In order to apply the terminal sliding mode control to robot manipulators,prior knowledge of the exact upper bound of parameter uncertainties,and external disturbances is necessary.However,this bound will not be easil...In order to apply the terminal sliding mode control to robot manipulators,prior knowledge of the exact upper bound of parameter uncertainties,and external disturbances is necessary.However,this bound will not be easily determined because of the complexity and unpredictability of the structure of uncertainties in the dynamics of the robot.To resolve this problem in robot control,we propose a new robust adaptive terminal sliding mode control for tracking problems in robotic manipulators.By applying this adaptive controller,prior knowledge is not required because the controller is able to estimate the upper bound of uncertainties and disturbances.Also,the proposed controller can eliminate the chattering effect without losing the robustness property.The stability of the control algorithm can be easily verified by using Lyapunov theory.The proposed controller is tested in simulation on a two-degree-of-freedom robot to prove its effectiveness.展开更多
Space robot is assembled and tested in gravity environment, and completes on-orbit service(OOS) in microgravity environment. The kinematic and dynamic characteristic of the robot will change with the variations of g...Space robot is assembled and tested in gravity environment, and completes on-orbit service(OOS) in microgravity environment. The kinematic and dynamic characteristic of the robot will change with the variations of gravity in different working condition. Fully considering the change of kinematic and dynamic models caused by the change of gravity environment, a fuzzy adaptive robust control(FARC) strategy which is adaptive to these model variations is put forward for trajectory tracking control of space robot. A fuzzy algorithm is employed to approximate the nonlinear uncertainties in the model, adaptive laws of the parameters are constructed, and the approximation error is compensated by using a robust control algorithm. The stability of the control system is guaranteed based on the Lyapunov theory and the trajectory tracking control simulation is performed. The simulation results are compared with the proportional plus derivative(PD) controller, and the effectiveness to achieve better trajectory tracking performance under different gravity environment without changing the control parameters and the advantage of the proposed controller are verified.展开更多
Considering the compliance control problem of a hexapod robot under different environments, a control strategy based on the improved adaptive control algorithm is proposed. The model of robot structure and impedance c...Considering the compliance control problem of a hexapod robot under different environments, a control strategy based on the improved adaptive control algorithm is proposed. The model of robot structure and impedance control is established. Then, the indirect adaptive control algorithm is derived. Through the analysis of its parameters, it can be noticed that the algorithm does not meet the requirements of the robot compliance control in a complex environment. Therefore, the fuzzy control algorithm is used to adjust the adaptive control parameters. The satisfied system response can be obtained based on the adjustment in real time according to the error between input and output. Comparative experiments and analysis of traditional adaptive control and the improved adaptive control algorithm are presented. It can be verified that not only desired contact force can be reached quickly in different environments, but also smaller contact impact and sliding avoidance are guaranteed, which means that the control strategy has great significance to enhance the adaptability of the hexapod robot.展开更多
The increasing demand on robotic system performance leads to the use of advanced con- trol strategies. This paper proposes a method of nonlinear feedback control introducing fuzzy infer- ence into model-following adap...The increasing demand on robotic system performance leads to the use of advanced con- trol strategies. This paper proposes a method of nonlinear feedback control introducing fuzzy infer- ence into model-following adaptive control for the nonlinear robot manipulator systems. The fuzzy inference is introduced to treat the nonlinearities of the control systems. Furthermore, the stability of the system is discussed by the fuzzy stability theory based on the Lyapunov's direct method. In the closed loop, the robotic system asymptotically converge to the reference trajectory with a pre- scribed transient response.展开更多
In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts ...In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts to carry out the bench press training in the microgravity environment. Firstly, a dynamic model of cable driven unit(CDU) was established whose accuracy was verified through the model identification. Secondly, to improve the accuracy and the speed of the active loading, an active loading hybrid force controller was proposed on the basis of the dynamic model of the CDU. Finally, the actual effect of the hybrid force controller was tested by simulations and experiments. The results suggest that the hybrid force controller can significantly improve the precision and the dynamic performance of the active loading with the maximum phase lag of the active loading being 9° and the maximum amplitude error being 2% at the frequency range of 10 Hz. The controller can meet the design requirements.展开更多
A neural network (NN) based adaptive control law is proposed for the tracking control of an n link robot manipulator with unknown dynamic nonlinearities. Basis function like nets are employed to approximate the plant ...A neural network (NN) based adaptive control law is proposed for the tracking control of an n link robot manipulator with unknown dynamic nonlinearities. Basis function like nets are employed to approximate the plant nonlinearities, and the bound on the NN reconstruction error is assumed to be unknown. The proposed NN based adaptive control approach integrates an NN approach with an adaptive implementation of discrete variable structure control with a simple estimation law to estimate the upper bound on the NN reconstruction error and an additional control input to be updated as a function of the estimate. Lyapunov stability theory is used to prove the uniform ultimate boundedness of the tracking error.展开更多
In this paper, we address the characteristic model-based discrete-time consensus problem of networked robotic manipulators with dynamic uncertainties. The research objective is to achieve joint-position consensus of m...In this paper, we address the characteristic model-based discrete-time consensus problem of networked robotic manipulators with dynamic uncertainties. The research objective is to achieve joint-position consensus of multiple robotic agents interconnected on directed graphs containing a spanning tree. A novel characteristic model-based distributed adaptive control scenario is proposed with a state-relied projection estimation law and a characteristic model-based distributed controller. The performance analysis is also unfolded where the uniform ultimate boundedness(UUB) of consensus errors is derived by resorting to the discrete-time-domain stability analysis tool and the graph theory. Finally, numerical simulations illustrate the effectiveness of the proposed theoretical strategy.展开更多
文摘In order to apply the terminal sliding mode control to robot manipulators,prior knowledge of the exact upper bound of parameter uncertainties,and external disturbances is necessary.However,this bound will not be easily determined because of the complexity and unpredictability of the structure of uncertainties in the dynamics of the robot.To resolve this problem in robot control,we propose a new robust adaptive terminal sliding mode control for tracking problems in robotic manipulators.By applying this adaptive controller,prior knowledge is not required because the controller is able to estimate the upper bound of uncertainties and disturbances.Also,the proposed controller can eliminate the chattering effect without losing the robustness property.The stability of the control algorithm can be easily verified by using Lyapunov theory.The proposed controller is tested in simulation on a two-degree-of-freedom robot to prove its effectiveness.
