The economy of West African countries is mainly based on agriculture. However, the trace metal(loid)s contamination status in rivers is relatively unknown in the region. In this work, 45 surface sediments collected fr...The economy of West African countries is mainly based on agriculture. However, the trace metal(loid)s contamination status in rivers is relatively unknown in the region. In this work, 45 surface sediments collected from the Bandama, Comoé, and Bia Rivers in south and south eastern Côte d’Ivoire (West Africa), were analyzed for total metal concentrations and chemical speciation. The results showed that the river sediments were considerably contaminated by Cd and moderately contaminated by As, Cu, Pb, and Zn. Significant spatial variations were observed among the stations but not between the rivers. Metals Cd and Cu were likely to cause more ecological risks. The speciation analysis unravelled that the metal(loid)s partitioned mainly in the residual fraction, with the potential mobile fraction varying from 14% to 28%. The study calls for establishment of strict policies relative to the application of fertilizers and agrochemicals and mining activities to protect the environment and human health risks.展开更多
To solve the disposal problems of solid wastes, dehydrated sewage sludge and Yellow River sediments were tested as components for production of ultra-lightweight ceramsite. The effects of Yellow River sediments additi...To solve the disposal problems of solid wastes, dehydrated sewage sludge and Yellow River sediments were tested as components for production of ultra-lightweight ceramsite. The effects of Yellow River sediments addition on the characteristics of ceramsite were investigated. Ceramsite with different Yellow River sediments additions was characterized using thermal analysis, X-ray diffraction, morphological structures analyses, pore size distributions and porosity analyses. Chemical components, especially ratios of Si O2 + Al2O3/Flux, were used to explain the glassy shell formation, physical properties and pores distribution of ultralightweight ceramsite; physical forces for instance expansion force and frictional resistance which combined with Si O2 + Al2O3/Flux ratios were used to explain the bloating mechanism. Results showed that the maximum addition of Yellow River sediments for making ultra-lightweight ceramsite was 35%. Macropores(between 0.226 μm and 0.554 μm) of ultra-lightweight ceramsite were dominant in the pore structures of ultra-lightweight ceramsite and its porosity was up to 67.7%. Physical force of expansion force was constant with the variation of Yellow River sediments content and physical force of frictional resistance was decreased with the increase of Yellow River sediments addition. The relationship between expansion and frictional resistance could determine the expansion rate of ceramsite. Larger pores inside the ceramsite bodies could be obtained as Yellow River sediments additions ranged from 10% to 30%. Ceramsite with higher Yellow River sediments additions of 40%(Si O2 + Al2O3/Flux ratios 4.25) became denser and have lower porosity. Crystal components analysis proved that the sintering process made some components of raw materials transfer into other crystals having better thermostability.展开更多
A quantitative method to evaluate the amounts of heavy metals in river sediments is established. Using the BT Drainage River in North China as a study object, six representative cross sections were selected for measur...A quantitative method to evaluate the amounts of heavy metals in river sediments is established. Using the BT Drainage River in North China as a study object, six representative cross sections were selected for measurement of heavy metal indicators in sediments, and then the main contamination indicators were determined by performing a potential ecological risk assessment. Using a section of this river as an example, the total amounts of the main pollution indicators and those of their harmful forms are estimated by the Surfer software, which simulates the pollution status within the downstream sediments of the outfall at this section. The calculation results could provide a theoretical guideline and data support for pollution treatment of the BT Drainage River.展开更多
