization constraint in the filter. Simulation results indicate that the proposed novel algorithm could exhibit higher accuracy and faster convergence compared with the multiplicative extended Kalman filter, the unscented quaternion estimator, and the adaptive robust unscented Kalman filter.
基金co-supported by the National Natural Science Foundation of China(No.41874034)the National key research and development program of China(No.2016YFB0502102)+1 种基金the Beijing Natural Science Foundation(No.4202041)the Aeronautical Science Foundation of China(No.2016ZC51024)。
文摘In kinematic navigation and positioning,abnormal observations and kinematic model disturbances are one of the key factors affecting the stability and reliability of positioning performance.Generally,robust adaptive filtering algorithm is used to reduce the influence of them on positioning results.However,it is difficult to accurately identify and separate the influence of abnormal observations and kinematic model disturbances on positioning results,especially in the application of kinematic Precise Point Positioning(PPP).This has always been a key factor limiting the performance of conventional robust adaptive filtering algorithms.To address this problem,this paper proposes a two-step robust adaptive filtering algorithm,which includes two filtering steps:without considering the kinematic model information,the first step of filtering only detects the abnormal observations.Based on the filtering results of the first step,the second step makes further detection on the kinematic model disturbances and conducts adaptive processing.Theoretical analysis and experiment results indicate that the two-step robust adaptive filtering algorithm can further enhance the robustness of the filtering against the influence of abnormal observations and kinematic model disturbances on the positioning results.Ultimately,improvement of the stability and reliability of kinematic PPP is significant.
基金supported by National Natural Science Foundation of China (No. 61004088)the Key Foundation for Basic Research from Science and Technology Commission of Shanghai (No. 09JC1408000)the Aeronautic Science Foundation of China (No. 20100157001)
文摘This paper is concerned with the robust H ∞ filter problem for networked environments, which are subject to both transmission delay and packet dropouts randomly. By employing random series which have Bernoulli distributions taking value of 0 or 1, the data transmission model is obtained. Based on state augmentation and stochastic theory, the sufficient condition for robust stability with H ∞ constraints is derived for the filtering error system. The robust filter is designed in terms of feasibility of one certain linear matrix inequality (LMI), which is formed by adopting matrix congruence transformations. A numerical example is given to show the effectiveness of the proposed filtering method.
文摘The problem of robust L 1 filtering with pole constraint in a disk for linear continuous polytopic uncertain systems is discussed. The attention is focused on design a linear asymptotically stable filter such that the filtering error system remains robustly stable, and has a L 1 performance constraint and pole constraint in a disk. The new robust L 1 performance criteria and regional pole placement condition are obtained via parameter-dependent Lyapunov functions method. Upon the proposed multiobjective performance criteria and by means of LMI technique, both full-order and reduced-order robust L 1 filter with suitable dynamic behavior can be obtained from the solution of convex optimization problems. Compared with earlier result in the quadratic framework, this approach turns out to be less conservative. The efficiency of the proposed technique is demonstrated by a numerical example.
文摘Addresses the design problems of robust L2-L∞ filters with pole constraint in a disk for uncertain continuous-time linear systems. The uncertain parameters are assumed to belong to convex bounded domains. The aim is to determine a stable linear filter such that the filtering error system possesses a prescribed L2-L∞ noise attenuation level and expected poles location. The filtering strategies are based on parameter-dependent Lyapunov stability results to derive new robust L2-L∞ performance criteria and the regional pole placement conditions. From the proposed multi-objective performance criteria, we derive sufficient conditions for the existence of robust L2-L∞ filters with pole constraint in a disk, and cast the filter design into a convex optimization problem subject to a set of linear matrix inequality constraints. This filtering method exhibits less conservativeness than previous results in the quadratic framework. The advantages of the filter design procedures are demonstrated by means of numerical examples.
基金This work was supported by the National Natural Science Foundation of China (No.60274009) and the National Program (863) of High TechnologyDevelopment(No.2004AA412030).
文摘This paper is concerned with the problem of robust H-infinity filtering on uncertain systems under sampled measurements, both continuous disturbance and discrete disturbance are considered in the systems. The parameter uncertainty is assumed to be time-varying norm-bounded. The aim is to design an asymptotically stable filter, using the locally sampled measurements, which ensures both the robust asymptotic stability and a prescribed level of H-infinity performance for the filtering error dynamics for all admissible uncertainties. The derivation process is simplified by introducing auxiliary systems and the sufficient condition for the existence of such a filter is proposed. During the study, the main results were expressed as LMIs by employing various matrix techniques. Using LMI toolbox of Matlab software, it is very convenient to obtain the appropriate filter. Finally, a numerical example shows that the method is effective and feasible.
