In recent years,the rapid advancement of artificial intelligence(AI)has fostered deep integration between large AI models and robotic technology.Robots such as robotic dogs capable of carrying heavy loads on mountaino...In recent years,the rapid advancement of artificial intelligence(AI)has fostered deep integration between large AI models and robotic technology.Robots such as robotic dogs capable of carrying heavy loads on mountainous terrain or performing waste disposal tasks and humanoid robots that can execute high-precision component installations have gradually reached the public eye,raising expectations for embodied intelligent robots.展开更多
Since the idea of embodied artificial intelligence was born,the U.S.has been an international frontrunner in the research and development(R&D)and application of the technology,while China has been a capable chaser...Since the idea of embodied artificial intelligence was born,the U.S.has been an international frontrunner in the research and development(R&D)and application of the technology,while China has been a capable chaser in recent years,particularly in the area of humanoid robots.展开更多
Gecko-inspired robots have significant potential applications;however,deviations in the yaw direction during locomotion are inevitable for legged robots that lack external sensing.These deviations cause the robot to s...Gecko-inspired robots have significant potential applications;however,deviations in the yaw direction during locomotion are inevitable for legged robots that lack external sensing.These deviations cause the robot to stray from its intended path.Therefore,a cost-effective and straightforward solution is essential for reducing this deviation.In nature,the tail is often used to maintain balance and stability.Similarly,it has been used in robots to improve manoeuvrability and stability.Our aim is to reduce this deviation using a morphological computation approach,specifically by adding a tail.To test this hypothesis,we investigated four different tails(rigid plate,rigid gecko-shaped,soft plate,and soft gecko-shaped)and assessed the deviation of the robot with these tails on different slopes.Additionally,to evaluate the influence of different tail parameters,such as material,shape,and linkage,we investigated the locomotion performance in terms of the robot's climbing speed on slopes,its ability to turn at narrow corners,and the resistance of the tails to external disturbances.A new auto-reset joint was designed to ensure that a disturbed tail could be quickly reset.Our results demonstrate that the yaw deviation of the robot can be reduced by applying a tail.Among the four tails,the soft gecko-shaped tail was the most effective for most tasks.In summary,our findings demonstrate the functional role of the tail in reducing yaw deviation,improving climbing ability and stability and provide a reference for selecting the most suitable tail for geckoinspired robots.展开更多
The advent of parametric design has resulted in a marked increase in the complexity of building.Unfortunately,traditional construction methods make it difficult to meet the needs.Therefore,construction robots have bec...The advent of parametric design has resulted in a marked increase in the complexity of building.Unfortunately,traditional construction methods make it difficult to meet the needs.Therefore,construction robots have become a pivotal production tool in this context.Since the arm span of a single robot usually does not exceed 3 meters,it is not competent for producing large-scale building components.Accordingly,the extension of the robot,s working range is often achieved by external axes.Nevertheless,the coupling control of external axes and robots and their kinematic solution have become key challenges.The primary technical difficulties include customized construction robots,automatic solutions for external axes,fixed axis joints,and specific motion mode control.This paper proposes solutions to these difficulties,introduces the relevant basic concepts and algorithms in detail,and encapsulates these robotics principles and algorithm processes into the Grasshopper plug-in commonly used by architects to form the FURobot software platform.This platform effectively solves the above problems,lowers the threshold for architects,and improves production efficiency.The effectiveness of the algorithm and software in this paper is verified through simulation experiments.展开更多
Rollover accidents involving agricultural wheeled robots,accompanied by severe mechanical impacts,pose serious threats to operational safety and reduce functional efficiency.To address this issue,an active rollover pr...Rollover accidents involving agricultural wheeled robots,accompanied by severe mechanical impacts,pose serious threats to operational safety and reduce functional efficiency.To address this issue,an active rollover prevention strategy is proposed,utilizing a single‐gimbal control moment gyro(SGCMG),to stabilize typical agricultural robots and prevent potential rollovers.To match the free oscillation of the pivot front axle,a novel recovery torque model of the coupled robot‐SGCMG system is established,in which two patterns are introduced to refine the rollover process with uncertain parameters.Additionally,a lateral stability index is adopted and analyzed to assess the hazard level of potential rollovers.Aimed at handling uncertain parameters and hazard levels,an adaptive backstepping control strategy is developed for real‐time anti‐rollover implementation.Within this strategy,control gains are adaptively tuned based on theoretical derivations,thereby suppressing rollover tendency while minimizing tuning effort.For verification,a scaled experimental platform,designed according to similarity theory,is constructed to ensure safety of personnel and equipment.Experimental results show that the proposed method can precisely regulate the output torque of the gyro,rapidly and effectively mitigating the risk of imminent rollover.This method provides a promising solution for wheeled robot stability and a theoretical basis for advanced safety control in agricultural robotics.展开更多
A type of novel biodegradable fibers,made from magnetic particles and the patient’s own blood,promises an immune-evading brain cancer therapy with minimal invasion.