Numerous studies have evaluated the toxicity and endocrine disrupting properties of organic UV filters for aquatic organisms,but little is known about their biodegradation in river sediments and their impact on microo...Numerous studies have evaluated the toxicity and endocrine disrupting properties of organic UV filters for aquatic organisms,but little is known about their biodegradation in river sediments and their impact on microorganisms.We have set up the sterile and microbiological systems in the laboratory,adding 2-ethylhexyl-4-methoxycinnamate(EHMC),one of organic UV filters included in the list of high yield chemicals,at concentrations of 2,20 and 200μg/L,and characterized the microbial community composition and diversity in sediments.Monitoring of EHMC degradation within 30 days revealed that the half-life in the microbial system(3.49 days)was much shorter than that in the sterile system(7.55 days).Two potential degradation products,4-mercaptobenzoic acid and 3-methoxyphenol were identified in the microbial system.Furthermore,high-throughput 16s and 18s rRNA gene sequencing showed that Proteobacteria dominated the sediment bacterial assemblages followed by Chloroflexi,Acidobacteria,Bacteroidetes and Nitrospirae;Eukaryota_uncultured fungus dominated the sediment fungal assemblages.Correlation analysis demonstrated that two bacterium genera(Anaerolineaceae_uncultured and Burkholderiaceae_uncultured)were significantly correlated with the biodegradation of EHMC.These results illustrate the biodegradability of EHMC in river sediments and its potential impact on microbial communities,which can provide useful information for eliminating the pollution of organic UV filters in natural river systems and assessing their potential ecological risks.展开更多
This study investigated the distribution of microplastics and heavy metals,along with the interaction between the two in the sediments of urban rivers in China.Results showed that the abundance of microplastics ranged...This study investigated the distribution of microplastics and heavy metals,along with the interaction between the two in the sediments of urban rivers in China.Results showed that the abundance of microplastics ranged from 2412±187.5 to 7638±1312items kg^(-1)dry sediment across different survey stations,with an average abundance at(4388±713)items kg^(-1)dry sediment.Upon further categorization,it was found that transparent fragments were the primary color and type of microplastics present.The potential ecological risk index(RI)of heavy metals in sediments suggested a low level of ecological risk within a majority of the urban rivers studied.Cd was identified as the main potential ecological risk factor in the sediments of the studied areas.There was a relatively good significant linear relationship between the RI of heavy metals and the abundance of microplastics,bolstering the linkage between these two environmental pollutants.However,the concentrations of heavy metals in microplastics were not dependent on their corresponding contents in sediments.In fact,the concentration of Cu,Cd,and As in microplastics were higher than those in the sediments.This finding confirmed that microplastics could serve as carriers of heavy metals and introduce potential risks to aquatic wildlife and human through the food chain.展开更多
Arsenic (As), Barium (Ba), Cadmium (Cd), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Manganese (Mn), Lead (Pb) and Zinc (Zn) concentrations were investigated in sediments collected from six...Arsenic (As), Barium (Ba), Cadmium (Cd), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Manganese (Mn), Lead (Pb) and Zinc (Zn) concentrations were investigated in sediments collected from sixteen sampling sites in the Lubumbashi river basin and five sites in Kafubu, Kimilolo and Kinkalabwamba rivers during February, March and April 2016. Analyses of the samples were carried out using a portable X-RFS (X-Ray Fluorescence Spectrometer). Water pH and OM (Organic Matter) content of the sediments were also determined. Trace metal toxicity risk to aquatic organisms was assessed using SQGs (Sediment Quality Guidelines)---TELs (Threshold Effect Levels) and PELs (Probable Effect Levels)---for freshwater sediments. Mean values ofpH and OM ranged from 4.2 to 7.8 and from 1.27% to 6.22%, respectively. The highest mean levels of trace metals in sediments were 5,438 mg·kg-1·dw and 902.5 mg·kg-1·dw for Cu and Co, respectively in Lubumbashi river 1.45 kilometer downward the Lubumbashi Slag heap, 1,534.5 mg·kg-1·dw and 342 mg·kg-1·dwdw for Zn and Pb, respectively at the confluence of Lubumbashi and Kafubu rivers, 108,900 mg·kg-1·dw, 547 mg·kg-1·dw and 174.5 mg·kg-1·dw for Fe, Ba and Cr, respectively in Kinkalabwamba river, 531 mg·kg-1·dw and 22 mg-kgl'dw for Mn and Cd, respectively in Kimilolo river, and 37 mg·kg-1·dw for As at the confluence of Tshondo and Lubumbashi rivers. The mean concentrations of As, Cd, Cr, Cu, Pb and Zn in the sediments exceeded the corresponding SQGs' PELvalues and could have adverse effects on aquatic organisms of those rivers. Trace metal contamination of the studied sediments might he partially attributed to natural processes, unplanned urbanization and poor waste management and mostly to abandoned and ongoing mining and ore processing activities in Lubumbashi city.展开更多
