Artificial intelligence (AI), robotics, and intelligent systems are increasingly penetrating our society. With recent advances in AI, especially in intelligent control and computing, robots are gaining the ability t...Artificial intelligence (AI), robotics, and intelligent systems are increasingly penetrating our society. With recent advances in AI, especially in intelligent control and computing, robots are gaining the ability to learn, make decisions, and operate in ways much similar to humans.To a large extent.展开更多
The global demand for effective skin injury treatments has prompted the exploration of tissue engineering solutions.While three-dimensional(3D)bioprinting has shown promise,challenges persist with respect to achieving...The global demand for effective skin injury treatments has prompted the exploration of tissue engineering solutions.While three-dimensional(3D)bioprinting has shown promise,challenges persist with respect to achieving timely and compatible solutions to treat diverse skin injuries.In situ bioprinting has emerged as a key new technology,since it reduces risks during the implantation of printed scaffolds and demonstrates superior therapeutic effects.However,maintaining printing fidelity during in situ bioprinting remains a critical challenge,particularly with respect to model layering and path planning.This study proposes a novel optimization-based conformal path planning strategy for in situ bioprinting-based repair of complex skin injuries.This strategy employs constrained optimization to identify optimal waypoints on a point cloud-approximated curved surface,thereby ensuring a high degree of similarity between predesigned planar and surface-mapped 3D paths.Furthermore,this method is applicable for skin wound treatments,since it generates 3D-equidistant zigzag curves along surface tangents and enables multi-layer conformal path planning to facilitate the treatment of volumetric injuries.Furthermore,the proposed algorithm was found to be a feasible and effective treatment in a murine back injury model as well as in other complex models,thereby showcasing its potential to guide in situ bioprinting,enhance bioprinting fidelity,and facilitate improvement of clinical outcomes.展开更多
Soft robots capable of navigating complex environments hold promise for minimally invasive medical procedures and micromanipulation tasks.Here,we present a magnetically controlled multi-legged soft robot inspired by g...Soft robots capable of navigating complex environments hold promise for minimally invasive medical procedures and micromanipulation tasks.Here,we present a magnetically controlled multi-legged soft robot inspired by green sea turtle locomotion.Our designed robot,featuring six magnetized feet,demonstrates stable motion within a magnetic field strength range of 1.84–6.44 mT.Locomotion displacement scales linearly with field strength,while velocity correlates with frequency,reaching approximately 25 mm/s at 10 Hz.The robot navigates dry,semi-submerged,and fully submerged conditions,climbs slopes up to 30°,and maneuvers through U-shaped bends.Additionally,we demonstrate the robot's capability to smoothly transition between terrestrial and aquatic environments,demonstrating its amphibious locomotion performance.This adaptability to diverse environments,coupled with precise magnetic control,opens new possibilities for soft robotics in confined and complex spaces.Our findings provide a framework for designing highly maneuverable small-scale soft robots with potential applications ranging from targeted drug delivery to environmental sensing in challenging terrains.展开更多
In the modern technological landscape,magnetic field sensors play a crucial role and are indispensable across a range of high-tech applications[1].In conjunction with magnets,magnetic field sensors can accurately dete...In the modern technological landscape,magnetic field sensors play a crucial role and are indispensable across a range of high-tech applications[1].In conjunction with magnets,magnetic field sensors can accurately detect any form of relative movement of objects without physical contact.For instance,in the precise control of robotic arms or machine tools,a permanent magnet is used as a reference.The magnetic sensor detects the relative movement of magnet by sensing changes in the magnetic field strength.These changes are converted into electrical signals,which are fed back to the control system,enabling accurate positioning and control of the device.This advanced detection technology not only greatly enhances measurement precision but also significantly extends the lifespan of equipment.Among various types of magnetic field sensors,magnetoresistive(MR)sensors stand out for their exceptional performance[1].The high sensitivity allows them to detect minimal changes of magnetic fields in high-precision measurements.Today,MR sensors are widely used across numerous fields,including automobile industries,information processing and storage,navigation systems,biomedical applications,etc[1,2].With their outstanding performance and wide-ranging applications,MR sensors are at the forefront of sensor technology.展开更多
Robotics has aroused huge attention since the 1950s.Irrespective of the uniqueness that industrial applications exhibit,conventional rigid robots have displayed noticeable limitations,particularly in safe cooperation ...Robotics has aroused huge attention since the 1950s.Irrespective of the uniqueness that industrial applications exhibit,conventional rigid robots have displayed noticeable limitations,particularly in safe cooperation as well as with environmental adaption.Accordingly,scientists have shifted their focus on soft robotics to apply this type of robots more effectively in unstructured environments.For decades,they have been committed to exploring sub-fields of soft robotics(e.g.,cutting-edge techniques in design and fabrication,accurate modeling,as well as advanced control algorithms).Although scientists have made many different efforts,they share the common goal of enhancing applicability.The presented paper aims to brief the progress of soft robotic research for readers interested in this field,and clarify how an appropriate control algorithm can be produced for soft robots with specific morphologies.This paper,instead of enumerating existing modeling or control methods of a certain soft robot prototype,interprets for the relationship between morphology and morphology-dependent motion strategy,attempts to delve into the common issues in a particular class of soft robots,and elucidates a generic solution to enhance their performance.展开更多
Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control e...Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control engineering. Presently, most ILC algorithms still follow the original ideas of ARIMOTO, in which the iterative-learning-rate is composed by the control error with its derivative and integral values. This kind of algorithms will result in inevitable problems such as huge computation, big storage capacity for algorithm data, and also weak robust. In order to resolve these problems, an improved iterative learning control algorithm with fixed step is proposed here which breaks the primary thought of ARIMOTO. In this algorithm, the control step is set only according to the value of the control error, which could enormously reduce the computation and storage size demanded, also improve the robust of the algorithm by not using the differential coefficient of the iterative learning error. In this paper, the convergence conditions of this proposed fixed step iterative learning algorithm is theoretically analyzed and testified. Then the algorithm is tested through simulation researches on a time-variant object with randomly set disturbance through calculation of step threshold value, algorithm robustness testing,and evaluation of the relation between convergence speed and step size. Finally the algorithm is validated on a valve-serving-cylinder system of a joint robot with time-variant parameters. Experiment results demonstrate the stability of the algorithm and also the relationship between step value and convergence rate. Both simulation and experiment testify the feasibility and validity of the new algorithm proposed here. And it is worth to noticing that this algorithm is simple but with strong robust after improvements, which provides new ideas to the research of iterative learning control algorithms.展开更多
A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without req...A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without requiring robot kinematics and camera calibration. To speed up the convergence and avoid local minimum of the neural network, this paper uses a genetic algorithm to find the optimal initial weights and thresholds and then uses the BP Mgorithm to train the neural network according to the data given. The proposed method can effectively combine the good global searching ability of genetic algorithms with the accurate local searching feature of BP neural network. The Simulink model for PUMA560 robot visual servo system based on the improved BP neural network is built with the Robotics Toolbox of Matlab. The simulation results indicate that the proposed method can accelerate convergence of the image errors and provide a simple and effective way of robot control.展开更多
This paper proposes a high-speed nonsingular terminal switched sliding mode control(HNT-SSMC) strategy for robot manipulators. The proposed approach enhances the control system performance by switching among appropria...This paper proposes a high-speed nonsingular terminal switched sliding mode control(HNT-SSMC) strategy for robot manipulators. The proposed approach enhances the control system performance by switching among appropriate sliding mode controllers according to different control demands in different regions of the state space. It is shown that the highspeed nonsingular terminal switched sliding mode(HNT-SSM)which is the representation of different control demands and enforced by the HNT-SSMC has the property of global highspeed convergence compared with the nonsingular fast terminal sliding mode(NFTSM), and provides the global non-singularity.The simulation study of an application example is carried out to validate the effectiveness of the proposed strategy.展开更多
In order to apply the terminal sliding mode control to robot manipulators,prior knowledge of the exact upper bound of parameter uncertainties,and external disturbances is necessary.However,this bound will not be easil...In order to apply the terminal sliding mode control to robot manipulators,prior knowledge of the exact upper bound of parameter uncertainties,and external disturbances is necessary.However,this bound will not be easily determined because of the complexity and unpredictability of the structure of uncertainties in the dynamics of the robot.To resolve this problem in robot control,we propose a new robust adaptive terminal sliding mode control for tracking problems in robotic manipulators.By applying this adaptive controller,prior knowledge is not required because the controller is able to estimate the upper bound of uncertainties and disturbances.Also,the proposed controller can eliminate the chattering effect without losing the robustness property.The stability of the control algorithm can be easily verified by using Lyapunov theory.The proposed controller is tested in simulation on a two-degree-of-freedom robot to prove its effectiveness.展开更多
To deal with the uncertainty factors of robotic systems, a robust adaptive tracking controller is proposed. The knowledge of the uncertainty factors is assumed to be unidentified; the proposed controller can guarantee...To deal with the uncertainty factors of robotic systems, a robust adaptive tracking controller is proposed. The knowledge of the uncertainty factors is assumed to be unidentified; the proposed controller can guarantee robustness to parametric and dynamics uncertainties and can also reject any bounded, immeasurable disturbances entering the system. The stability of the proposed controller is proven by the Lyapunov method. The proposed controller can easily be implemented and the stability of the closed system can be ensured; the tracking error and adaptation parameter error are uniformly ultimately bounded (UUB). Finally, some simulation examples are utilized to illustrate the control performance.展开更多
