State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modele...State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modeled dynamics,parameter sensitivity,etc.This paper discusses the principles and characteristics of three different approaches,extended Kalman filters,strong tracking filters and unscented transformation based Kalman filters.By introducing the unscented transformation method and a sub-optimal fading factor to correct the prediction error covariance,an improved Kalman filter,unscented transformation based robust Kalman filter,is proposed. The performance of the algorithm is compared with the strong tracking filter and unscented transformation based Kalman filter and illustrated in a typical case study for glutathione fermentation process.The results show that the proposed algorithm presents better accuracy and stability on the state estimation in numerical calculations.展开更多
Beidou-3 navigation satellite system(BDS-3)initiated a real-time service for precise point positioning(PPP)using the B2b signal,mainly for users in China and surrounding areas.In this paper,the performance of PPP-B2b ...Beidou-3 navigation satellite system(BDS-3)initiated a real-time service for precise point positioning(PPP)using the B2b signal,mainly for users in China and surrounding areas.In this paper,the performance of PPP-B2b service is experimentally analyzed first.Then,the ionosphere-free model is established.In order to solve the problem of slow convergence for traditional PPP,an adaptive robust extend Kalman filter(AREKF)algorithm is developed.Unlike the error compensation models,it reflects the noise information in real time by adjusting the covariance matrix of the measurements and the weight matrix of the state vector.The experimental results are analyzed last.Evaluation results indicate that the corrections provided by PPP-B2b can significantly reduce the discontinuous error of the orbits and clock offsets caused by broadcast ephemeris updating.Positioning results confirm that AREKF outperforms EKF both in static and kinematic modes.Around 20%improvement in accuracy and 25%improvement in convergence speed are achieved,making it valuable for PPP processing.展开更多
When adaptive robust control(ARC) strategy based on backstepping design is applied in pneumatic servo control, accurate pressure tracking in motion is especially necessary for both force and position trajectories tr...When adaptive robust control(ARC) strategy based on backstepping design is applied in pneumatic servo control, accurate pressure tracking in motion is especially necessary for both force and position trajectories tracking ofrodless pneumatic cylinders, and therefore an adaptive robust pressure controller is developed in this paper to improve the tracking accuracy of pressure trajectory in the chamber when the pneumatic cylinder is moving. In the proposed adaptive robust pressure controller, off-line fitting of the orifice area and on-line parameter estimation of the flow coefficient are utilized to have improved model compensation, and meanwhile robust feedback and Kalman filter are used to have strong robustness against uncertain nonlinearities, parameter fluctuations and noise. Research results demonstrate that the adaptive robust pressure controller could not only track various pressure trajectories accurately even when the pneumatic cylinder is moving, but also obtain very smooth control input, which indicates the effectiveness of adaptive model compensation. Especially when a step pressure trajectory is tracked under the condition of the movement of a rodless pneumatic cylinder, maximum tracking error of ARC is 4.46 kPa and average tracking error is 0.99 kPa, and steady-state error of ARC could achieve 0.84 kPa, which is very close to the measurement accuracy of pressure transducer.展开更多
This paper uses a robust feedback linearization strategy in order to assure a good dynamic performance, stability and a decoupling of the currents for Permanent Magnet Synchronous Motor (PMSM) in a rotating reference ...This paper uses a robust feedback linearization strategy in order to assure a good dynamic performance, stability and a decoupling of the currents for Permanent Magnet Synchronous Motor (PMSM) in a rotating reference frame (d, q). However this control requires the knowledge of certain variables (speed, torque, position) that are difficult to access or its sensors require the additional mounting space, reduce the reliability in harsh environments and increase the cost of motor. And also a stator resistance variation can induce a performance degradation of the system. Thus a sixth-order Discrete-time Extended Kalman Filter approach is proposed for on-line estimation of speed, rotor position, load torque and stator resistance in a PMSM. The interesting simulations results obtained on a PMSM subjected to the load disturbance show very well the effectiveness and good performance of the proposed nonlinear feedback control and Extended Kalman Filter algorithm for the estimation in the presence of parameter variation and measurement noise.展开更多