[Objective] This study aimed to investigate the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea in Pearl River Estuary sediment.[Method] Firstly,the amoA gene library was construc...[Objective] This study aimed to investigate the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea in Pearl River Estuary sediment.[Method] Firstly,the amoA gene library was constructed;then based on that,the content and diversity of amoA genes of ammonia-oxidizing bacteria and ammonia-oxidizing archaea in Pearl River Estuary sediment were detected by using quantitative real-time polymerase chain reaction(Q-PCR).[Result] The results of Q-PCR presented that ammonia-oxidizing archaea(AOA) were more abundant than ammonia-oxidizing bacteria(AOB) in the top of sediment cores,with ratios of AOA to AOB of 22 and 9 at the two sites.It suggested that ammonia-oxidizing archaea may play more important roles than ammonia-oxidizing bacteria in the process of ammonia oxidation in the Pearl River Estuary sediment.The phylogenetic tree based on amoA gene sequences revealed that the amoA sequences of both AOA and AOB shared high similarity with the clones from uncultured environment.In the top sediment layer at site Q7,AOB amoA-like gene sequences were dominated by Nitrosomonas-like sequence types,which could be classified into five groups(clusters A,B,C,D and E).Cluster A accounted for 72.1% of the library.In the top sediment layer,the AOA amoA gene fell into two groups "water column/sediment" cluster(52.2%) and "soil/sediment" cluster(47.8%).But in the bottom sediment layer of Q7,most of the AOA amoA sequences(93.3%) fell into "soil/sediment" cluster,and a little part(6.7%) fell into the "water/sediment" cluster.In addition,the total amount of amoA genes in the bottom sediment was higher than that in top sediment.[Conclusion] This study helps to realize the cycle of nitrogen in Pearl River Estuary Region,and thus to provide theoretical support for the treatment of nitrogen eutrophication.展开更多
Concentrations of heavy metals in 74 sediment samples from the Fenghe River, which originates from the north of the Qinling Mountains and flows through Xi'an, Shaanxi Province, China, were characterized by employi...Concentrations of heavy metals in 74 sediment samples from the Fenghe River, which originates from the north of the Qinling Mountains and flows through Xi'an, Shaanxi Province, China, were characterized by employing geographic information system(GIS)mapping, fuzzy synthetic assessment, and multivariate statistical analysis to determine the enrichment characteristics of heavy metals as well as their potential risks of pollution to sediments. Al, Cd, and Co were the major pollutants, with a high enrichment factor(EF) value. Heavy metal concentrations from samples near the paper plant were maintained at a high level. Significant enrichment of Al, Ba, Cr, Ni, Pb, and Co was found in the midstream and downstream, while high concentration of Cu occurred in the headwater stream. Based on the cluster and principal component analyses, sediment metals mainly came from the paper plants, agronomic practices, natural sources, and tourism, with a contribution of 51.59%, 23.01%, 14.21%, and 9.88%, respectively. Sediment pollution assessment explored using fuzzy theory based on the entropy method and toxicity coefficient showed that 26, 32, and 11 sites fell into Class III(slightly polluted), Class IV(moderately polluted), and Class V(heavily polluted), respectively, and their scores of membership degree in the polluted level were on the rise, suggesting a relatively high degree of sediment metal pollution in the study area. Closely related to the excessive industrial and agricultural applications, metal pollution in sediment is necessary to be addressed in the Fenghe River.展开更多