Segmentation of demonstration trajectories and learning the contained motion primitives can effectively enhance the assistive robot's intelligence to flexibly reproduce learnt tasks in an unstructured environment....Segmentation of demonstration trajectories and learning the contained motion primitives can effectively enhance the assistive robot's intelligence to flexibly reproduce learnt tasks in an unstructured environment.With the aim to conveniently and accurately segment demonstration trajectories,a novel demonstration trajectory segmentation approach is proposed based on the beta process autoregressive hidden Markov model(BP-ARHMM)algorithm and generalised time warping(GTW)algorithm aiming to enhance the segmentation accuracy utilising acquired demonstration data.This approach first adopts the GTW algorithm to align the multiple demonstration trajectories for the same task.Then,it adopts the BP-AR-HMM algorithm to segment the demonstration trajectories,acquire the contained motion primitives,and establish the related task library.This segmentation approach is validated on the 6-degree-of-freedom JACO robotic arm by assisting users to accomplish a holding water glass task and an eating task.The experimental results show that the motion primitives within the trajectories can be correctly segmented with a high segmentation accuracy.展开更多
The textile industry,with its centuries-old heritage,is undergoing an unprecedented transformation-one where robots are stealing the spotlight.In factory floors that once hummed with the bustling activity of skilled w...The textile industry,with its centuries-old heritage,is undergoing an unprecedented transformation-one where robots are stealing the spotlight.In factory floors that once hummed with the bustling activity of skilled workers,automated systems are now the rising stars,quietly revolutionizing every aspect of production.展开更多
Legged robots have always been a focal point of research for scholars domestically and internationally.Compared to other types of robots,quadruped robots exhibit superior balance and stability,enabling them to adapt e...Legged robots have always been a focal point of research for scholars domestically and internationally.Compared to other types of robots,quadruped robots exhibit superior balance and stability,enabling them to adapt effectively to diverse environments and traverse rugged terrains.This makes them well-suited for applications such as search and rescue,exploration,and transportation,with strong environmental adaptability,high flexibility,and broad application prospects.This paper discusses the current state of research on quadruped robots in terms of development status,gait trajectory planning methods,motion control strategies,reinforcement learning applications,and control algorithm integration.It highlights advancements in modeling,optimization,control,and data-driven approaches.The study identifies the adoption of efficient gait planning algorithms,the integration of reinforcement learning-based control technologies,and data-driven methods as key directions for the development of quadruped robots.The aim is to provide theoretical references for researchers in the field of quadruped robotics.展开更多
Autonomous,adaptable,and multimodal locomotion capabilities,which are crucial for the advanced intelligence of biological systems.A prominent focus of investigations in the domain of bionic soft robotics pertains to t...Autonomous,adaptable,and multimodal locomotion capabilities,which are crucial for the advanced intelligence of biological systems.A prominent focus of investigations in the domain of bionic soft robotics pertains to the emulation of autonomous motion,as observed in natural organisms.This research endeavor faces the challenge of enabling spontaneous and sustained motion in soft robots without relying on external stimuli.Considerable progress has been made in the development of autonomous bionic soft robots that utilize smart polymer materials,particularly in the realms of material design,microfabrication technology,and operational mechanisms.Nonetheless,there remains a conspicuous deficiency in the literature concerning a thorough review of this subject matter.This study aims to provide a comprehensive review of autonomous soft robots that have been developed based on self-regulation strategies that encompass self-propulsion,self-oscillation,multistimulus response,and topological constraint structures.Furthermore,this review engages in an in-depth discussion regarding their tunable selfsustaining motion and recovery capabilities,while also contemplating the future development of autonomous soft robotic systems and their potential applications in fields such as biomechanics.展开更多
When drones first emerged,most people didn’t know what to do with them,said Professor Zhang Yueming at Beijing University of Technology.“Over time,however,we identified their potential applications.The situation is ...When drones first emerged,most people didn’t know what to do with them,said Professor Zhang Yueming at Beijing University of Technology.“Over time,however,we identified their potential applications.The situation is the same for embodied intelligent robots.”When embodied intelligent robots leave the laboratory,where will they go?展开更多
Micro aerial vehicles(MAVs)have flexibility and maneuverability,which can offer vast potential for applications in both civilian and military domains.Compared to Fixed-wing/Rotor-wing MAVs,Flapping Wing Micro Robots(F...Micro aerial vehicles(MAVs)have flexibility and maneuverability,which can offer vast potential for applications in both civilian and military domains.Compared to Fixed-wing/Rotor-wing MAVs,Flapping Wing Micro Robots(FWMRs)have garnered widespread attention among scientists due to their superior miniaturized aerodynamic theory,reduced noise,and enhanced resistance to disturbances in complex and diverse environments.Flying insects,it not only has remarkable flapping flight ability(wings),but also takeoff and landing habitat ability(legs).If the various functions of flying insects can be imitated,efficient biomimetic FWMRs can be produced.This paper provides a review of the flight kinematics,aerodynamics,and wing structural parameters of insects.Then,the traditional wings and folding wings of insect-inspired FWMRs were compared.The research progress in takeoff and landing of FWMRs was also summarized,and the future developments and challenges for insect-inspired FWMRs were discussed.展开更多
To address the challenges of insufficient visualization in the industrial robot assembly operation system and the limitation of visualizing only geometric attributes of physical properties,a method is proposed for con...To address the challenges of insufficient visualization in the industrial robot assembly operation system and the limitation of visualizing only geometric attributes of physical properties,a method is proposed for constructing an industrial robot assembly system based on virtual reality technology.Focusing on the shaft hole assembly,the mechanical characteristics of the industrial robot shaft hole assembly process are analyzed and a dynamic model is established for shaft hole assembly operations.The key elements of virtual assembly operations for industrial robots are summarized and a five-dimensional model is proposed for industrial robot virtual operations.Utilizing the Unity3D engine based on the 5-D model for industrial robot virtual operations,an industrial robot shaft hole assembly system is developed.This system enables virtual assembly operations,displays physical attributes,and provides valuable references for the research of virtual systems.展开更多
