The importance and complexity of prioritizing construction projects (PCP) in urban road network planning lead to the necessity to develop an aided decision making program (ADMP). Cost benefit ratio model and stage rol...The importance and complexity of prioritizing construction projects (PCP) in urban road network planning lead to the necessity to develop an aided decision making program (ADMP). Cost benefit ratio model and stage rolled method are chosen as the theoretical foundations of the program, and then benefit model is improved to accord with the actuality of urban traffic in China. Consequently, program flows, module functions and data structures are designed, and particularly an original data structure of road ...展开更多
Belt and Road Initiative(BRI) is a Chinese national strategy which calls for cooperative economic, political and cultural exchange at the global level along the ancient Silk Road. The overwhelming natural hazards loca...Belt and Road Initiative(BRI) is a Chinese national strategy which calls for cooperative economic, political and cultural exchange at the global level along the ancient Silk Road. The overwhelming natural hazards located along the belt and road bring great challenges to the success of BRI. In this framework, a 5-year international program was launched to address issues related to hazards assessment and disaster risk reduction(DRR). The first workshop of this program was held in Beijing with international experts from over 15 countries. Risk conditions on Belt and Road Countries(BRCs) have been shared and science and technology advancements on DRR have been disseminated during the workshop. Under this program, six task forces have been setup to carry out collaborative research works and three prioritized study areas have been established. This workshop announced the launching of this program which involved partners from different countries including Pakistan, Nepal, Russia, Italy, United Kingdom, Sri Lanka and Tajikistan. The program adopted the objectives of Sendai Framework for Disaster Risk Reduction 2015-2030 and United Nation Sustainable Development Goals 2030 and was implemented to assess disaster risk in BRCs and to propose suitable measures for disaster control which can be appropriate both for an individual country and for specific sites. This paper deals with the outcomes of the workshop and points out opportunities for the near future international cooperation on this matter.展开更多
Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level progra...Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level programming model for reconstructing the branch roads was set up. The upper level model was for determining the enlarged capacities of the branch roads, and the lower level model was for calculating the flows of road sections via the user equilibrium traffic assignment method. The genetic algorithm for solving the bi-level model was designed to obtain the reconstruction capacities of the branch roads. The results show that by the bi-level model and its algorithm, the optimum scheme of urban branch roads reconstruction can be gained, which reduces the saturation of arterial roads apparently, and alleviates traffic congestion. In the data analysis the arterial saturation decreases from 1.100 to 0.996, which verifies the micro-circulation transportation's function of urban branch road network.展开更多
In order to evaluate and integrate travel time reliability and capacity reliability of a road network subjected to ice and snowfall conditions,the conceptions of travel time reliability and capacity reliability were d...In order to evaluate and integrate travel time reliability and capacity reliability of a road network subjected to ice and snowfall conditions,the conceptions of travel time reliability and capacity reliability were defined under special conditions.The link travel time model(ice and snowfall based-bureau public road,ISB-BPR) and the path choice decision model(elastic demand user equilibrium,EDUE) were proposed.The integrated reliability was defined and the model was set up.Monte Carlo simulation was used to calculate the model and a numerical example was provided to demonstrate the application of the model and efficiency of the solution algorithm.The results show that the intensity of ice and snowfall,the traffic demand and supply,and the requirements for level of service(LOS) have great influence on the reliability of a road network.For example,the reliability drops from 65% to 5% when the traffic demand increases by 30%.The comprehensive performance index may be used for network planning,design and maintenance.展开更多
Transportation is the lifeblood of a modern metropolis.Accessibility generally refers to the interconnection between nodes in a regional traffic network.The purpose of the paper is to obtain more realistic and accurat...Transportation is the lifeblood of a modern metropolis.Accessibility generally refers to the interconnection between nodes in a regional traffic network.The purpose of the paper is to obtain more realistic and accurate measures of travel speed and to study the road traffic accessibility potential in cities.This study proposes a method for analyzing road traffic accessibility potential which is based on the average travel speed to city centers in off-peak times and which ranks 80 cities around the world.Based on the Suomi National Polar-Orbiting Partnership satellite’s visible-infrared imaging radiometer suite(NPP-VIIRS)night-time light data,urban built-up areas and city centers were extracted.Further,with the aid of the Google Maps application programming interface(API)network crawling technique,travel times and travel distances for several optimal routes to city centers by car were obtained.Feasible proposals for improving road traffic accessibility and planning urban transportation in different cities are presented.The proposed method offers a new possibility of analyzing traffic accessibility using internet data and geo-spatial methods.展开更多