Underground coal mining causes land subsidence,and backfilling with Yellow River sediment is an effective reclamation technology to restore farmland in China.To date,two-layer soil reconstructed(TSR)for subsided land ...Underground coal mining causes land subsidence,and backfilling with Yellow River sediment is an effective reclamation technology to restore farmland in China.To date,two-layer soil reconstructed(TSR)for subsided land reclamation resulted in poor capacity to retain water.To solve this problem,multi-layered soil reconstructed(MSR),sandwiching soil interlayers between sediment,was developed as a new reclamation strategy with Yellow River sediment.In order to evaluate the impact of soil interlayer on moisture characteristics,laboratory experiments of infiltration and evaporation were conducted.Two control treatments(CK1,CK2)and four experimental treatments(T1-T4)were designed.CK1 was undamaged farmland,CK2 was conventional reconstructed two-layers soil profile(filled sediment with 40 cm soil cover).T1-T4 were multiple-layers soil profiles sandwiching different structures of soil interlayers between sediment layers.The results indicated that putting interlayers into sediment reduced water leakage and water evaporation,improved the water-holding capacity of conventional two-layer soil profiles.The total thickness of soil interlayers of 30 cm(T3 and T4)was better than 20 cm(T1 and T2)and two soil interlayers(T2)were better than one(T1)on water-holding capacity.Furthermore,the best reconstructed soil profile was T3,sandwiched two soil interlayer and the first thickness was 20 cm.This treatment had the greatest improvement on soil water holding capacity with an increase of 49.14%compared to CK2 at the end of the evaporation and was closest to CK1(402.31 mm).This study provided experimental evidence that compares with TSR,MRS improved the moisture characteristics of backfilling with Yellow River sediment.展开更多
Hexabromocyclododecanes(HBCDs),a new type of persistent organic pollutants widely used as brominated flame retardants,have attracted wide attention due to their increasing level and toxicity. A method based on high-...Hexabromocyclododecanes(HBCDs),a new type of persistent organic pollutants widely used as brominated flame retardants,have attracted wide attention due to their increasing level and toxicity. A method based on high-performance liquid chromatography mass spectrometry(HPLC–MS–MS)in electrospray ionization mode has been developed by optimization of various parameters,which effectively improved the separation degree and responsive intensity of α-,β-and γ-HBCD isomers. The concentrations and distribution profiles of three HBCD isomers were investigated in sediments from the Haihe River in China.It was observed that the concentrations of HBCDs varied in the range of 0.4–58.82 ng/g,showing a decreasing trend along the flow direction,possibly due to attenuation and biodegradation along the flow direction of the Haihe River. The distribution profile of α-,β-,γ-HBCD was 7.91%–88.6%,0–91.47%,and 0.62%–42.83%,respectively. Interestingly,α-HBCD dominated in most sample sites. This was different from the distribution profile in commercial industrial products,which might be attributed to the inter-transformation and different degradation rates of the three HBCD isomers. The potential ecological risk of HBCDs in sediment was characterized under the two-tiered procedure of the European Medicines Evaluation Agency for environmental risk assessment. Although the HBCDs in the selected section of the Haihe River presented "no risk" in the sediment compartment,its risk in sediment cannot be neglected since sediment is one of the important sinks and reservoirs of pollutants.展开更多
Concentrations of 16 polybrominated diphenyl ether(PBDE) congeners were measured in river sediments, paddy soils and three species of paddy-field organisms(crab, loach and carp) collected from the Liaohe River Bas...Concentrations of 16 polybrominated diphenyl ether(PBDE) congeners were measured in river sediments, paddy soils and three species of paddy-field organisms(crab, loach and carp) collected from the Liaohe River Basin, northeastern China. The total contents of PBDEs(∑_(16)PBDEs) in sediments and paddy soils were in the ranges of 273.4–3246.3 pg/g dry weight(dw), and 192.1–1783.8 pg/g dw, respectively. BDE 209 was the dominant congener both in sediments and paddy soils. The concentrations of ∑_(16)PBDEs in sediments were significantly higher than those in the adjacent paddy soils, indicating a potential transport of PBDEs from river to paddy ecosystems via river water irrigation. The biota–soil accumulation factor(BSAF) was calculated as the ratio between the lipid-normalized concentration in paddyfield organisms and the total organic carbon-normalized concentration in paddy soil. The average BSAF values of ∑15PBDEs followed the sequence of crab(3.6) 〉 loach(3.3) 〉 carp(2.1). BDE 154 had the highest BSAF value, and a parabolic trend between BSAF values of individual PBDE congeners and their log KOWvalues was observed. In view of the fact that crab had the larger BSAF value and higher lipid content, the ecological risk and health risk for crab cultivation in paddy fields should be of particular concern.展开更多