Humanoid robots exhibit structures and movements akin to those of humans,enabling them to assist or substitute for humans in various operations without necessitating alterations to their typical environment and tools....Humanoid robots exhibit structures and movements akin to those of humans,enabling them to assist or substitute for humans in various operations without necessitating alterations to their typical environment and tools.Sustaining bal-ance amidst disturbances constitutes a fundamental capability for humanoid robots.Consequently,adopting efficacious strategies to manage instability and mitigate injuries resulting from falls assumes paramount importance in advancing the widespread adoption of humanoid robotics.This paper presents a comprehensive overview of the ongoing development of strategies for coping with falls in humanoid robots.It systematically reviews and discusses three critical facets:fall state detection,preventive actions against falls,and post-fall protection measures.The paper undertakes a thorough classifica-tion of existing coping methodologies across different stages of falls,analyzes the merits and drawbacks of each approach,and outlines the evolving trajectory of solutions for addressing fall-related challenges across distinct stages.Finally,the paper provides a succinct summary and future prospects for the current fall coping strategies tailored for humanoid robots.展开更多
Background:The aging global population necessitates innovative strategies to enhance older adults’health and quality of life.Physical activity(PA)is crucial for healthy aging,yet many older adults struggle to exercis...Background:The aging global population necessitates innovative strategies to enhance older adults’health and quality of life.Physical activity(PA)is crucial for healthy aging,yet many older adults struggle to exercise regularly.Artificial intelligence(AI)-powered social robots offer an interactive,engaging,and personalized solution to promote PA among this demographic.This systematic review investigated the role of AI-powered social robots in encouraging PA in older adults.Methods:We conducted a systematic literature search in databases including PubMed,IEEE Xplore,Scopus,Cochrane Library,and Web of Science,focusing on studies published until February 2024.We included peer-reviewed articles reporting empiricalfindings on designing,implementing,and evaluating AI-enabled social robots to promote PA among older adults.Studies were conducted in nursing homes,rehabilita-tion centers,community centers,and home environments.Results:A total of 19 studies were included in the review.Analysis reveals that AI-powered social robots effectively motivate older adults to engage in PAs,leading to increased exercise adherence,higher engagement levels,and extended training durations.Social robots have demon-strated effectiveness across various environments,including nursing homes,rehabilitation centers,community centers,home environments,and elder care facilities.In structured environments like nursing homes and rehabilitation centers,robots help maintain regular exercise routines,improving adherence and recovery outcomes.In community and elder care centers,robots promote PA and social engagement by facilitating group exercises and enhancing participation.In home environments,robots provide personalized support for daily activities,offering reminders and engagement,which fosters long-term activity engagement.User acceptance and satisfaction are high,with participantsfinding the robots engaging and enjoyable.Additionally,several studies indicate potential health benefits,such as improved medication adherence,better sleep patterns,and enhanced overall well-being.Nevertheless,additional research is imperative to address unresolved issues concerning the technolog-ical maintenance costs,design constraints,and adaptability of AI-powered social robots to specific user demographics.Conclusion:AI-powered social robots play a promising role in promoting PA among older adults,enhancing their health,well-being,and inde-pendence.This review provides insights for researchers,designers,and healthcare professionals developing AI-enabled social robotic systems for older adults.展开更多
Wall-climbing robots can stably ascend vertical walls and even ceilings,making them suitable for specialized tasks in high-risk,confined,and harsh conditions.Therefore,they have excellent application prospects and sub...Wall-climbing robots can stably ascend vertical walls and even ceilings,making them suitable for specialized tasks in high-risk,confined,and harsh conditions.Therefore,they have excellent application prospects and substantial market demand.However,several challenges remain,including limited load-carrying capacity,short operational duration,a high risk of detachment,and the lack of standardized physical and control interfaces for carrying auxiliary equipment to complete missions.This study analyzes the macro and micro structures and movement mechanisms of typical organisms in terms of negative pressure adsorption,hook-and-claw adhesion,dry adhesion,and wet adhesion.The exploration of biological wall-climbing mechanisms is integrated with the adhesion techniques used in practical wall-climbing robots.Additionally,the mechanisms,properties,and typical wall-climbing robots associated with adhesion technologies were investigated,including negative pressure adsorption,hook-and-claw adhesion,bionic dry adhesion,bionic wet adhesion,electrostatic adhesion,and magnetic adhesion.Furthermore,the typical gaits of quadruped and hexapod robots are analyzed,and bionic control techniques such as central pattern generators,neural networks,and compliant control are applied.Finally,the future development trends of wall-climbing robots will be examined from multiple perspectives,including the diversification of bionic mechanisms,the advancement of mechanical structure intelligence,and the implementation of intelligent adaptive control.Moreover,this paper establishes a solid foundation for the innovative design of bionic wall-climbing robots and provides valuable guidance for future advancements.展开更多