Taking advantage of their inherent dexterity,robotic arms are competent in completing many tasks efficiently.As a result of the modeling complexity and kinematic uncertainty of robotic arms,model-free control paradigm...Taking advantage of their inherent dexterity,robotic arms are competent in completing many tasks efficiently.As a result of the modeling complexity and kinematic uncertainty of robotic arms,model-free control paradigm has been proposed and investigated extensively.However,robust model-free control of robotic arms in the presence of noise interference remains a problem worth studying.In this paper,we first propose a new kind of zeroing neural network(ZNN),i.e.,integration-enhanced noise-tolerant ZNN(IENT-ZNN)with integration-enhanced noisetolerant capability.Then,a unified dual IENT-ZNN scheme based on the proposed IENT-ZNN is presented for the kinematic control problem of both rigid-link and continuum robotic arms,which improves the performance of robotic arms with the disturbance of noise,without knowing the structural parameters of the robotic arms.The finite-time convergence and robustness of the proposed control scheme are proven by theoretical analysis.Finally,simulation studies and experimental demonstrations verify that the proposed control scheme is feasible in the kinematic control of different robotic arms and can achieve better results in terms of accuracy and robustness.展开更多
Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,...Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,nonlinear controllers with robust performance which can cope with these are recommended.The sliding mode control(SMC)is a robust state feedback control method for nonlinear systems that,in addition having a simple design,efficiently overcomes uncertainties and disturbances in the system.It also has a very fast transient response that is desirable when controlling robotic manipulators.The most critical drawback to SMC is chattering in the control input signal.To solve this problem,in this study,SMC is used with a boundary layer(SMCBL)to eliminate the chattering and improve the performance of the system.The proposed SMCBL was compared with inverse dynamic control(IDC),a conventional nonlinear control method.The kinematic and dynamic equations of the IRB-120 robot manipulator were initially extracted completely and accurately,and then the control of the robot manipulator using SMC was evaluated.For validation,the proposed control method was implemented on a 6-DOF IRB-120 robot manipulator in the presence of uncertainties.The results were simulated,tested,and compared in the MATLAB/Simulink environment.To further validate our work,the results were tested and confirmed experimentally on an actual IRB-120 robot manipulator.展开更多
In recent years, a large number of relatively advanced and often ready-to-use robotic hardware components and systems have been developed for small-scale use. As these tools are mature, there is now a shift towards ad...In recent years, a large number of relatively advanced and often ready-to-use robotic hardware components and systems have been developed for small-scale use. As these tools are mature, there is now a shift towards advanced applications. These often require automation and demand reliability, efficiency and decisional autonomy. New software tools and algorithms for artificial intelligence(AI) and machine learning(ML) can help here. However, since there are many software-based control approaches for small-scale robotics, it is rather unclear how these can be integrated and which approach may be used as a starting point. Therefore, this paper attempts to shed light on existing approaches with their advantages and disadvantages compared to established requirements. For this purpose, a survey was conducted in the target group. The software categories presented include vendor-provided software, robotic software frameworks(RSF), scientific software and in-house developed software(IHDS). Typical representatives for each category are described in detail, including Smar Act precision tool commander, Math Works Matlab and national instruments Lab VIEW, as well as the robot operating system(ROS). The identified software categories and their representatives are rated for end user satisfaction based on functional and non-functional requirements, recommendations and learning curves. The paper concludes with a recommendation of ROS as a basis for future work.展开更多
Space robot is assembled and tested in gravity environment, and completes on-orbit service(OOS) in microgravity environment. The kinematic and dynamic characteristic of the robot will change with the variations of g...Space robot is assembled and tested in gravity environment, and completes on-orbit service(OOS) in microgravity environment. The kinematic and dynamic characteristic of the robot will change with the variations of gravity in different working condition. Fully considering the change of kinematic and dynamic models caused by the change of gravity environment, a fuzzy adaptive robust control(FARC) strategy which is adaptive to these model variations is put forward for trajectory tracking control of space robot. A fuzzy algorithm is employed to approximate the nonlinear uncertainties in the model, adaptive laws of the parameters are constructed, and the approximation error is compensated by using a robust control algorithm. The stability of the control system is guaranteed based on the Lyapunov theory and the trajectory tracking control simulation is performed. The simulation results are compared with the proportional plus derivative(PD) controller, and the effectiveness to achieve better trajectory tracking performance under different gravity environment without changing the control parameters and the advantage of the proposed controller are verified.展开更多
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force...Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.展开更多