This paper is concerned with the adaptive robust cubature Kalman filtering problem for the case that the dynamics model error and the measurement model error exist simultaneously in the satellite attitude estimation s...This paper is concerned with the adaptive robust cubature Kalman filtering problem for the case that the dynamics model error and the measurement model error exist simultaneously in the satellite attitude estimation system. By using Hubel-based robust filtering methodology to correct the measurement covariance formulation of cubature Kalman filter, the proposed filtering algorithm could effectively suppress the measurement model error. To further enhance this effect and reduce the impact of the dynamics model error, two different adaptively robust filtering algorithms,one with the optimal adaptive factor based on the estimated covariance matrix of the predicted residuals and the other with multiple fading factors based on strong tracking algorithm, are developed and applied for the satellite attitude estimation. The quaternion is employed to represent the global attitude parameter, and three-dimensional generalized Rodrigues parameters are introduced to define the local attitude error. A multiplicative quaternion error is derived from the local attitude error to maintain quaternion normalization constraint in the filter. Simulation results indicate that the proposed novel algorithm could exhibit higher accuracy and faster convergence compared with the multiplicative extended Kalman filter, the unscented quaternion estimator, and the adaptive robust unscented Kalman filter.展开更多
The exponential growth of the Internet coupled with the increasing popularity of dynamically generated content on the World Wide Web, has created the need for more and faster Web servers capable of serving the over 10...The exponential growth of the Internet coupled with the increasing popularity of dynamically generated content on the World Wide Web, has created the need for more and faster Web servers capable of serving the over 100 million Internet users. To converge the control method has emerged as a promising technique to solve the Web QoS problem. In this paper, a model of adaptive session is presented and a session flow self regulating algorism based on Kalman Filter are proposed towards Weh Server. And a Web QoS self-regularing scheme is advanced. To attain the goal of on-line system identification, the optimized estimation of QoS parameters is fulfilled by utilizing Kalman Filter in full domain, The simulation results shows thal the proposed scheme can guarantee the QoS with both robusmess and stability .展开更多
The fading factor exerts a significant role in the strong tracking idea. However, traditional fading factor introduction method hinders the accuracy and robustness advantages of current strong-tracking-based nonlinear...The fading factor exerts a significant role in the strong tracking idea. However, traditional fading factor introduction method hinders the accuracy and robustness advantages of current strong-tracking-based nonlinear filtering algorithms such as Cubature Kalman Filter(CKF) since traditional fading factor introduction method only considers the first-order Taylor expansion. To this end, a new fading factor idea is suggested and introduced into the strong tracking CKF method.The new fading factor introduction method expanded the number of fading factors from one to two with reselected introduction positions. The relationship between the two fading factors as well as the general calculation method can be derived based on Taylor expansion. Obvious superiority of the newly suggested fading factor introduction method is demonstrated according to different nonlinearity of the measurement function. Equivalent calculation method can also be established while applied to CKF. Theoretical analysis shows that the strong tracking CKF can extract the thirdorder term information from the residual and thus realize second-order accuracy. After optimizing the strong tracking algorithm process, a Fast Strong Tracking CKF(FSTCKF) is finally established. Two simulation examples show that the novel FSTCKF improves the robustness of traditional CKF while minimizing the algorithm time complexity under various conditions.展开更多
A modified regularized robust filter is proposed for spacecraft attitude determination in the presence of relative misalignment of attitude sensors. The filter is designed to minimize the worst-possible residual norm ...A modified regularized robust filter is proposed for spacecraft attitude determination in the presence of relative misalignment of attitude sensors. The filter is designed to minimize the worst-possible residual norm on condition that there is parametric uncertainty in the measurement model. The weighting matrix of the residual norm is designed to minimize the upper bound of the estimation error variance. The performance of the proposed attitude determination robust filter is illustrated with the use of real test data from a real three-floated gyroscope. Simulation results demonstrate that the attitude estimation accuracy is improved by using the proposed algorithm.展开更多