This article provides a comprehensive exploration of the current research landscape in the field of soft actuation technology applied to bio-inspired soft robots. In sharp contrast to their conventional rigid counterp...This article provides a comprehensive exploration of the current research landscape in the field of soft actuation technology applied to bio-inspired soft robots. In sharp contrast to their conventional rigid counterparts, bio-inspired soft robots are primarily constructed from flexible materials, conferring upon them remarkable adaptability and flexibility to execute a multitude of tasks in complex environments. However, the classification of their driving technology poses a significant challenge owing to the diverse array of employed driving mechanisms and materials. Here, we classify several common soft actuation methods from the perspectives of the sources of motion in bio-inspired soft robots and their bio-inspired objects, effectively filling the classification system of soft robots, especially bio-inspired soft robots. Then, we summarize the driving principles and structures of various common driving methods from the perspective of bionics, and discuss the latest developments in the field of soft robot actuation from the perspective of driving modalities and methodologies. We then discuss the application directions of bio-inspired soft robots and the latest developments in each direction. Finally, after an in-depth review of various soft bio-inspired robot driving technologies in recent years, we summarize the issues and challenges encountered in the advancement of soft robot actuation technology.展开更多
The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may ...The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may cause the loss of strong controllability of the WMR,such that the conventional fault-tolerant control strategies unworkable.In this paper,a new mixed-gain adaption scheme is devised,which is adopted to adapt the gain of a decoupling prescribed performance controller to adaptively compensate for the loss of the effectiveness of the actuators.Different from the existing gain adaption technique which depends on both the barrier functions and their partial derivatives,ours involves only the barrier functions.This yields a lower magnitude of the resulting control signals.Our controller accomplishes trajectory tracking of the WMR with the prescribed rate and accuracy even in the faulty case,and the control design relies on neither the information of the WMR dynamics and the actuator faults nor the tools for function approximation,parameter identification,and fault detection or estimation.The comparative simulation results justify the theoretical findings.展开更多
This paper presents a predefined-time controller for Multiple Space transportation Robots System (MSRS), which can be applied in on-orbit assembly tasks to transport modules to pre-assembly configuration quickly. Firs...This paper presents a predefined-time controller for Multiple Space transportation Robots System (MSRS), which can be applied in on-orbit assembly tasks to transport modules to pre-assembly configuration quickly. Firstly, to simplify the analysis and design of predefined-time controller, a Predefined-time Stability Criterion is proposed in the form of Composite Lyapunov Function (CLF-PSC). Besides simplicity, the CLF-PSC also has the advantage of less conservativeness due to utilization of initial state information. Secondly, a concept of Lp-Norm-Normalized Sign Function (LPNNSF) is proposed based on the CLF-PSC. Different from traditional norm-normalized sign function, the Lp-norm of LPNNSF can be selected arbitrarily according to practical control task requirements, which means that the proposed LPNNSF is more generalized and more convenient for calculation. Thirdly, a predefined-time disturbance observer and predefined-time controller are designed based on the LPNNSF. The observer has the property of predefined-time convergence to achieve quicker and more accurate estimation of the lumped disturbance. The controller has less control input and chattering phenomenon than traditional predefined-time controller. In addition, by introducing the observer into the controller, the closed-loop system enjoys high precision and strong robustness. Finally, the effectiveness of the proposed controller is verified by numerical simulations. By employing the controller, the MSRS can carry assembly modules to the desired pre-assembly configuration accurately within predefined time.展开更多
Soft robots, inspired by the flexibility and versatility of biological organisms, have potential in a variety of applications. Recent advancements in magneto-soft robots have demonstrated their abilities to achieve pr...Soft robots, inspired by the flexibility and versatility of biological organisms, have potential in a variety of applications. Recent advancements in magneto-soft robots have demonstrated their abilities to achieve precise remote control through magnetic fields, enabling multi-modal locomotion and complex manipulation tasks. Nonetheless, two main hurdles must be overcome to advance the field: developing a multi-component substrate with embedded magnetic particles to ensure the requisite flexibility and responsiveness, and devising a cost-effective,straightforward method to program three-dimensional distributed magnetic domains without complex processing and expensive machinery. Here, we introduce a cost-effective and simple heat-assisted in-situ integrated molding fabrication method for creating magnetically driven soft robots with three-dimensional programmable magnetic domains. By synthesizing a composite material with neodymium-iron-boron(NdFeB) particles embedded in a polydimethylsiloxane(PDMS) and Ecoflex matrix(PDMS:Ecoflex = 1:2 mass ratio, 50% magnetic particle concentration), we achieved an optimized balance of flexibility, strength, and magnetic responsiveness. The proposed heat-assisted in-situ magnetic domains programming technique,performed at an experimentally optimized temperature of 120℃, resulted in a 2 times magnetization strength(9.5 mT) compared to that at 20℃(4.8 m T), reaching a saturation level comparable to a commercial magnetizer. We demonstrated the versatility of our approach through the fabrication of six kinds of robots, including two kinds of two-dimensional patterned soft robots(2D-PSR), a circular six-pole domain distribution magnetic robot(2D-CSPDMR), a quadrupedal walking magnetic soft robot(QWMSR), an object manipulation robot(OMR), and a hollow thin-walled spherical magneto-soft robot(HTWSMSR). The proposed method provides a practical solution to create highly responsive and adaptable magneto-soft robots.展开更多
文摘In recent years,the rapid advancement of artificial intelligence(AI)has fostered deep integration between large AI models and robotic technology.Robots such as robotic dogs capable of carrying heavy loads on mountainous terrain or performing waste disposal tasks and humanoid robots that can execute high-precision component installations have gradually reached the public eye,raising expectations for embodied intelligent robots.
文摘Since the idea of embodied artificial intelligence was born,the U.S.has been an international frontrunner in the research and development(R&D)and application of the technology,while China has been a capable chaser in recent years,particularly in the area of humanoid robots.
基金supported by the National Key Research&Development Program of China(Grant No.2020YFB1313504)the State Key Laboratory of Mechanics and Control for Aerospace Structures of Nanjing University of Aeronautics and Astronautics.
