期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Adaptive Terminal Sliding Mode Control for Rigid Robotic Manipulators 被引量:19
1
作者 Mezghani Ben Romdhane Neila Damak Tarak 《International Journal of Automation and computing》 EI 2011年第2期215-220,共6页
In order to apply the terminal sliding mode control to robot manipulators,prior knowledge of the exact upper bound of parameter uncertainties,and external disturbances is necessary.However,this bound will not be easil... In order to apply the terminal sliding mode control to robot manipulators,prior knowledge of the exact upper bound of parameter uncertainties,and external disturbances is necessary.However,this bound will not be easily determined because of the complexity and unpredictability of the structure of uncertainties in the dynamics of the robot.To resolve this problem in robot control,we propose a new robust adaptive terminal sliding mode control for tracking problems in robotic manipulators.By applying this adaptive controller,prior knowledge is not required because the controller is able to estimate the upper bound of uncertainties and disturbances.Also,the proposed controller can eliminate the chattering effect without losing the robustness property.The stability of the control algorithm can be easily verified by using Lyapunov theory.The proposed controller is tested in simulation on a two-degree-of-freedom robot to prove its effectiveness. 展开更多
关键词 Terminal sliding mode sliding mode control adaptive control of robot robust control Lyapunov method.
在线阅读 下载PDF
Fuzzy adaptive robust control for space robot considering the effect of the gravity 被引量:14
2
作者 Qin Li Liu Fucai +1 位作者 Liang Lihuan Gao Jingfang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1562-1570,共9页
Space robot is assembled and tested in gravity environment, and completes on-orbit service(OOS) in microgravity environment. The kinematic and dynamic characteristic of the robot will change with the variations of g... Space robot is assembled and tested in gravity environment, and completes on-orbit service(OOS) in microgravity environment. The kinematic and dynamic characteristic of the robot will change with the variations of gravity in different working condition. Fully considering the change of kinematic and dynamic models caused by the change of gravity environment, a fuzzy adaptive robust control(FARC) strategy which is adaptive to these model variations is put forward for trajectory tracking control of space robot. A fuzzy algorithm is employed to approximate the nonlinear uncertainties in the model, adaptive laws of the parameters are constructed, and the approximation error is compensated by using a robust control algorithm. The stability of the control system is guaranteed based on the Lyapunov theory and the trajectory tracking control simulation is performed. The simulation results are compared with the proportional plus derivative(PD) controller, and the effectiveness to achieve better trajectory tracking performance under different gravity environment without changing the control parameters and the advantage of the proposed controller are verified. 展开更多
关键词 Fuzzy adaptive Microgravity Robustness Space robot Trajectory tracking control
原文传递
Leg compliance control of a hexapod robot based on improved adaptive control in different environments 被引量:3
3
作者 朱雅光 金波 李伟 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期904-913,共10页
Considering the compliance control problem of a hexapod robot under different environments, a control strategy based on the improved adaptive control algorithm is proposed. The model of robot structure and impedance c... Considering the compliance control problem of a hexapod robot under different environments, a control strategy based on the improved adaptive control algorithm is proposed. The model of robot structure and impedance control is established. Then, the indirect adaptive control algorithm is derived. Through the analysis of its parameters, it can be noticed that the algorithm does not meet the requirements of the robot compliance control in a complex environment. Therefore, the fuzzy control algorithm is used to adjust the adaptive control parameters. The satisfied system response can be obtained based on the adjustment in real time according to the error between input and output. Comparative experiments and analysis of traditional adaptive control and the improved adaptive control algorithm are presented. It can be verified that not only desired contact force can be reached quickly in different environments, but also smaller contact impact and sliding avoidance are guaranteed, which means that the control strategy has great significance to enhance the adaptability of the hexapod robot. 展开更多
关键词 hexapod robot tip-point force adaptive control fuzzy control adaptability
在线阅读 下载PDF
FUZZY MODEL-FOLLOWING ADAPTIVE CONTROL DESIGN FOR ROBOT MANIPULATORS
4