A novel low-cost adaptive square-root cubature Kalmanfilter (LCASCKF) is proposed to enhance the robustness of processmodels while only increasing the computational load slightly.It is well-known that the Kalman fil...A novel low-cost adaptive square-root cubature Kalmanfilter (LCASCKF) is proposed to enhance the robustness of processmodels while only increasing the computational load slightly.It is well-known that the Kalman filter cannot handle uncertainties ina process model, such as initial state estimation errors, parametermismatch and abrupt state changes. These uncertainties severelyaffect filter performance and may even provoke divergence. Astrong tracking filter (STF), which utilizes a suboptimal fading factor,is an adaptive approach that is commonly adopted to solvethis problem. However, if the strong tracking SCKF (STSCKF)uses the same method as the extended Kalman filter (EKF) tointroduce the suboptimal fading factor, it greatly increases thecomputational load. To avoid this problem, a low-cost introductorymethod is proposed and a hypothesis testing theory is applied todetect uncertainties. The computational load analysis is performedby counting the total number of floating-point operations and it isfound that the computational load of LCASCKF is close to that ofSCKF. Experimental results prove that the LCASCKF performs aswell as STSCKF, while the increase in computational load is muchlower than STSCKF.展开更多
Though the ensemble Kalman filter (EnKF) has been successfully applied in many areas, it requires explicit and accurate model and measurement error information, leading to difficulties in practice when only limited ...Though the ensemble Kalman filter (EnKF) has been successfully applied in many areas, it requires explicit and accurate model and measurement error information, leading to difficulties in practice when only limited information on error mechanisms of observational in-struments for subsurface systems is accessible. To handle the uncertain errors, we applied a robust data assimilation algorithm, the ensemble H-infinity filter (EnHF), to estimation of aquifer hydraulic heads and conductivities in a flow model with uncertain/correlated observational errors. The impacts of spatial and temporal correlations in measurements were analyzed, and the performance of EnHF was compared with that of the EnKF. The results show that both EnHF and EnKF are able to estimate hydraulic conductivities properly when observations are free of error; EnHF can provide robust estimates of hydraulic conductivities even when no observational error information is provided. In contrast, the estimates of EnKF seem noticeably undermined because of correlated errors and inaccurate error statistics, and filter divergence was observed. It is concluded that EnHF is an efficient assimilation algorithm when observational errors are unknown or error statistics are inaccurate.展开更多
An optimized robust filtering algorithm for uncertain discrete-time systemsis presented. To get a series of computational equations, the uncertain part generated by theuncertain systematic matrix in the expression of ...An optimized robust filtering algorithm for uncertain discrete-time systemsis presented. To get a series of computational equations, the uncertain part generated by theuncertain systematic matrix in the expression of the error-covariance matrix of time update stateestimation is optimized and the least upper bound of the uncertain part is given. By means of theseresults, the equivalent systematic matrix is obtained and a robust time update algorithm is builtup. On the other hand, uncertain parts generated by the uncertain observation matrix in theexpression of the error-covariance matrix of measurement update state estimation are optimized, andthe largest lower bound of the uncertain part is given. Thus both the time update and measurementupdate algorithms are developed. By means of the matrix inversion formula, the expression structuresof both time update and measurement update algorithms are all simplified. Moreover, the convergencecondition of a robust filter is developed to make the results easy to application. The results offlight data processing show that the method presented in this paper is efficient.展开更多
A robust finite-horizon Kalman filter is designed for linear discrete-time systems subject to norm-bounded uncertainties in the modeling parameters and missing measurements.The missing measurements were described by a...A robust finite-horizon Kalman filter is designed for linear discrete-time systems subject to norm-bounded uncertainties in the modeling parameters and missing measurements.The missing measurements were described by a binary switching sequence satisfying a conditional probability distribution,the commonest cases in engineering,such that the expectation of the measurements could be utilized during the iteration process.To consider the uncertainties in the system model,an upperbound for the estimation error covariance was obtained since its real value was unaccessible.Our filter scheme is on the basis of minimizing the obtained upper bound where we refer to the deduction of a classic Kalman filter thus calculation of the derivatives are avoided.Simulations are presented to illustrate the effectiveness of the proposed approach.展开更多
基金Supported by the National Natural Science Foundation of China (20476007, 20676013).
