期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Road Damage Detection and Classification Using Mask R-CNN with DenseNet Backbone 被引量:3
1
作者 Qiqiang Chen Xinxin Gan +2 位作者 Wei Huang Jingjing Feng H.Shim 《Computers, Materials & Continua》 SCIE EI 2020年第12期2201-2215,共15页
Automatic road damage detection using image processing is an important aspect of road maintenance.It is also a challenging problem due to the inhomogeneity of road damage and complicated background in the road images.... Automatic road damage detection using image processing is an important aspect of road maintenance.It is also a challenging problem due to the inhomogeneity of road damage and complicated background in the road images.In recent years,deep convolutional neural network based methods have been used to address the challenges of road damage detection and classification.In this paper,we propose a new approach to address those challenges.This approach uses densely connected convolution networks as the backbone of the Mask R-CNN to effectively extract image feature,a feature pyramid network for combining multiple scales features,a region proposal network to generate the road damage region,and a fully convolutional neural network to classify the road damage region and refine the region bounding box.This method can not only detect and classify the road damage,but also create a mask of the road damage.Experimental results show that the proposed approach can achieve better results compared with other existing methods. 展开更多
关键词 road damage detection road damage classification Mask R-CNN framework densely connected network
在线阅读 下载PDF
A Comprehensive Evaluation of State-of-the-Art Deep Learning Models for Road Surface Type Classification
2
作者 Narit Hnoohom Sakorn Mekruksavanich Anuchit Jitpattanakul 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1275-1291,共17页
In recent years,as intelligent transportation systems(ITS)such as autonomous driving and advanced driver-assistance systems have become more popular,there has been a rise in the need for different sources of traffic s... In recent years,as intelligent transportation systems(ITS)such as autonomous driving and advanced driver-assistance systems have become more popular,there has been a rise in the need for different sources of traffic situation data.The classification of the road surface type,also known as the RST,is among the most essential of these situational data and can be utilized across the entirety of the ITS domain.Recently,the benefits of deep learning(DL)approaches for sensor-based RST classification have been demonstrated by automatic feature extraction without manual methods.The ability to extract important features is vital in making RST classification more accurate.This work investigates the most recent advances in DL algorithms for sensor-based RST classification and explores appropriate feature extraction models.We used different convolutional neural networks to understand the functional architecture better;we constructed an enhanced DL model called SE-ResNet,which uses residual connections and squeeze-and-excitation mod-ules to improve the classification performance.Comparative experiments with a publicly available benchmark dataset,the passive vehicular sensors dataset,have shown that SE-ResNet outperforms other state-of-the-art models.The proposed model achieved the highest accuracy of 98.41%and the highest F1-score of 98.19%when classifying surfaces into segments of dirt,cobblestone,or asphalt roads.Moreover,the proposed model significantly outperforms DL networks(CNN,LSTM,and CNN-LSTM).The proposed RE-ResNet achieved the classification accuracies of asphalt roads at 98.98,cobblestone roads at 97.02,and dirt roads at 99.56%,respectively. 展开更多
关键词 road surface type classification deep learning inertial sensor deep pyramidal residual network squeeze-and-excitation module
在线阅读 下载PDF
HybridLSTM:An Innovative Method for Road Scene Categorization Employing Hybrid Features
3
作者 Sanjay P.Pande Sarika Khandelwal +4 位作者 Ganesh K.Yenurkar Rakhi D.Wajgi Vincent O.Nyangaresi Pratik R.Hajare Poonam T.Agarkar 《Computers, Materials & Continua》 2025年第9期5937-5975,共39页
Recognizing road scene context from a single image remains a critical challenge for intelligent autonomous driving systems,particularly in dynamic and unstructured environments.While recent advancements in deep learni... Recognizing road scene context from a single image remains a critical challenge for intelligent autonomous driving systems,particularly in dynamic and unstructured environments.While recent advancements in deep learning have significantly enhanced road scene classification,simultaneously achieving high accuracy,computational efficiency,and adaptability across diverse conditions continues to be difficult.To address these challenges,this study proposes HybridLSTM,a novel and efficient framework that integrates deep learning-based,object-based,and handcrafted feature extraction methods within a unified architecture.HybridLSTM is designed to classify four distinct road scene categories—crosswalk(CW),highway(HW),overpass/tunnel(OP/T),and parking(P)—by leveraging multiple publicly available datasets,including Places-365,BDD100K,LabelMe,and KITTI,thereby promoting domain generalization.The framework fuses object-level features extracted using YOLOv5 and VGG19,scene-level global representations obtained from a modified VGG19,and fine-grained texture features captured through eight handcrafted descriptors.This hybrid feature fusion enables the model to capture both semantic context and low-level visual cues,which are critical for robust scene understanding.To model spatial arrangements and latent sequential dependencies present even in static imagery,the combined features are processed through a Long Short-Term Memory(LSTM)network,allowing the extraction of discriminative patterns across heterogeneous feature spaces.Extensive experiments conducted on 2725 annotated road scene images,with an 80:20 training-to-testing split,validate the effectiveness of the proposed model.HybridLSTM achieves a classification accuracy of 96.3%,a precision of 95.8%,a recall of 96.1%,and an F1-score of 96.0%,outperforming several existing state-of-the-art methods.These results demonstrate the robustness,scalability,and generalization capability of HybridLSTM across varying environments and scene complexities.Moreover,the framework is optimized to balance classification performance with computational efficiency,making it highly suitable for real-time deployment in embedded autonomous driving systems.Future work will focus on extending the model to multi-class detection within a single frame and optimizing it further for edge-device deployments to reduce computational overhead in practical applications. 展开更多
关键词 HybridLSTM autonomous vehicles road scene classification critical requirement global features handcrafted features
在线阅读 下载PDF
Learning from the crowd:Road infrastructure monitoring system 被引量:2
4
作者 Johannes Masino Jakob Thumm +1 位作者 Michael Frey Frank Gauterin 《Journal of Traffic and Transportation Engineering(English Edition)》 2017年第5期451-463,共13页
The condition of the road infrastructure has severe impacts on the road safety, driving comfort, and on the rolling resistance. Therefore, the road infrastructure must be moni- tored comprehensively and in regular int... The condition of the road infrastructure has severe impacts on the road safety, driving comfort, and on the rolling resistance. Therefore, the road infrastructure must be moni- tored comprehensively and in regular intervals to identify damaged road segments and road hazards. Methods have been developed to comprehensively and automatically digitize the road infrastructure and estimate the road quality, which are based on vehicle sensors and a supervised machine learning classification. Since different types of vehicles have various suspension systems with different response functions, one classifier cannot be taken over to other vehicles. Usually, a high amount of time is needed to acquire training data for each individual vehicle and classifier. To address this problem, the methods to collect training data automatically for new vehicles based on the comparison of trajectories of untrained and trained vehicles have been developed. The results show that the method based on a k-dimensional tree and Euclidean distance performs best and is robust in transferring the information of the road surface from one vehicle to another. Furthermore, this method offers the possibility to merge the output and road infrastructure information from multiple vehicles to enable a more robust and precise prediction of the ground truth. 展开更多
关键词 road infrastructure condition Monitoring Tree graphs Euclidean distance Machine learning classification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部