文摘Gecko-inspired robots have significant potential applications;however,deviations in the yaw direction during locomotion are inevitable for legged robots that lack external sensing.These deviations cause the robot to stray from its intended path.Therefore,a cost-effective and straightforward solution is essential for reducing this deviation.In nature,the tail is often used to maintain balance and stability.Similarly,it has been used in robots to improve manoeuvrability and stability.Our aim is to reduce this deviation using a morphological computation approach,specifically by adding a tail.To test this hypothesis,we investigated four different tails(rigid plate,rigid gecko-shaped,soft plate,and soft gecko-shaped)and assessed the deviation of the robot with these tails on different slopes.Additionally,to evaluate the influence of different tail parameters,such as material,shape,and linkage,we investigated the locomotion performance in terms of the robot's climbing speed on slopes,its ability to turn at narrow corners,and the resistance of the tails to external disturbances.A new auto-reset joint was designed to ensure that a disturbed tail could be quickly reset.Our results demonstrate that the yaw deviation of the robot can be reduced by applying a tail.Among the four tails,the soft gecko-shaped tail was the most effective for most tasks.In summary,our findings demonstrate the functional role of the tail in reducing yaw deviation,improving climbing ability and stability and provide a reference for selecting the most suitable tail for geckoinspired robots.
基金National Key R&D Program of China(Nos.2023YFC3806900,2022YFE0141400)。
文摘The advent of parametric design has resulted in a marked increase in the complexity of building.Unfortunately,traditional construction methods make it difficult to meet the needs.Therefore,construction robots have become a pivotal production tool in this context.Since the arm span of a single robot usually does not exceed 3 meters,it is not competent for producing large-scale building components.Accordingly,the extension of the robot,s working range is often achieved by external axes.Nevertheless,the coupling control of external axes and robots and their kinematic solution have become key challenges.The primary technical difficulties include customized construction robots,automatic solutions for external axes,fixed axis joints,and specific motion mode control.This paper proposes solutions to these difficulties,introduces the relevant basic concepts and algorithms in detail,and encapsulates these robotics principles and algorithm processes into the Grasshopper plug-in commonly used by architects to form the FURobot software platform.This platform effectively solves the above problems,lowers the threshold for architects,and improves production efficiency.The effectiveness of the algorithm and software in this paper is verified through simulation experiments.
基金supported by the National Natural Science Foundation of China(No.52175259)the 2115 Talent Development Program of China Agricultural University.
文摘Rollover accidents involving agricultural wheeled robots,accompanied by severe mechanical impacts,pose serious threats to operational safety and reduce functional efficiency.To address this issue,an active rollover prevention strategy is proposed,utilizing a single‐gimbal control moment gyro(SGCMG),to stabilize typical agricultural robots and prevent potential rollovers.To match the free oscillation of the pivot front axle,a novel recovery torque model of the coupled robot‐SGCMG system is established,in which two patterns are introduced to refine the rollover process with uncertain parameters.Additionally,a lateral stability index is adopted and analyzed to assess the hazard level of potential rollovers.Aimed at handling uncertain parameters and hazard levels,an adaptive backstepping control strategy is developed for real‐time anti‐rollover implementation.Within this strategy,control gains are adaptively tuned based on theoretical derivations,thereby suppressing rollover tendency while minimizing tuning effort.For verification,a scaled experimental platform,designed according to similarity theory,is constructed to ensure safety of personnel and equipment.Experimental results show that the proposed method can precisely regulate the output torque of the gyro,rapidly and effectively mitigating the risk of imminent rollover.This method provides a promising solution for wheeled robot stability and a theoretical basis for advanced safety control in agricultural robotics.
文摘A type of novel biodegradable fibers,made from magnetic particles and the patient’s own blood,promises an immune-evading brain cancer therapy with minimal invasion.
基金Doctoral Research Start-up Fund of Shandong Jiaotong University,Grant/Award Number:BS2024009Natural Science Foundation of Shandong Province of China,Grant/Award Number:ZR2022ME087+1 种基金State Key Laboratory of Robotics and Systems(HIT),Grant/Award Number:SKLRS-2024-KF-09Open Access Publication Fund of Universität Hamburg。
文摘Segmentation of demonstration trajectories and learning the contained motion primitives can effectively enhance the assistive robot's intelligence to flexibly reproduce learnt tasks in an unstructured environment.With the aim to conveniently and accurately segment demonstration trajectories,a novel demonstration trajectory segmentation approach is proposed based on the beta process autoregressive hidden Markov model(BP-ARHMM)algorithm and generalised time warping(GTW)algorithm aiming to enhance the segmentation accuracy utilising acquired demonstration data.This approach first adopts the GTW algorithm to align the multiple demonstration trajectories for the same task.Then,it adopts the BP-AR-HMM algorithm to segment the demonstration trajectories,acquire the contained motion primitives,and establish the related task library.This segmentation approach is validated on the 6-degree-of-freedom JACO robotic arm by assisting users to accomplish a holding water glass task and an eating task.The experimental results show that the motion primitives within the trajectories can be correctly segmented with a high segmentation accuracy.
文摘The textile industry,with its centuries-old heritage,is undergoing an unprecedented transformation-one where robots are stealing the spotlight.In factory floors that once hummed with the bustling activity of skilled workers,automated systems are now the rising stars,quietly revolutionizing every aspect of production.
基金funded by the Natural Science Basis Research Plan in Shaanxi Province of China(Program No.2023-JC-QN-0659)General Specialized Scientific Research Program of the Shaanxi Provincial Department of Education(Program 23JK0349).