The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement DesignGuide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavement...The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement DesignGuide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavementscompared to conventional design guidelines. It is achieved through optimizing pavement structural andthickness design under specified climate and traffic conditions using advanced M-E principles, thereby minimizingeconomic costs and environmental impact. However, the implementation of AASHTO M-E design for low-volumeconcrete pavements using AASHTOWare Pavement ME Design (Pavement ME) software is often overly conservative.This is because Pavement ME specifies the minimum design thickness of concrete slab as 152.4 mm (6 in.). Thispaper introduces a novel extension of the AASHTO M-E framework for the design of low-volume joint plain concretepavements (JPCPs) without modification of Pavement ME. It utilizes multi-gene genetic programming (MGGP)-based computational models to obtain rapid solutions for JPCP damage accumulation and long-term performanceanalyses. The developed MGGP models simulate the fatigue damage and differential energy accumulations. Thispermits the prediction of transverse cracking and joint faulting for a wide range of design input parameters and axlespectrum. The developed MGGP-based models match Pavement ME-predicted cracking and faulting for rigidpavements with conventional concrete slab thicknesses and enable rational extrapolation of performance predictionfor thinner JPCPs. This paper demonstrates how the developed computational model enables sustainable lowvolumepavement design using optimized ME solutions for Pittsburgh, PA, conditions.展开更多
Based on “One Belt and One Road”, this paper studies the path selection of multimodal transport by using the method of multi-objective mixed integer programming. Therefore, this paper studies the factors of transpor...Based on “One Belt and One Road”, this paper studies the path selection of multimodal transport by using the method of multi-objective mixed integer programming. Therefore, this paper studies the factors of transportation time, transportation cost and transportation safety performance, and establishes a mathematical model. In addition, the method of multi-objective mixed integer programming is used to comprehensively consider the different emphasis and differences of customers on cargo transportation. Then we use planning tools of Microsoft Excel to solve path selection and to determine whether the chosen path is economical and reliable. Finally, a relatively complex road network is built as an example to verify the accuracy of this planning method.展开更多
文摘The importance and complexity of prioritizing construction projects (PCP) in urban road network planning lead to the necessity to develop an aided decision making program (ADMP). Cost benefit ratio model and stage rolled method are chosen as the theoretical foundations of the program, and then benefit model is improved to accord with the actuality of urban traffic in China. Consequently, program flows, module functions and data structures are designed, and particularly an original data structure of road ...
基金supported by the International partnership program (Grant No.131551KYSB20160002)National Natural Science Foundation Major International (Regional) Joint Research Project (Grant No.41520104002)Science and Technology Service Network Initiative of Chinese Academy of Science (Grant No.KFJSTS-ZDTP-015)
文摘Belt and Road Initiative(BRI) is a Chinese national strategy which calls for cooperative economic, political and cultural exchange at the global level along the ancient Silk Road. The overwhelming natural hazards located along the belt and road bring great challenges to the success of BRI. In this framework, a 5-year international program was launched to address issues related to hazards assessment and disaster risk reduction(DRR). The first workshop of this program was held in Beijing with international experts from over 15 countries. Risk conditions on Belt and Road Countries(BRCs) have been shared and science and technology advancements on DRR have been disseminated during the workshop. Under this program, six task forces have been setup to carry out collaborative research works and three prioritized study areas have been established. This workshop announced the launching of this program which involved partners from different countries including Pakistan, Nepal, Russia, Italy, United Kingdom, Sri Lanka and Tajikistan. The program adopted the objectives of Sendai Framework for Disaster Risk Reduction 2015-2030 and United Nation Sustainable Development Goals 2030 and was implemented to assess disaster risk in BRCs and to propose suitable measures for disaster control which can be appropriate both for an individual country and for specific sites. This paper deals with the outcomes of the workshop and points out opportunities for the near future international cooperation on this matter.
基金Project(2006CB705507) supported by the National Basic Research and Development Program of ChinaProject(20060533036) supported by the Specialized Research Foundation for the Doctoral Program of Higher Education of China
文摘Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level programming model for reconstructing the branch roads was set up. The upper level model was for determining the enlarged capacities of the branch roads, and the lower level model was for calculating the flows of road sections via the user equilibrium traffic assignment method. The genetic algorithm for solving the bi-level model was designed to obtain the reconstruction capacities of the branch roads. The results show that by the bi-level model and its algorithm, the optimum scheme of urban branch roads reconstruction can be gained, which reduces the saturation of arterial roads apparently, and alleviates traffic congestion. In the data analysis the arterial saturation decreases from 1.100 to 0.996, which verifies the micro-circulation transportation's function of urban branch road network.