基金supported by the National High-tech Research and Development Program of China
文摘Space robot is assembled and tested in gravity environment, and completes on-orbit service(OOS) in microgravity environment. The kinematic and dynamic characteristic of the robot will change with the variations of gravity in different working condition. Fully considering the change of kinematic and dynamic models caused by the change of gravity environment, a fuzzy adaptive robust control(FARC) strategy which is adaptive to these model variations is put forward for trajectory tracking control of space robot. A fuzzy algorithm is employed to approximate the nonlinear uncertainties in the model, adaptive laws of the parameters are constructed, and the approximation error is compensated by using a robust control algorithm. The stability of the control system is guaranteed based on the Lyapunov theory and the trajectory tracking control simulation is performed. The simulation results are compared with the proportional plus derivative(PD) controller, and the effectiveness to achieve better trajectory tracking performance under different gravity environment without changing the control parameters and the advantage of the proposed controller are verified.
基金Project(51221004) supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of ChinaProject(2010R50036) supported by the Program for Zhejiang Leading Team of S&T Innovation,China
文摘Considering the compliance control problem of a hexapod robot under different environments, a control strategy based on the improved adaptive control algorithm is proposed. The model of robot structure and impedance control is established. Then, the indirect adaptive control algorithm is derived. Through the analysis of its parameters, it can be noticed that the algorithm does not meet the requirements of the robot compliance control in a complex environment. Therefore, the fuzzy control algorithm is used to adjust the adaptive control parameters. The satisfied system response can be obtained based on the adjustment in real time according to the error between input and output. Comparative experiments and analysis of traditional adaptive control and the improved adaptive control algorithm are presented. It can be verified that not only desired contact force can be reached quickly in different environments, but also smaller contact impact and sliding avoidance are guaranteed, which means that the control strategy has great significance to enhance the adaptability of the hexapod robot.
文摘The increasing demand on robotic system performance leads to the use of advanced con- trol strategies. This paper proposes a method of nonlinear feedback control introducing fuzzy infer- ence into model-following adaptive control for the nonlinear robot manipulator systems. The fuzzy inference is introduced to treat the nonlinearities of the control systems. Furthermore, the stability of the system is discussed by the fuzzy stability theory based on the Lyapunov's direct method. In the closed loop, the robotic system asymptotically converge to the reference trajectory with a pre- scribed transient response.
基金Project(61175128) supported by the National Natural Science Foundation of ChinaProject(2008AA040203) supported by the National High Technology Research and Development Program of ChinaProject(QC2010009) supported by the Natural Science Foundation of Heilongjiang Province,China
文摘In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts to carry out the bench press training in the microgravity environment. Firstly, a dynamic model of cable driven unit(CDU) was established whose accuracy was verified through the model identification. Secondly, to improve the accuracy and the speed of the active loading, an active loading hybrid force controller was proposed on the basis of the dynamic model of the CDU. Finally, the actual effect of the hybrid force controller was tested by simulations and experiments. The results suggest that the hybrid force controller can significantly improve the precision and the dynamic performance of the active loading with the maximum phase lag of the active loading being 9° and the maximum amplitude error being 2% at the frequency range of 10 Hz. The controller can meet the design requirements.
文摘A neural network (NN) based adaptive control law is proposed for the tracking control of an n link robot manipulator with unknown dynamic nonlinearities. Basis function like nets are employed to approximate the plant nonlinearities, and the bound on the NN reconstruction error is assumed to be unknown. The proposed NN based adaptive control approach integrates an NN approach with an adaptive implementation of discrete variable structure control with a simple estimation law to estimate the upper bound on the NN reconstruction error and an additional control input to be updated as a function of the estimate. Lyapunov stability theory is used to prove the uniform ultimate boundedness of the tracking error.
基金supported by the National Natural Science Foundation of China(Grant Nos.6133300861273153&61304027)
文摘In this paper, we address the characteristic model-based discrete-time consensus problem of networked robotic manipulators with dynamic uncertainties. The research objective is to achieve joint-position consensus of multiple robotic agents interconnected on directed graphs containing a spanning tree. A novel characteristic model-based distributed adaptive control scenario is proposed with a state-relied projection estimation law and a characteristic model-based distributed controller. The performance analysis is also unfolded where the uniform ultimate boundedness(UUB) of consensus errors is derived by resorting to the discrete-time-domain stability analysis tool and the graph theory. Finally, numerical simulations illustrate the effectiveness of the proposed theoretical strategy.