文摘Legged robots have always been a focal point of research for scholars domestically and internationally.Compared to other types of robots,quadruped robots exhibit superior balance and stability,enabling them to adapt effectively to diverse environments and traverse rugged terrains.This makes them well-suited for applications such as search and rescue,exploration,and transportation,with strong environmental adaptability,high flexibility,and broad application prospects.This paper discusses the current state of research on quadruped robots in terms of development status,gait trajectory planning methods,motion control strategies,reinforcement learning applications,and control algorithm integration.It highlights advancements in modeling,optimization,control,and data-driven approaches.The study identifies the adoption of efficient gait planning algorithms,the integration of reinforcement learning-based control technologies,and data-driven methods as key directions for the development of quadruped robots.The aim is to provide theoretical references for researchers in the field of quadruped robotics.
基金supported by the National Natural Science Foundation of China(Nos.52275290 and 51905222)the Research Project of State Key Laboratory of Mechanical System and Oscillation(No.MSV202419)+2 种基金Major Program of the National Natural Science Foundation of China(NSFC)for Basic Theory and Key Technology of Tri-Co Robots(No.92248301)Opening Project of the Key Laboratory of Bionic Engineering(Ministry of Education),Jilin University(No.KF2023006)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX23_2091)。
文摘Autonomous,adaptable,and multimodal locomotion capabilities,which are crucial for the advanced intelligence of biological systems.A prominent focus of investigations in the domain of bionic soft robotics pertains to the emulation of autonomous motion,as observed in natural organisms.This research endeavor faces the challenge of enabling spontaneous and sustained motion in soft robots without relying on external stimuli.Considerable progress has been made in the development of autonomous bionic soft robots that utilize smart polymer materials,particularly in the realms of material design,microfabrication technology,and operational mechanisms.Nonetheless,there remains a conspicuous deficiency in the literature concerning a thorough review of this subject matter.This study aims to provide a comprehensive review of autonomous soft robots that have been developed based on self-regulation strategies that encompass self-propulsion,self-oscillation,multistimulus response,and topological constraint structures.Furthermore,this review engages in an in-depth discussion regarding their tunable selfsustaining motion and recovery capabilities,while also contemplating the future development of autonomous soft robotic systems and their potential applications in fields such as biomechanics.
文摘When drones first emerged,most people didn’t know what to do with them,said Professor Zhang Yueming at Beijing University of Technology.“Over time,however,we identified their potential applications.The situation is the same for embodied intelligent robots.”When embodied intelligent robots leave the laboratory,where will they go?
基金supported by the National Natural Science Foundation of China(grant numbers 52305321 and 62273246)The Natural Science Foundation of Jiangsu Province(BK20230496)+3 种基金China Postdoctoral Science Foundation Funded Project(2023M732536 and 2024T170630)Jiangsu Province Excellence Postdoctoral Program(2023ZB218)The National Key R&D Program of China(2022YFB4702202)The Jiangsu Provincial Key Technology R&D Program(BE2021009-02).
文摘Micro aerial vehicles(MAVs)have flexibility and maneuverability,which can offer vast potential for applications in both civilian and military domains.Compared to Fixed-wing/Rotor-wing MAVs,Flapping Wing Micro Robots(FWMRs)have garnered widespread attention among scientists due to their superior miniaturized aerodynamic theory,reduced noise,and enhanced resistance to disturbances in complex and diverse environments.Flying insects,it not only has remarkable flapping flight ability(wings),but also takeoff and landing habitat ability(legs).If the various functions of flying insects can be imitated,efficient biomimetic FWMRs can be produced.This paper provides a review of the flight kinematics,aerodynamics,and wing structural parameters of insects.Then,the traditional wings and folding wings of insect-inspired FWMRs were compared.The research progress in takeoff and landing of FWMRs was also summarized,and the future developments and challenges for insect-inspired FWMRs were discussed.
基金Sponsored by the National Natural Science Foundation of China(Grant No.52005003)the Science and Technology Planning Project of Wuhu City(Grant No.2022jc41)。
文摘To address the challenges of insufficient visualization in the industrial robot assembly operation system and the limitation of visualizing only geometric attributes of physical properties,a method is proposed for constructing an industrial robot assembly system based on virtual reality technology.Focusing on the shaft hole assembly,the mechanical characteristics of the industrial robot shaft hole assembly process are analyzed and a dynamic model is established for shaft hole assembly operations.The key elements of virtual assembly operations for industrial robots are summarized and a five-dimensional model is proposed for industrial robot virtual operations.Utilizing the Unity3D engine based on the 5-D model for industrial robot virtual operations,an industrial robot shaft hole assembly system is developed.This system enables virtual assembly operations,displays physical attributes,and provides valuable references for the research of virtual systems.
基金supported by the key research and development project of Science and Technology Department of Jilin Province(No.20230201102GX)the Natural Science Foundation of Chongqing(No.CSTB2022NSCQ-MSX0278)the 2023 college students innovation and entrepreneurship training plan(202310183105).
文摘Humanoid robots exhibit structures and movements akin to those of humans,enabling them to assist or substitute for humans in various operations without necessitating alterations to their typical environment and tools.Sustaining bal-ance amidst disturbances constitutes a fundamental capability for humanoid robots.Consequently,adopting efficacious strategies to manage instability and mitigate injuries resulting from falls assumes paramount importance in advancing the widespread adoption of humanoid robotics.This paper presents a comprehensive overview of the ongoing development of strategies for coping with falls in humanoid robots.It systematically reviews and discusses three critical facets:fall state detection,preventive actions against falls,and post-fall protection measures.The paper undertakes a thorough classifica-tion of existing coping methodologies across different stages of falls,analyzes the merits and drawbacks of each approach,and outlines the evolving trajectory of solutions for addressing fall-related challenges across distinct stages.Finally,the paper provides a succinct summary and future prospects for the current fall coping strategies tailored for humanoid robots.