A composite nonlinear feedback tracking controller for motion control of robot manipulators is described. The structure of the controller is composed of a composite nonlinear feedback law plus full robot nonlinear dyn...A composite nonlinear feedback tracking controller for motion control of robot manipulators is described. The structure of the controller is composed of a composite nonlinear feedback law plus full robot nonlinear dynamics compensation. The stability is carried out in the presence of friction. The controller takes advantage of varying damping ratios induced by the composite nonlinear feedback control, so the transient performance of the closed-loop is remarkably improved. Simulation results demonstrate the feasibility of the proposed method.展开更多
In the existing modular joint design and control methods of collaborative robots, the inertia of the manipulator link is large,the dynamic trajectory planning ability is weak, the collision stop safety strategy is dep...In the existing modular joint design and control methods of collaborative robots, the inertia of the manipulator link is large,the dynamic trajectory planning ability is weak, the collision stop safety strategy is dependent, and the adaptability and safety to the changing environment are limited. This paper develops a six-degree-of-freedom lightweight collaborative manipulator with real-time dynamic trajectory planning and active compliance control. Firstly, a novel motor installation, joint transmission, and link design method is put forward to reduce the inertia of the links and improve intrinsic safety. At the same time, to enhance the dynamic operation capability and quick response of the manipulator, a smooth planning of position and orientation under initial/end pose and velocity constraints is proposed. The adaptability to the environment is improved by the active compliance control. Finally, experiments are carried out to verify the effectiveness of the proposed design, planning, and control methods.展开更多
This paper presents an in-depth analytical and empirical assessment of the performance of DoubleBee,a novel hybrid aerial-ground robot.Particularly,the dynamic model of the robot with ground contact is analyzed,and th...This paper presents an in-depth analytical and empirical assessment of the performance of DoubleBee,a novel hybrid aerial-ground robot.Particularly,the dynamic model of the robot with ground contact is analyzed,and the unknown parameters in the model are identified.We apply an unscented Kalman filter-based approach and a least square-based approach to estimate the parameters with given measurements and inputs at every time step.Real data are collected and used to estimate the parameters;test data verify that the values obtained are able to model the rotation of the robot accurately.A gain-scheduled feedback controller is proposed,which leverages the identified model to generate accurate control inputs to drive the system to the desired states.The system is proven to track a constant-velocity reference signal with bounded error.Simulations and real-world experiments using the proposed controller show improved performance than the PID-based controller in tracking step commands and maintaining attitude under robot movement.展开更多
The paper introduces an electroencephalography(EEG) driven online position control scheme for a robot arm by utilizing motor imagery to activate and error related potential(ErrP) to stop the movement of the individual...The paper introduces an electroencephalography(EEG) driven online position control scheme for a robot arm by utilizing motor imagery to activate and error related potential(ErrP) to stop the movement of the individual links, following a fixed(pre-defined) order of link selection. The right(left)hand motor imagery is used to turn a link clockwise(counterclockwise) and foot imagery is used to move a link forward. The occurrence of ErrP here indicates that the link under motion crosses the visually fixed target position, which usually is a plane/line/point depending on the desired transition of the link across 3D planes/around 2D lines/along 2D lines respectively. The imagined task about individual link's movement is decoded by a classifier into three possible class labels: clockwise, counterclockwise and no movement in case of rotational movements and forward, backward and no movement in case of translational movements. One additional classifier is required to detect the occurrence of the ErrP signal, elicited due to visually inspired positional link error with reference to a geometrically selected target position. Wavelet coefficients and adaptive autoregressive parameters are extracted as features for motor imagery and ErrP signals respectively. Support vector machine classifiers are used to decode motor imagination and ErrP with high classification accuracy above 80%. The average time taken by the proposed scheme to decode and execute control intentions for the complete movement of three links of a robot is approximately33 seconds. The steady-state error and peak overshoot of the proposed controller are experimentally obtained as 1.1% and4.6% respectively.展开更多
Openness is one of the features of modern robot controllers. Although many modeling technologies have been discussed to model and develop open robot controllers, the focus is always on modeling methodology. The relati...Openness is one of the features of modern robot controllers. Although many modeling technologies have been discussed to model and develop open robot controllers, the focus is always on modeling methodology. The relation between the former and the latter is usually ignored. According to the general software architecture of open robot controllers, this paper discusses modeling and developing methods. And the relation between the typical ones is analyzed.展开更多
文摘Artificial intelligence (AI), robotics, and intelligent systems are increasingly penetrating our society. With recent advances in AI, especially in intelligent control and computing, robots are gaining the ability to learn, make decisions, and operate in ways much similar to humans.To a large extent.