文摘The robust H∞ filtering problem for uncertain discrete-time Markovian jump linear systems with mode- dependent time-delays is investigated. Attention is focused on designing a Markovian jump linear filter that ensures robust stochastic stability while achieving a prescribed H∞ performance level of the resulting filtering error system, for all admissible uncertainties. The key features of the approach include the introduction of a new type of stochastic Lyapunov functional and some free weighting matrix variables. Sufficient conditions for the solvability of this problem are obtained in terms of a set of linear matrix inequalities. Numerical examples are provided to demonstrate the reduced conservatism of the proposed approach.
基金This work was supported by the National Natural Science Foundation of China(No.60574084)the National 863 Project(No.2006AA04Z428)the National 973 Program of China(No.2002CB312200).
文摘Robust H-infinity filtering for a class of uncertain discrete-time linear systems with time delays and missing measurements is studied in this paper. The uncertain parameters are supposed to reside in a convex polytope and the missing measurements are described by a binary switching sequence satisfying a Bernoulli distribution. Our attention is focused on the analysis and design of robust H-infinity filters such that, for all admissible parameter uncertainties and all possible missing measurements, the filtering error system is exponentially mean-square stable with a prescribed H-infinity disturbance attenuation level. A parameter-dependent approach is proposed to derive a less conservative result. Sufficient conditions are established for the existence of the desired filter in terms of certain linear matrix inequalities (LMIs). When these LMIs are feasible, an explicit expression of the desired filter is also provided. Finally, a numerical example is presented to illustrate the effectiveness and applicability of the proposed method.
基金supported by the National Natural Science Foundation of China (No. 60874027)
文摘This paper investigates robust filter design for linear discrete-time impulsive systems with uncertainty under H∞ performance. First, an impulsive linear filter and a robust H∞ filtering problem are introduced for a discrete-time impulsive systems. Then, a sufficient condition of asymptotical stability and H∞ performance for the filtering error systems are provided by the discrete-time Lyapunov function method. The filter gains can be obtained by solving a set of linear matrix inequalities (LMIs). Finally, a numerical example is presented to show effectiveness of the obtained result.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60574001)Program for New Century Excellent Talents in University(Grant No.NCET-05-0485)
文摘The problem of robust H∞ filtering for a class of neutral jump systems with time-delay and norm- bounded uncertainties is considered. By re-constructing the system, the dynamics of overall augmented error systems is obtained which involves unknown inputs represented by disturbances, model uncertainties and time-delays. As to the nominal system, sufficient conditions are provided for the existence of the mode-dependent H∞ filter by selecting the appropriate Lyapunov-Krasovskii function and the robust H∞ filter is proposed for the jump system while considering the time-delays and uncertainties. Both of above conditions for the existence of the H∞ filter and roust H∞ filter are presented in terms of linear matrix inequalities, and convex optimization problems are formulated to design the desired filters. By employing the proposed mode-dependent H∞ filter, the systems have the stochastic stability and better ability of restraining disturbances stochastically, and the given prescribed H∞ performance is guaranteed. Simulation resuhs illustrate the effectiveness of developed techniques.
基金supported by the National Natural Science Foundation of China (51179039)the Ph.D. Programs Foundation of Ministry of Education of China (20102304110021)
文摘A novel Krein space approach to robust H∞ filtering for linear uncertain systems is developed. The parameter uncertainty, entering into both states and measurement equations, satisfies an energy-type constraint. Then a Krein space approach is used to tackle the robust H∞ filtering problem. To this end, a new Krein space formal system is designed according to the original sum quadratic constraint (SQC) without introducing any nonzero factors into it and, consequently, the estimate recursion is obtained through the filter gain in Krein space. Finally, a numerical example is given to demonstrate the effectiveness of the proposed approach.
基金in part by the National Natural Science Foundation under Grrant 69804007,863/CIMS High Technology Foundation 511--845-008 and Science and Technology Program of Shanghai(99QD14012)
文摘A robust H∞ approach to filtering for a class of uncertain linear systems with time-delayed measurement is investigated. The parameter uncertainties are described by real time-varying norm-bounded form. A methodology is developed for designing linear filters such that the filtering process remains robustly stable and the transfer function from the disturbance inputs to error state outputs meets the prescribed H∞-norm upper-bound constraints. The filter can be obtained and parameterized by solving two Riccati equations based on the lemma of robust stability for control system with delay. Simulation example proves the method to be effective and feasible.
基金Supported by the National Natural Science Foundation of China (20476007, 20676013).