基金supported by the Ministry of Education of Humanities and Social Science project(Grant No.22YJC890024).
文摘Background:The aging global population necessitates innovative strategies to enhance older adults’health and quality of life.Physical activity(PA)is crucial for healthy aging,yet many older adults struggle to exercise regularly.Artificial intelligence(AI)-powered social robots offer an interactive,engaging,and personalized solution to promote PA among this demographic.This systematic review investigated the role of AI-powered social robots in encouraging PA in older adults.Methods:We conducted a systematic literature search in databases including PubMed,IEEE Xplore,Scopus,Cochrane Library,and Web of Science,focusing on studies published until February 2024.We included peer-reviewed articles reporting empiricalfindings on designing,implementing,and evaluating AI-enabled social robots to promote PA among older adults.Studies were conducted in nursing homes,rehabilita-tion centers,community centers,and home environments.Results:A total of 19 studies were included in the review.Analysis reveals that AI-powered social robots effectively motivate older adults to engage in PAs,leading to increased exercise adherence,higher engagement levels,and extended training durations.Social robots have demon-strated effectiveness across various environments,including nursing homes,rehabilitation centers,community centers,home environments,and elder care facilities.In structured environments like nursing homes and rehabilitation centers,robots help maintain regular exercise routines,improving adherence and recovery outcomes.In community and elder care centers,robots promote PA and social engagement by facilitating group exercises and enhancing participation.In home environments,robots provide personalized support for daily activities,offering reminders and engagement,which fosters long-term activity engagement.User acceptance and satisfaction are high,with participantsfinding the robots engaging and enjoyable.Additionally,several studies indicate potential health benefits,such as improved medication adherence,better sleep patterns,and enhanced overall well-being.Nevertheless,additional research is imperative to address unresolved issues concerning the technolog-ical maintenance costs,design constraints,and adaptability of AI-powered social robots to specific user demographics.Conclusion:AI-powered social robots play a promising role in promoting PA among older adults,enhancing their health,well-being,and inde-pendence.This review provides insights for researchers,designers,and healthcare professionals developing AI-enabled social robotic systems for older adults.
基金supported by the National Natural Science Foundation of China(No.52405317)the Special Funds for Science and Technology Programs in Jiangsu Province(BZ2024021)+3 种基金the Natural Science Foundation of Jiangsu Province(BK20241407)the Talent Startup Funding of Chaohu University(KYQD-2023035)the Natural Science Research Projects of Chaohu University(XLZ-202205,XLZ202301)the Horizontal Projects of School-Enterprise Cooperation(No.hxkt20230267).
文摘Wall-climbing robots can stably ascend vertical walls and even ceilings,making them suitable for specialized tasks in high-risk,confined,and harsh conditions.Therefore,they have excellent application prospects and substantial market demand.However,several challenges remain,including limited load-carrying capacity,short operational duration,a high risk of detachment,and the lack of standardized physical and control interfaces for carrying auxiliary equipment to complete missions.This study analyzes the macro and micro structures and movement mechanisms of typical organisms in terms of negative pressure adsorption,hook-and-claw adhesion,dry adhesion,and wet adhesion.The exploration of biological wall-climbing mechanisms is integrated with the adhesion techniques used in practical wall-climbing robots.Additionally,the mechanisms,properties,and typical wall-climbing robots associated with adhesion technologies were investigated,including negative pressure adsorption,hook-and-claw adhesion,bionic dry adhesion,bionic wet adhesion,electrostatic adhesion,and magnetic adhesion.Furthermore,the typical gaits of quadruped and hexapod robots are analyzed,and bionic control techniques such as central pattern generators,neural networks,and compliant control are applied.Finally,the future development trends of wall-climbing robots will be examined from multiple perspectives,including the diversification of bionic mechanisms,the advancement of mechanical structure intelligence,and the implementation of intelligent adaptive control.Moreover,this paper establishes a solid foundation for the innovative design of bionic wall-climbing robots and provides valuable guidance for future advancements.
基金Fundamental Research Funds for the Central Universities(No.2024JBMC011)Aeronautical Science Foundation of China(No.2024Z0560M5001).
文摘This article provides a comprehensive exploration of the current research landscape in the field of soft actuation technology applied to bio-inspired soft robots. In sharp contrast to their conventional rigid counterparts, bio-inspired soft robots are primarily constructed from flexible materials, conferring upon them remarkable adaptability and flexibility to execute a multitude of tasks in complex environments. However, the classification of their driving technology poses a significant challenge owing to the diverse array of employed driving mechanisms and materials. Here, we classify several common soft actuation methods from the perspectives of the sources of motion in bio-inspired soft robots and their bio-inspired objects, effectively filling the classification system of soft robots, especially bio-inspired soft robots. Then, we summarize the driving principles and structures of various common driving methods from the perspective of bionics, and discuss the latest developments in the field of soft robot actuation from the perspective of driving modalities and methodologies. We then discuss the application directions of bio-inspired soft robots and the latest developments in each direction. Finally, after an in-depth review of various soft bio-inspired robot driving technologies in recent years, we summarize the issues and challenges encountered in the advancement of soft robot actuation technology.