基金supported in part by the National Natural Science Foundation of China(Nos.52205532 and 624B2077)the National Key Research and Development Program of China(No.2023YFB4302003).
文摘The global demand for effective skin injury treatments has prompted the exploration of tissue engineering solutions.While three-dimensional(3D)bioprinting has shown promise,challenges persist with respect to achieving timely and compatible solutions to treat diverse skin injuries.In situ bioprinting has emerged as a key new technology,since it reduces risks during the implantation of printed scaffolds and demonstrates superior therapeutic effects.However,maintaining printing fidelity during in situ bioprinting remains a critical challenge,particularly with respect to model layering and path planning.This study proposes a novel optimization-based conformal path planning strategy for in situ bioprinting-based repair of complex skin injuries.This strategy employs constrained optimization to identify optimal waypoints on a point cloud-approximated curved surface,thereby ensuring a high degree of similarity between predesigned planar and surface-mapped 3D paths.Furthermore,this method is applicable for skin wound treatments,since it generates 3D-equidistant zigzag curves along surface tangents and enables multi-layer conformal path planning to facilitate the treatment of volumetric injuries.Furthermore,the proposed algorithm was found to be a feasible and effective treatment in a murine back injury model as well as in other complex models,thereby showcasing its potential to guide in situ bioprinting,enhance bioprinting fidelity,and facilitate improvement of clinical outcomes.
基金supported by Shenzhen Science and Technology Program(nos.JCYJ20210324132810026,GXWD20220811164014001 and KQTD20210811090146075)the National Natural Science Foundation of China(no.52375175)+3 种基金Guangdong Basic and Applied Basic Research Foundation(no.2024A1515240015)Jiangsu Provincial Outstanding Youth Program(no.BK20230072)Suzhou Industrial Foresight and Key Core Technology Project(no.SYC2022044)grants from Jiangsu QingLan Project and Jiangsu 333 high-level talents.
文摘Soft robots capable of navigating complex environments hold promise for minimally invasive medical procedures and micromanipulation tasks.Here,we present a magnetically controlled multi-legged soft robot inspired by green sea turtle locomotion.Our designed robot,featuring six magnetized feet,demonstrates stable motion within a magnetic field strength range of 1.84–6.44 mT.Locomotion displacement scales linearly with field strength,while velocity correlates with frequency,reaching approximately 25 mm/s at 10 Hz.The robot navigates dry,semi-submerged,and fully submerged conditions,climbs slopes up to 30°,and maneuvers through U-shaped bends.Additionally,we demonstrate the robot's capability to smoothly transition between terrestrial and aquatic environments,demonstrating its amphibious locomotion performance.This adaptability to diverse environments,coupled with precise magnetic control,opens new possibilities for soft robotics in confined and complex spaces.Our findings provide a framework for designing highly maneuverable small-scale soft robots with potential applications ranging from targeted drug delivery to environmental sensing in challenging terrains.
文摘In the modern technological landscape,magnetic field sensors play a crucial role and are indispensable across a range of high-tech applications[1].In conjunction with magnets,magnetic field sensors can accurately detect any form of relative movement of objects without physical contact.For instance,in the precise control of robotic arms or machine tools,a permanent magnet is used as a reference.The magnetic sensor detects the relative movement of magnet by sensing changes in the magnetic field strength.These changes are converted into electrical signals,which are fed back to the control system,enabling accurate positioning and control of the device.This advanced detection technology not only greatly enhances measurement precision but also significantly extends the lifespan of equipment.Among various types of magnetic field sensors,magnetoresistive(MR)sensors stand out for their exceptional performance[1].The high sensitivity allows them to detect minimal changes of magnetic fields in high-precision measurements.Today,MR sensors are widely used across numerous fields,including automobile industries,information processing and storage,navigation systems,biomedical applications,etc[1,2].With their outstanding performance and wide-ranging applications,MR sensors are at the forefront of sensor technology.