文摘State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modeled dynamics,parameter sensitivity,etc.This paper discusses the principles and characteristics of three different approaches,extended Kalman filters,strong tracking filters and unscented transformation based Kalman filters.By introducing the unscented transformation method and a sub-optimal fading factor to correct the prediction error covariance,an improved Kalman filter,unscented transformation based robust Kalman filter,is proposed. The performance of the algorithm is compared with the strong tracking filter and unscented transformation based Kalman filter and illustrated in a typical case study for glutathione fermentation process.The results show that the proposed algorithm presents better accuracy and stability on the state estimation in numerical calculations.
文摘Aiming at the problem that the traditional Unscented Kalman Filtering(UKF) algorithm can't solve the problem that the measurement covariance matrix is unknown and the measured value contains outliers,this paper proposes a robust adaptive UKF algorithm based on Support Vector Regression(SVR).The algorithm combines the advantages of support vector regression with small samples,nonlinear learning ability and online estimation capability of adaptive algorithm based on innovation.Firstly,the SVR model is trained by using the innovation in the sliding window,and the new innovation is monitored.If the deviation between the estimated innovation and the measured innovation exceeds a given threshold,then measured innovation will be replaced by the predicted innovation,and then the processed innovation is used to calculate the measurement noise covariance matrix using the adaptive estimation algorithm.Simulation experiments and measured data experiments show that SVRUKF is significantly better than the traditional UKF,robust UKF and adaptive UKF algorithms for the case where the covariance matrix is unknown and the measured values have outliers.
基金National Natural Science Foundation of China (60702019 61074103)
文摘A modified regularized robust filter is proposed for spacecraft attitude determination in the presence of relative misalignment of attitude sensors. The filter is designed to minimize the worst-possible residual norm on condition that there is parametric uncertainty in the measurement model. The weighting matrix of the residual norm is designed to minimize the upper bound of the estimation error variance. The performance of the proposed attitude determination robust filter is illustrated with the use of real test data from a real three-floated gyroscope. Simulation results demonstrate that the attitude estimation accuracy is improved by using the proposed algorithm.
基金This work was supported by the National Natural Science Foundation of China(No.60074007).
文摘This paper deals with the problem of H-infinity filter design for uncertain time-delay singular stochastic systems with Markovian jump. Based on the extended It6 stochastic differential formula, sufficient conditions for the solvability of these problems are obtained. Furthermore, It is shown that a desired filter can be constructed by solving a set of linear matrix inequalities. Finally, a simulation example is given to demonstrate the effectiveness of the proposed method.
基金supported by UK's Engineering and Physical Sciences Research Council (EPSRC) funding of the EPSRC Centre for Innovative Manufacturing in Advanced Metrology(No.EP/I033424/1)European Research Council(No.ERC-2008-AdG 228117-Surfund)
文摘Filtration is one of the core elements of analysis tools in geometrical metrology. Filtration techniques are progressing along with the advancement of manufacturing technology. Modern filtration techniques are required to be robust against outliers, applicable to surfaces with complex geometry and reliable in whole range of measurement data. A comparison study is conducted to evaluate commonly used robust filtration techniques in the field of geometrical metrology, including the two-stage Gaussian filter, the robust Gaussian regression filter, the robust spline filter and morphological filters. They are compared in terms of four aspects: functionality, mathematical computation, capability and characterization parameters. As a result, this study offers metrologists a guideline to choose the appropriate filter for various applications.
基金Project (No. 60574081) supported by the National Natural ScienceFoundation of China
文摘In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. First, a reference residual model is introduced to formulate the RFDF design problem as an H∞ model-matching problem. Then appropriate input/output selection matrices are introduced to extend a performance index to the time-delay systems in time domain. The reference residual model designed according to the performance index is an optimal residual generator, which takes into account the robustness against disturbances and sensitivity to faults simultaneously. Applying robust H∞ optimization control technique, the existence conditions of the RFDF for nonlinear time-delay systems with unknown inputs are presented in terms of linear matrix inequality (LMI) formulation, independently of time delay. An illustrative design example is used to demonstrate the validity and applicability of the proposed approach.
文摘In this paper, an approach for designing robust fault detection filter (RFDF) of networked control systems (NCSs) with unknown inputs is studied. The design aims at implementing the optimal trade-off between robustness of unknown inputs (including the item produced by networked-induced delay) and sensitivity of fault. The key design issue is to introduce an optimal fault detection filter based on NCSs with the control law compensation as the reference residual model of NCSs and to formulate the RFDF design as a model-matching problem. By applying H∞ optimization technique, linear matrix inequality (LMI) approach is given to solve the model-matching problem. The validity of the proposed approach is shown by a numerical example.