The Yellow River sediment(YRS)is an important potential soil resource for the mine land reclamation and ecological restoration in the arid regions of northern China.However,it has the shortcomings of poor water-holdin...The Yellow River sediment(YRS)is an important potential soil resource for the mine land reclamation and ecological restoration in the arid regions of northern China.However,it has the shortcomings of poor water-holding capacity and needs to be modified urgently.Therefore,two types of biochar,namely rice husk biochar(RHB)and coconut shell biochar(CSB),were utilized in this study to modify the YRS and compared with rice husk ash(RHA).Some engineering properties of the modified YRS(MYRS),including pore structure,water retention,permeability,and vegetation performance,were investigated by considering the effects of biochar types and dosages.Results showed that the addition of the three materials decreased the bulk density of the YRS and increased the volume of extremely micro pore(d<0.3µm),as well as the effective porosity and capillary porosity,thus contributed to an increase in the water-holding capacity of the sediment.Among the three conditioners,RHB is optimal choice for improving the water-holding capacity of YRS.Furthermore,the effect becomes more pronounced with increasing application rates.With the addition of the three materials,the permeability coefficients of MYRS gradually decreased,while the water retention rate during evaporation significantly increased.The pot experiment showed that the three conditioners all had significant promoting effect on the growth of oats.In particular,compared to plain soil,the total biomass of oats grown for 21 days increased by 17.46%,32.14%,and 49.60%after adding 2%,4%,and 8%RHB,respectively.This study introduces a new approach for using YRS as planting soil in arid and semi-arid areas of China to facilitate mine ecological restoration.展开更多
The five chemical bound forms of Fe, Al and Mn in sediments in the main channel of the Zhujiang River.and its estuary, namely, exchangeable, carbonic, oxidative, organic and residual (in crystal) forms, were determine...The five chemical bound forms of Fe, Al and Mn in sediments in the main channel of the Zhujiang River.and its estuary, namely, exchangeable, carbonic, oxidative, organic and residual (in crystal) forms, were determined. The method of sequential extraction was used for separating the five bound forms.The main chemical form of the three elements in the sediments of the Zhujiang River and its estuarine zone is the residual one. The exchangeable form exists only in a small fraction.Correlationships between the concentration of a certain form of heavy metals and Eh. pH and salinity were discussed. The principles of geochemistry are used to explain the mechanism of heavy metal transport in the river.It was also found that the distribution rule of the chemical forms of Fe, Al and Mn in sediments in the lower reaches of the Zhujiang River was similar to the one in the lower reaches of the Yamaska River.展开更多
The concentrations of natural radionuclides, radium-226, radium-228, and potassium-40, and the artificial radionuclide caesium-137, in river bottom sediments and suspended matter were monitored in the Czech Republic b...The concentrations of natural radionuclides, radium-226, radium-228, and potassium-40, and the artificial radionuclide caesium-137, in river bottom sediments and suspended matter were monitored in the Czech Republic by the Czech Hydrometeorological Institute during the period 2000-2010 and 2001-2010 respectively. The data were used to evaluate the natural background levels of these radionuclides and the impact of human activities on the water environment. For potassium-40 in sediments, the natural background level was estimated to be 570 Bq/kg. To evaluate the background level for radium-226, the river sites affected by human