文摘State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modeled dynamics,parameter sensitivity,etc.This paper discusses the principles and characteristics of three different approaches,extended Kalman filters,strong tracking filters and unscented transformation based Kalman filters.By introducing the unscented transformation method and a sub-optimal fading factor to correct the prediction error covariance,an improved Kalman filter,unscented transformation based robust Kalman filter,is proposed. The performance of the algorithm is compared with the strong tracking filter and unscented transformation based Kalman filter and illustrated in a typical case study for glutathione fermentation process.The results show that the proposed algorithm presents better accuracy and stability on the state estimation in numerical calculations.
文摘Beidou-3 navigation satellite system(BDS-3)initiated a real-time service for precise point positioning(PPP)using the B2b signal,mainly for users in China and surrounding areas.In this paper,the performance of PPP-B2b service is experimentally analyzed first.Then,the ionosphere-free model is established.In order to solve the problem of slow convergence for traditional PPP,an adaptive robust extend Kalman filter(AREKF)algorithm is developed.Unlike the error compensation models,it reflects the noise information in real time by adjusting the covariance matrix of the measurements and the weight matrix of the state vector.The experimental results are analyzed last.Evaluation results indicate that the corrections provided by PPP-B2b can significantly reduce the discontinuous error of the orbits and clock offsets caused by broadcast ephemeris updating.Positioning results confirm that AREKF outperforms EKF both in static and kinematic modes.Around 20%improvement in accuracy and 25%improvement in convergence speed are achieved,making it valuable for PPP processing.
基金supported by National Natural Science Foundation of China (Grant No. 50775200)
文摘When adaptive robust control(ARC) strategy based on backstepping design is applied in pneumatic servo control, accurate pressure tracking in motion is especially necessary for both force and position trajectories tracking ofrodless pneumatic cylinders, and therefore an adaptive robust pressure controller is developed in this paper to improve the tracking accuracy of pressure trajectory in the chamber when the pneumatic cylinder is moving. In the proposed adaptive robust pressure controller, off-line fitting of the orifice area and on-line parameter estimation of the flow coefficient are utilized to have improved model compensation, and meanwhile robust feedback and Kalman filter are used to have strong robustness against uncertain nonlinearities, parameter fluctuations and noise. Research results demonstrate that the adaptive robust pressure controller could not only track various pressure trajectories accurately even when the pneumatic cylinder is moving, but also obtain very smooth control input, which indicates the effectiveness of adaptive model compensation. Especially when a step pressure trajectory is tracked under the condition of the movement of a rodless pneumatic cylinder, maximum tracking error of ARC is 4.46 kPa and average tracking error is 0.99 kPa, and steady-state error of ARC could achieve 0.84 kPa, which is very close to the measurement accuracy of pressure transducer.
基金Supported by National Natural Science Foundation of China (60874063) and Innovation and Scientific Research Foundation of Graduate Student of Heilongjiang Province (YJSCX2012-263HLJ)
基金Supported by National Natural Science Foundation of China (60874063), and Innovation and Scientific Research Foundation of Graduate Student of Heilongjiang Province (YJSCX2012-263HLJ)
文摘This paper uses a robust feedback linearization strategy in order to assure a good dynamic performance, stability and a decoupling of the currents for Permanent Magnet Synchronous Motor (PMSM) in a rotating reference frame (d, q). However this control requires the knowledge of certain variables (speed, torque, position) that are difficult to access or its sensors require the additional mounting space, reduce the reliability in harsh environments and increase the cost of motor. And also a stator resistance variation can induce a performance degradation of the system. Thus a sixth-order Discrete-time Extended Kalman Filter approach is proposed for on-line estimation of speed, rotor position, load torque and stator resistance in a PMSM. The interesting simulations results obtained on a PMSM subjected to the load disturbance show very well the effectiveness and good performance of the proposed nonlinear feedback control and Extended Kalman Filter algorithm for the estimation in the presence of parameter variation and measurement noise.