文摘Robotics has aroused huge attention since the 1950s.Irrespective of the uniqueness that industrial applications exhibit,conventional rigid robots have displayed noticeable limitations,particularly in safe cooperation as well as with environmental adaption.Accordingly,scientists have shifted their focus on soft robotics to apply this type of robots more effectively in unstructured environments.For decades,they have been committed to exploring sub-fields of soft robotics(e.g.,cutting-edge techniques in design and fabrication,accurate modeling,as well as advanced control algorithms).Although scientists have made many different efforts,they share the common goal of enhancing applicability.The presented paper aims to brief the progress of soft robotic research for readers interested in this field,and clarify how an appropriate control algorithm can be produced for soft robots with specific morphologies.This paper,instead of enumerating existing modeling or control methods of a certain soft robot prototype,interprets for the relationship between morphology and morphology-dependent motion strategy,attempts to delve into the common issues in a particular class of soft robots,and elucidates a generic solution to enhance their performance.
基金supported by Specialized Research Fund for Doctoral Program of Higher Education of China (Grant No. 20091102120038)
文摘Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control engineering. Presently, most ILC algorithms still follow the original ideas of ARIMOTO, in which the iterative-learning-rate is composed by the control error with its derivative and integral values. This kind of algorithms will result in inevitable problems such as huge computation, big storage capacity for algorithm data, and also weak robust. In order to resolve these problems, an improved iterative learning control algorithm with fixed step is proposed here which breaks the primary thought of ARIMOTO. In this algorithm, the control step is set only according to the value of the control error, which could enormously reduce the computation and storage size demanded, also improve the robust of the algorithm by not using the differential coefficient of the iterative learning error. In this paper, the convergence conditions of this proposed fixed step iterative learning algorithm is theoretically analyzed and testified. Then the algorithm is tested through simulation researches on a time-variant object with randomly set disturbance through calculation of step threshold value, algorithm robustness testing,and evaluation of the relation between convergence speed and step size. Finally the algorithm is validated on a valve-serving-cylinder system of a joint robot with time-variant parameters. Experiment results demonstrate the stability of the algorithm and also the relationship between step value and convergence rate. Both simulation and experiment testify the feasibility and validity of the new algorithm proposed here. And it is worth to noticing that this algorithm is simple but with strong robust after improvements, which provides new ideas to the research of iterative learning control algorithms.
文摘A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without requiring robot kinematics and camera calibration. To speed up the convergence and avoid local minimum of the neural network, this paper uses a genetic algorithm to find the optimal initial weights and thresholds and then uses the BP Mgorithm to train the neural network according to the data given. The proposed method can effectively combine the good global searching ability of genetic algorithms with the accurate local searching feature of BP neural network. The Simulink model for PUMA560 robot visual servo system based on the improved BP neural network is built with the Robotics Toolbox of Matlab. The simulation results indicate that the proposed method can accelerate convergence of the image errors and provide a simple and effective way of robot control.
基金supported partially by the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region(NJZY13279)
文摘This paper proposes a high-speed nonsingular terminal switched sliding mode control(HNT-SSMC) strategy for robot manipulators. The proposed approach enhances the control system performance by switching among appropriate sliding mode controllers according to different control demands in different regions of the state space. It is shown that the highspeed nonsingular terminal switched sliding mode(HNT-SSM)which is the representation of different control demands and enforced by the HNT-SSMC has the property of global highspeed convergence compared with the nonsingular fast terminal sliding mode(NFTSM), and provides the global non-singularity.The simulation study of an application example is carried out to validate the effectiveness of the proposed strategy.
文摘In order to apply the terminal sliding mode control to robot manipulators,prior knowledge of the exact upper bound of parameter uncertainties,and external disturbances is necessary.However,this bound will not be easily determined because of the complexity and unpredictability of the structure of uncertainties in the dynamics of the robot.To resolve this problem in robot control,we propose a new robust adaptive terminal sliding mode control for tracking problems in robotic manipulators.By applying this adaptive controller,prior knowledge is not required because the controller is able to estimate the upper bound of uncertainties and disturbances.Also,the proposed controller can eliminate the chattering effect without losing the robustness property.The stability of the control algorithm can be easily verified by using Lyapunov theory.The proposed controller is tested in simulation on a two-degree-of-freedom robot to prove its effectiveness.
基金the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (No.706043)Hunan Provincial Natural Science Foundation of China (No.06JJ50121)the National Natural Science Foundation of China (No.60775047).