基金supported in part by the National Natural Science Foundation of China under Grants 61991404,62103093 and 62473089the Research Program of the Liaoning Liaohe Laboratory,China under Grant LLL23ZZ-05-01+5 种基金the Key Research and Development Program of Liaoning Province of China under Grant 2023JH26/10200011the 111 Project 2.0 of China under Grant B08015,the National Key Research and Development Program of China under Grant 2022YFB3305905the Xingliao Talent Program of Liaoning Province of China under Grant XLYC2203130the Natural Science Foundation of Liaoning Province of China under Grants 2024JH3/10200012 and 2023-MS-087the Open Research Project of the State Key Laboratory of Industrial Control Technology of China under Grant ICT2024B12the Fundamental Research Funds for the Central Universities of China under Grants N2108003 and N2424004.
文摘The problem of trajectory tracking for a class of differentially driven wheeled mobile robots(WMRs)under partial loss of the effectiveness of the actuated wheels is investigated in this paper.Such actuator faults may cause the loss of strong controllability of the WMR,such that the conventional fault-tolerant control strategies unworkable.In this paper,a new mixed-gain adaption scheme is devised,which is adopted to adapt the gain of a decoupling prescribed performance controller to adaptively compensate for the loss of the effectiveness of the actuators.Different from the existing gain adaption technique which depends on both the barrier functions and their partial derivatives,ours involves only the barrier functions.This yields a lower magnitude of the resulting control signals.Our controller accomplishes trajectory tracking of the WMR with the prescribed rate and accuracy even in the faulty case,and the control design relies on neither the information of the WMR dynamics and the actuator faults nor the tools for function approximation,parameter identification,and fault detection or estimation.The comparative simulation results justify the theoretical findings.
基金co-supported by the National Natural Science Foundation of China(Nos.12372048,12102343)the Key Program of the National Natural Science Foundation of China(No.U2013206)+1 种基金the China Postdoctoral Science Foundation(No.2023M742835)the Guangdong Basic and Applied Basic Research Foundation,China(No.2023A1515011421).
文摘This paper presents a predefined-time controller for Multiple Space transportation Robots System (MSRS), which can be applied in on-orbit assembly tasks to transport modules to pre-assembly configuration quickly. Firstly, to simplify the analysis and design of predefined-time controller, a Predefined-time Stability Criterion is proposed in the form of Composite Lyapunov Function (CLF-PSC). Besides simplicity, the CLF-PSC also has the advantage of less conservativeness due to utilization of initial state information. Secondly, a concept of Lp-Norm-Normalized Sign Function (LPNNSF) is proposed based on the CLF-PSC. Different from traditional norm-normalized sign function, the Lp-norm of LPNNSF can be selected arbitrarily according to practical control task requirements, which means that the proposed LPNNSF is more generalized and more convenient for calculation. Thirdly, a predefined-time disturbance observer and predefined-time controller are designed based on the LPNNSF. The observer has the property of predefined-time convergence to achieve quicker and more accurate estimation of the lumped disturbance. The controller has less control input and chattering phenomenon than traditional predefined-time controller. In addition, by introducing the observer into the controller, the closed-loop system enjoys high precision and strong robustness. Finally, the effectiveness of the proposed controller is verified by numerical simulations. By employing the controller, the MSRS can carry assembly modules to the desired pre-assembly configuration accurately within predefined time.
基金supported by National Natural Science Foundation of China(Grant Nos.62473277,62473275,62133004,52105072,and 62073230)Jiangsu Provincial Outstanding Youth Program(Grant No.BK20230072)+5 种基金National Key R&D Program of China(Grant Nos.2022YFC3802302 and 2023YFB4705600)Suzhou Industrial Foresight and Key Core Technology Project(Grant No.SYC2022044)Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ24E050004)Shenzhen Polytechnic High-level Talent Start-up Project(Grant No.6023330006K)Shenzhen Science and Technology Program(Grant No.JCYJ20210324132810026)a Grant from Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems,Grants from Jiangsu QingLan Project and Jiangsu 333 high-level talents.
文摘Soft robots, inspired by the flexibility and versatility of biological organisms, have potential in a variety of applications. Recent advancements in magneto-soft robots have demonstrated their abilities to achieve precise remote control through magnetic fields, enabling multi-modal locomotion and complex manipulation tasks. Nonetheless, two main hurdles must be overcome to advance the field: developing a multi-component substrate with embedded magnetic particles to ensure the requisite flexibility and responsiveness, and devising a cost-effective,straightforward method to program three-dimensional distributed magnetic domains without complex processing and expensive machinery. Here, we introduce a cost-effective and simple heat-assisted in-situ integrated molding fabrication method for creating magnetically driven soft robots with three-dimensional programmable magnetic domains. By synthesizing a composite material with neodymium-iron-boron(NdFeB) particles embedded in a polydimethylsiloxane(PDMS) and Ecoflex matrix(PDMS:Ecoflex = 1:2 mass ratio, 50% magnetic particle concentration), we achieved an optimized balance of flexibility, strength, and magnetic responsiveness. The proposed heat-assisted in-situ magnetic domains programming technique,performed at an experimentally optimized temperature of 120℃, resulted in a 2 times magnetization strength(9.5 mT) compared to that at 20℃(4.8 m T), reaching a saturation level comparable to a commercial magnetizer. We demonstrated the versatility of our approach through the fabrication of six kinds of robots, including two kinds of two-dimensional patterned soft robots(2D-PSR), a circular six-pole domain distribution magnetic robot(2D-CSPDMR), a quadrupedal walking magnetic soft robot(QWMSR), an object manipulation robot(OMR), and a hollow thin-walled spherical magneto-soft robot(HTWSMSR). The proposed method provides a practical solution to create highly responsive and adaptable magneto-soft robots.