基金co-supported by the National Natural Science Foundation of China (No. 61573113)the Harbin Research Foundation for Leaders of Outstanding Disciplines, China (No. 2014RFXXJ074)
文摘This paper is concerned with the adaptive robust cubature Kalman filtering problem for the case that the dynamics model error and the measurement model error exist simultaneously in the satellite attitude estimation system. By using Hubel-based robust filtering methodology to correct the measurement covariance formulation of cubature Kalman filter, the proposed filtering algorithm could effectively suppress the measurement model error. To further enhance this effect and reduce the impact of the dynamics model error, two different adaptively robust filtering algorithms,one with the optimal adaptive factor based on the estimated covariance matrix of the predicted residuals and the other with multiple fading factors based on strong tracking algorithm, are developed and applied for the satellite attitude estimation. The quaternion is employed to represent the global attitude parameter, and three-dimensional generalized Rodrigues parameters are introduced to define the local attitude error. A multiplicative quaternion error is derived from the local attitude error to maintain quaternion normalization constraint in the filter. Simulation results indicate that the proposed novel algorithm could exhibit higher accuracy and faster convergence compared with the multiplicative extended Kalman filter, the unscented quaternion estimator, and the adaptive robust unscented Kalman filter.
基金Supported by the National Natural Science Funda-tion of China (60272024) ,the National Natural Science Foundation ofHenan Province (0411014100)
文摘The exponential growth of the Internet coupled with the increasing popularity of dynamically generated content on the World Wide Web, has created the need for more and faster Web servers capable of serving the over 100 million Internet users. To converge the control method has emerged as a promising technique to solve the Web QoS problem. In this paper, a model of adaptive session is presented and a session flow self regulating algorism based on Kalman Filter are proposed towards Weh Server. And a Web QoS self-regularing scheme is advanced. To attain the goal of on-line system identification, the optimized estimation of QoS parameters is fulfilled by utilizing Kalman Filter in full domain, The simulation results shows thal the proposed scheme can guarantee the QoS with both robusmess and stability .
基金supported by the National Natural Science Foundation of China (No. 61573283)
文摘The fading factor exerts a significant role in the strong tracking idea. However, traditional fading factor introduction method hinders the accuracy and robustness advantages of current strong-tracking-based nonlinear filtering algorithms such as Cubature Kalman Filter(CKF) since traditional fading factor introduction method only considers the first-order Taylor expansion. To this end, a new fading factor idea is suggested and introduced into the strong tracking CKF method.The new fading factor introduction method expanded the number of fading factors from one to two with reselected introduction positions. The relationship between the two fading factors as well as the general calculation method can be derived based on Taylor expansion. Obvious superiority of the newly suggested fading factor introduction method is demonstrated according to different nonlinearity of the measurement function. Equivalent calculation method can also be established while applied to CKF. Theoretical analysis shows that the strong tracking CKF can extract the thirdorder term information from the residual and thus realize second-order accuracy. After optimizing the strong tracking algorithm process, a Fast Strong Tracking CKF(FSTCKF) is finally established. Two simulation examples show that the novel FSTCKF improves the robustness of traditional CKF while minimizing the algorithm time complexity under various conditions.
基金National Natural Science Foundation of China (60702019 61074103)
文摘A modified regularized robust filter is proposed for spacecraft attitude determination in the presence of relative misalignment of attitude sensors. The filter is designed to minimize the worst-possible residual norm on condition that there is parametric uncertainty in the measurement model. The weighting matrix of the residual norm is designed to minimize the upper bound of the estimation error variance. The performance of the proposed attitude determination robust filter is illustrated with the use of real test data from a real three-floated gyroscope. Simulation results demonstrate that the attitude estimation accuracy is improved by using the proposed algorithm.