基金Project(E200940) supported by the Natural Science Foundation of Heilongjiang Province, ChinaProject(2009GC20008020) supported by the Technology Research and Development Program of Shandong Province, China
文摘In order to evaluate and integrate travel time reliability and capacity reliability of a road network subjected to ice and snowfall conditions,the conceptions of travel time reliability and capacity reliability were defined under special conditions.The link travel time model(ice and snowfall based-bureau public road,ISB-BPR) and the path choice decision model(elastic demand user equilibrium,EDUE) were proposed.The integrated reliability was defined and the model was set up.Monte Carlo simulation was used to calculate the model and a numerical example was provided to demonstrate the application of the model and efficiency of the solution algorithm.The results show that the intensity of ice and snowfall,the traffic demand and supply,and the requirements for level of service(LOS) have great influence on the reliability of a road network.For example,the reliability drops from 65% to 5% when the traffic demand increases by 30%.The comprehensive performance index may be used for network planning,design and maintenance.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LZJWY22E090002)the Zhejiang Provincial Water Conservancy Science and Technology Plan Project(No.RC2141),China。
文摘Transportation is the lifeblood of a modern metropolis.Accessibility generally refers to the interconnection between nodes in a regional traffic network.The purpose of the paper is to obtain more realistic and accurate measures of travel speed and to study the road traffic accessibility potential in cities.This study proposes a method for analyzing road traffic accessibility potential which is based on the average travel speed to city centers in off-peak times and which ranks 80 cities around the world.Based on the Suomi National Polar-Orbiting Partnership satellite’s visible-infrared imaging radiometer suite(NPP-VIIRS)night-time light data,urban built-up areas and city centers were extracted.Further,with the aid of the Google Maps application programming interface(API)network crawling technique,travel times and travel distances for several optimal routes to city centers by car were obtained.Feasible proposals for improving road traffic accessibility and planning urban transportation in different cities are presented.The proposed method offers a new possibility of analyzing traffic accessibility using internet data and geo-spatial methods.
基金the financial support from the University of Pittsburgh Anthony Gill Chair and the Impactful Resilient Infrastructure Science and Engineering Consortium(IRISE)at University of Pittsburgh.
文摘The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement DesignGuide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavementscompared to conventional design guidelines. It is achieved through optimizing pavement structural andthickness design under specified climate and traffic conditions using advanced M-E principles, thereby minimizingeconomic costs and environmental impact. However, the implementation of AASHTO M-E design for low-volumeconcrete pavements using AASHTOWare Pavement ME Design (Pavement ME) software is often overly conservative.This is because Pavement ME specifies the minimum design thickness of concrete slab as 152.4 mm (6 in.). Thispaper introduces a novel extension of the AASHTO M-E framework for the design of low-volume joint plain concretepavements (JPCPs) without modification of Pavement ME. It utilizes multi-gene genetic programming (MGGP)-based computational models to obtain rapid solutions for JPCP damage accumulation and long-term performanceanalyses. The developed MGGP models simulate the fatigue damage and differential energy accumulations. Thispermits the prediction of transverse cracking and joint faulting for a wide range of design input parameters and axlespectrum. The developed MGGP-based models match Pavement ME-predicted cracking and faulting for rigidpavements with conventional concrete slab thicknesses and enable rational extrapolation of performance predictionfor thinner JPCPs. This paper demonstrates how the developed computational model enables sustainable lowvolumepavement design using optimized ME solutions for Pittsburgh, PA, conditions.
文摘Based on “One Belt and One Road”, this paper studies the path selection of multimodal transport by using the method of multi-objective mixed integer programming. Therefore, this paper studies the factors of transportation time, transportation cost and transportation safety performance, and establishes a mathematical model. In addition, the method of multi-objective mixed integer programming is used to comprehensively consider the different emphasis and differences of customers on cargo transportation. Then we use planning tools of Microsoft Excel to solve path selection and to determine whether the chosen path is economical and reliable. Finally, a relatively complex road network is built as an example to verify the accuracy of this planning method.