作者 Zhao Dongbiao Zhu Jianying (Nanjing University of Aeronautics and Astronautics) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1995年第2期97-103,共7页
The increasing demand on robotic system performance leads to the use of advanced con- trol strategies. This paper proposes a method of nonlinear feedback control introducing fuzzy infer- ence into model-following adap... The increasing demand on robotic system performance leads to the use of advanced con- trol strategies. This paper proposes a method of nonlinear feedback control introducing fuzzy infer- ence into model-following adaptive control for the nonlinear robot manipulator systems. The fuzzy inference is introduced to treat the nonlinearities of the control systems. Furthermore, the stability of the system is discussed by the fuzzy stability theory based on the Lyapunov's direct method. In the closed loop, the robotic system asymptotically converge to the reference trajectory with a pre- scribed transient response. 展开更多
关键词 robot manipulator Fuzzy set Model-following adaptive control
在线阅读 下载PDF
Hybrid force control of astronaut rehabilitative training robot under active loading mode 被引量:3
5
作者 邹宇鹏 张立勋 +1 位作者 马慧子 秦涛 《Journal of Central South University》 SCIE EI CAS 2014年第11期4121-4132,共12页
In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts ... In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts to carry out the bench press training in the microgravity environment. Firstly, a dynamic model of cable driven unit(CDU) was established whose accuracy was verified through the model identification. Secondly, to improve the accuracy and the speed of the active loading, an active loading hybrid force controller was proposed on the basis of the dynamic model of the CDU. Finally, the actual effect of the hybrid force controller was tested by simulations and experiments. The results suggest that the hybrid force controller can significantly improve the precision and the dynamic performance of the active loading with the maximum phase lag of the active loading being 9° and the maximum amplitude error being 2% at the frequency range of 10 Hz. The controller can meet the design requirements. 展开更多
关键词 space adaptation syndrome astronaut rehabilitative training robot model identification hybrid force control
在线阅读 下载PDF
Adaptive Stabilization of Neural Control for Robot Trajectory Tracking
6
作者 孙富春 陆文娟 戴民 《Tsinghua Science and Technology》 SCIE EI CAS 1998年第3期99-104,共6页
A neural network (NN) based adaptive control law is proposed for the tracking control of an n link robot manipulator with unknown dynamic nonlinearities. Basis function like nets are employed to approximate the plant ... A neural network (NN) based adaptive control law is proposed for the tracking control of an n link robot manipulator with unknown dynamic nonlinearities. Basis function like nets are employed to approximate the plant nonlinearities, and the bound on the NN reconstruction error is assumed to be unknown. The proposed NN based adaptive control approach integrates an NN approach with an adaptive implementation of discrete variable structure control with a simple estimation law to estimate the upper bound on the NN reconstruction error and an additional control input to be updated as a function of the estimate. Lyapunov stability theory is used to prove the uniform ultimate boundedness of the tracking error. 展开更多
关键词 robot adaptive control basis function like nets stability discrete time variable structure
原文传递
Characteristic model-based consensus of networked heterogeneous robotic manipulators with dynamic uncertainties 被引量:8
7
作者 WANG LiJiao MENG Bin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第1期63-71,共9页
In this paper, we address the characteristic model-based discrete-time consensus problem of networked robotic manipulators with dynamic uncertainties. The research objective is to achieve joint-position consensus of m... In this paper, we address the characteristic model-based discrete-time consensus problem of networked robotic manipulators with dynamic uncertainties. The research objective is to achieve joint-position consensus of multiple robotic agents interconnected on directed graphs containing a spanning tree. A novel characteristic model-based distributed adaptive control scenario is proposed with a state-relied projection estimation law and a characteristic model-based distributed controller. The performance analysis is also unfolded where the uniform ultimate boundedness(UUB) of consensus errors is derived by resorting to the discrete-time-domain stability analysis tool and the graph theory. Finally, numerical simulations illustrate the effectiveness of the proposed theoretical strategy. 展开更多
关键词 networked robotic manipulators consensus discrete time characteristic model distributed adaptive controller uniform ultimate boundedness(UUB)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部