文摘To deal with the uncertainty factors of robotic systems, a robust adaptive tracking controller is proposed. The knowledge of the uncertainty factors is assumed to be unidentified; the proposed controller can guarantee robustness to parametric and dynamics uncertainties and can also reject any bounded, immeasurable disturbances entering the system. The stability of the proposed controller is proven by the Lyapunov method. The proposed controller can easily be implemented and the stability of the closed system can be ensured; the tracking error and adaptation parameter error are uniformly ultimately bounded (UUB). Finally, some simulation examples are utilized to illustrate the control performance.
基金supported by the National Natural Science Foundation of China(62173352,62103112)the Guangdong Basic and Applied Basic Research Foundation(2021A1515012314)+1 种基金the Open Project of Shenzhen Institute of Artificial Intelligence and Robotics for Society(AC01202005006)the Key-Area Research and Development Program of Guangzhou(202007030004)。
文摘Taking advantage of their inherent dexterity,robotic arms are competent in completing many tasks efficiently.As a result of the modeling complexity and kinematic uncertainty of robotic arms,model-free control paradigm has been proposed and investigated extensively.However,robust model-free control of robotic arms in the presence of noise interference remains a problem worth studying.In this paper,we first propose a new kind of zeroing neural network(ZNN),i.e.,integration-enhanced noise-tolerant ZNN(IENT-ZNN)with integration-enhanced noisetolerant capability.Then,a unified dual IENT-ZNN scheme based on the proposed IENT-ZNN is presented for the kinematic control problem of both rigid-link and continuum robotic arms,which improves the performance of robotic arms with the disturbance of noise,without knowing the structural parameters of the robotic arms.The finite-time convergence and robustness of the proposed control scheme are proven by theoretical analysis.Finally,simulation studies and experimental demonstrations verify that the proposed control scheme is feasible in the kinematic control of different robotic arms and can achieve better results in terms of accuracy and robustness.
文摘Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,nonlinear controllers with robust performance which can cope with these are recommended.The sliding mode control(SMC)is a robust state feedback control method for nonlinear systems that,in addition having a simple design,efficiently overcomes uncertainties and disturbances in the system.It also has a very fast transient response that is desirable when controlling robotic manipulators.The most critical drawback to SMC is chattering in the control input signal.To solve this problem,in this study,SMC is used with a boundary layer(SMCBL)to eliminate the chattering and improve the performance of the system.The proposed SMCBL was compared with inverse dynamic control(IDC),a conventional nonlinear control method.The kinematic and dynamic equations of the IRB-120 robot manipulator were initially extracted completely and accurately,and then the control of the robot manipulator using SMC was evaluated.For validation,the proposed control method was implemented on a 6-DOF IRB-120 robot manipulator in the presence of uncertainties.The results were simulated,tested,and compared in the MATLAB/Simulink environment.To further validate our work,the results were tested and confirmed experimentally on an actual IRB-120 robot manipulator.
文摘In recent years, a large number of relatively advanced and often ready-to-use robotic hardware components and systems have been developed for small-scale use. As these tools are mature, there is now a shift towards advanced applications. These often require automation and demand reliability, efficiency and decisional autonomy. New software tools and algorithms for artificial intelligence(AI) and machine learning(ML) can help here. However, since there are many software-based control approaches for small-scale robotics, it is rather unclear how these can be integrated and which approach may be used as a starting point. Therefore, this paper attempts to shed light on existing approaches with their advantages and disadvantages compared to established requirements. For this purpose, a survey was conducted in the target group. The software categories presented include vendor-provided software, robotic software frameworks(RSF), scientific software and in-house developed software(IHDS). Typical representatives for each category are described in detail, including Smar Act precision tool commander, Math Works Matlab and national instruments Lab VIEW, as well as the robot operating system(ROS). The identified software categories and their representatives are rated for end user satisfaction based on functional and non-functional requirements, recommendations and learning curves. The paper concludes with a recommendation of ROS as a basis for future work.
基金supported by the National High-tech Research and Development Program of China
文摘Space robot is assembled and tested in gravity environment, and completes on-orbit service(OOS) in microgravity environment. The kinematic and dynamic characteristic of the robot will change with the variations of gravity in different working condition. Fully considering the change of kinematic and dynamic models caused by the change of gravity environment, a fuzzy adaptive robust control(FARC) strategy which is adaptive to these model variations is put forward for trajectory tracking control of space robot. A fuzzy algorithm is employed to approximate the nonlinear uncertainties in the model, adaptive laws of the parameters are constructed, and the approximation error is compensated by using a robust control algorithm. The stability of the control system is guaranteed based on the Lyapunov theory and the trajectory tracking control simulation is performed. The simulation results are compared with the proportional plus derivative(PD) controller, and the effectiveness to achieve better trajectory tracking performance under different gravity environment without changing the control parameters and the advantage of the proposed controller are verified.