基金supported by the National Natural Science Foundation of China(61573283)
文摘A novel low-cost adaptive square-root cubature Kalmanfilter (LCASCKF) is proposed to enhance the robustness of processmodels while only increasing the computational load slightly.It is well-known that the Kalman filter cannot handle uncertainties ina process model, such as initial state estimation errors, parametermismatch and abrupt state changes. These uncertainties severelyaffect filter performance and may even provoke divergence. Astrong tracking filter (STF), which utilizes a suboptimal fading factor,is an adaptive approach that is commonly adopted to solvethis problem. However, if the strong tracking SCKF (STSCKF)uses the same method as the extended Kalman filter (EKF) tointroduce the suboptimal fading factor, it greatly increases thecomputational load. To avoid this problem, a low-cost introductorymethod is proposed and a hypothesis testing theory is applied todetect uncertainties. The computational load analysis is performedby counting the total number of floating-point operations and it isfound that the computational load of LCASCKF is close to that ofSCKF. Experimental results prove that the LCASCKF performs aswell as STSCKF, while the increase in computational load is muchlower than STSCKF.
基金supported by the National Natural Science Foundation of China(Grant No.41602250)the Project of the China Geological Survey(Grant No.DD20160293)
文摘Though the ensemble Kalman filter (EnKF) has been successfully applied in many areas, it requires explicit and accurate model and measurement error information, leading to difficulties in practice when only limited information on error mechanisms of observational in-struments for subsurface systems is accessible. To handle the uncertain errors, we applied a robust data assimilation algorithm, the ensemble H-infinity filter (EnHF), to estimation of aquifer hydraulic heads and conductivities in a flow model with uncertain/correlated observational errors. The impacts of spatial and temporal correlations in measurements were analyzed, and the performance of EnHF was compared with that of the EnKF. The results show that both EnHF and EnKF are able to estimate hydraulic conductivities properly when observations are free of error; EnHF can provide robust estimates of hydraulic conductivities even when no observational error information is provided. In contrast, the estimates of EnKF seem noticeably undermined because of correlated errors and inaccurate error statistics, and filter divergence was observed. It is concluded that EnHF is an efficient assimilation algorithm when observational errors are unknown or error statistics are inaccurate.
基金Chinese Excellent Youth Science F oundation ( 6992 5 3 0 6) and Aeronautical Foundation Project
文摘An optimized robust filtering algorithm for uncertain discrete-time systemsis presented. To get a series of computational equations, the uncertain part generated by theuncertain systematic matrix in the expression of the error-covariance matrix of time update stateestimation is optimized and the least upper bound of the uncertain part is given. By means of theseresults, the equivalent systematic matrix is obtained and a robust time update algorithm is builtup. On the other hand, uncertain parts generated by the uncertain observation matrix in theexpression of the error-covariance matrix of measurement update state estimation are optimized, andthe largest lower bound of the uncertain part is given. Thus both the time update and measurementupdate algorithms are developed. By means of the matrix inversion formula, the expression structuresof both time update and measurement update algorithms are all simplified. Moreover, the convergencecondition of a robust filter is developed to make the results easy to application. The results offlight data processing show that the method presented in this paper is efficient.
基金Supported by the National Natural Science Foundation for Outstanding Youth(61422102)
文摘A robust finite-horizon Kalman filter is designed for linear discrete-time systems subject to norm-bounded uncertainties in the modeling parameters and missing measurements.The missing measurements were described by a binary switching sequence satisfying a conditional probability distribution,the commonest cases in engineering,such that the expectation of the measurements could be utilized during the iteration process.To consider the uncertainties in the system model,an upperbound for the estimation error covariance was obtained since its real value was unaccessible.Our filter scheme is on the basis of minimizing the obtained upper bound where we refer to the deduction of a classic Kalman filter thus calculation of the derivatives are avoided.Simulations are presented to illustrate the effectiveness of the proposed approach.