基金Supported by National Key Basic Research Program of China(973 Program,Grant No.2014CB046405)State Key Laboratory of Fluid Power and Mechatronic Systems(Zhejiang University)Open Fund Project(Grant No.GZKF-201502)Hebei Military and Civilian Industry Development Funds Projects of China(Grant No.2015B060)
文摘Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.
基金supported by the National Natural Science Foundation of China (60428303)
文摘A composite nonlinear feedback tracking controller for motion control of robot manipulators is described. The structure of the controller is composed of a composite nonlinear feedback law plus full robot nonlinear dynamics compensation. The stability is carried out in the presence of friction. The controller takes advantage of varying damping ratios induced by the composite nonlinear feedback control, so the transient performance of the closed-loop is remarkably improved. Simulation results demonstrate the feasibility of the proposed method.
基金supported by National Key Research and Development Program of China (No. 2018AAA0103003)National Natural Science Foundation of China(No. 61773378)+1 种基金the Basic Research Program (No.JCKY*******B029)the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB32050100)。
文摘In the existing modular joint design and control methods of collaborative robots, the inertia of the manipulator link is large,the dynamic trajectory planning ability is weak, the collision stop safety strategy is dependent, and the adaptability and safety to the changing environment are limited. This paper develops a six-degree-of-freedom lightweight collaborative manipulator with real-time dynamic trajectory planning and active compliance control. Firstly, a novel motor installation, joint transmission, and link design method is put forward to reduce the inertia of the links and improve intrinsic safety. At the same time, to enhance the dynamic operation capability and quick response of the manipulator, a smooth planning of position and orientation under initial/end pose and velocity constraints is proposed. The adaptability to the environment is improved by the active compliance control. Finally, experiments are carried out to verify the effectiveness of the proposed design, planning, and control methods.
文摘This paper presents an in-depth analytical and empirical assessment of the performance of DoubleBee,a novel hybrid aerial-ground robot.Particularly,the dynamic model of the robot with ground contact is analyzed,and the unknown parameters in the model are identified.We apply an unscented Kalman filter-based approach and a least square-based approach to estimate the parameters with given measurements and inputs at every time step.Real data are collected and used to estimate the parameters;test data verify that the values obtained are able to model the rotation of the robot accurately.A gain-scheduled feedback controller is proposed,which leverages the identified model to generate accurate control inputs to drive the system to the desired states.The system is proven to track a constant-velocity reference signal with bounded error.Simulations and real-world experiments using the proposed controller show improved performance than the PID-based controller in tracking step commands and maintaining attitude under robot movement.
基金supported by UGC Sponsored UPE-ⅡProject in Cognitive Science of Jadavpur University,Kolkata
文摘The paper introduces an electroencephalography(EEG) driven online position control scheme for a robot arm by utilizing motor imagery to activate and error related potential(ErrP) to stop the movement of the individual links, following a fixed(pre-defined) order of link selection. The right(left)hand motor imagery is used to turn a link clockwise(counterclockwise) and foot imagery is used to move a link forward. The occurrence of ErrP here indicates that the link under motion crosses the visually fixed target position, which usually is a plane/line/point depending on the desired transition of the link across 3D planes/around 2D lines/along 2D lines respectively. The imagined task about individual link's movement is decoded by a classifier into three possible class labels: clockwise, counterclockwise and no movement in case of rotational movements and forward, backward and no movement in case of translational movements. One additional classifier is required to detect the occurrence of the ErrP signal, elicited due to visually inspired positional link error with reference to a geometrically selected target position. Wavelet coefficients and adaptive autoregressive parameters are extracted as features for motor imagery and ErrP signals respectively. Support vector machine classifiers are used to decode motor imagination and ErrP with high classification accuracy above 80%. The average time taken by the proposed scheme to decode and execute control intentions for the complete movement of three links of a robot is approximately33 seconds. The steady-state error and peak overshoot of the proposed controller are experimentally obtained as 1.1% and4.6% respectively.
文摘Openness is one of the features of modern robot controllers. Although many modeling technologies have been discussed to model and develop open robot controllers, the focus is always on modeling methodology. The relation between the former and the latter is usually ignored. According to the general software architecture of open robot controllers, this paper discusses modeling and developing methods. And the relation between the typical ones is analyzed.