activities (mining and processing uranium ore, coal) were eliminated from the assessment. The average natural background values were 47.8 Bq/kg for radium-226 and 47.2 Bq/kg for radium-228 in sediments and 86.5 Bq/kg for radium-226 and 87.9 Bq/kg for radium-228 in suspended matter. The river sediments were identified as good indicators of radioactive contamination, especially radium-226, which recorded historic contamination due to former uranium mining and milling. The radium-226 contamination rate was assessed using the ratio of radium-226 to radium-228. This ratio was used to classify sediment according to the relative contamination from the uranium industry. The residual contamination of caesium-137 due to the Chernobyl accident in 1986 was also assessed. Average values of caesium-137 were 14.0 Bq/kg in sediments and 25.0 Bq/kg in suspended matter.展开更多
This study focuses on the mineralogy and bulk chemical composition of 19 sediment samples,collected from the Sanaga River bed,between Nanga-Eboko and the Atlantic Ocean in Cameroon,to infer provenance,weathering,and t...This study focuses on the mineralogy and bulk chemical composition of 19 sediment samples,collected from the Sanaga River bed,between Nanga-Eboko and the Atlantic Ocean in Cameroon,to infer provenance,weathering,and tectonic setting.The textural analysis revealed that these sediments are mainly coarse-grained sands.X-ray diffraction and heavy mineral analyses show that these sands are made of quartz,microcline,plagioclase,muscovite,ilmenite,anatase,magnetite,opaques,and epidote.The Index of Chemical Variability values(1.07–2.68)indicates that the sands are immature.The Chemical Index of Alteration(53–66%),Plagioclase Index of Alteration(PIA;57–75%),and Mafic Index of Alteration(54–67%)values revealed a moderate intensity of weathering for these sediments.According to the compositional maturity diagram,the sands are mainly litharenites.The studied sands show enrichment in light rare earth elements relative to heavy rare earth elements and a negative anomaly in Eu(Eu/Eu*=0.32–0.83).These sands were derived from felsic metamorphic rocks dated Meso to Neoproterozoic from the Pan-African(700–1000 Ma)domain of south Cameroon.Th/U ratios(mean=5.40;n=19)reveal that these sands originating from felsic source rocks and are low to moderately recycled.On the tectonic discrimination diagrams,all the samples are plotted in the rift and passive margin domains,which is consistent with the tectonic history of Pan African in southern Cameroon.展开更多
The study of river dynamics requires knowledge of physical parameters, such as porosity, permeability, and wave propagation velocity, of river-bottom sediments. To do so, sediment properties are determined on mechanic...The study of river dynamics requires knowledge of physical parameters, such as porosity, permeability, and wave propagation velocity, of river-bottom sediments. To do so, sediment properties are determined on mechanically sampled specimens and from subbottom profiling. However, mechanical sampling introduces disturbances that affect test results, with the exception of grain-size distribution. In this study, we perform inversion of acoustic data using the grain-size distribution of mechanically sampled specimens and the relation between porosity and permeability from the Kozeny-Carman equation as prior information. The wave reflection coefficient of the water-silt interface is extracted from the raw subbottom profile. Based on the effective density fluid model, we combine the Kozeny-Carman equation and the wave reflection coefficient. We use experimental data from two Yellow River reservoirs to obtain the wave velocity and density of multiple sections and their spatial variations, and find that the inversion and testing results are in good agreement.展开更多
Land subsidence caused by underground coal mining is one of the most prominent environment problems in China. The reclamation of mining subsidence land with Yellow River sediment was considered to be feasible, but its...Land subsidence caused by underground coal mining is one of the most prominent environment problems in China. The reclamation of mining subsidence land with Yellow River sediment was considered to be feasible, but its effectiveness needs to be verified. An integrated reclamation technology with Yellow River sediment was evaluated using a comparison of actual crop production soil profile analysis in Jining City, China. The results indicated that reconstructed soil profile of the reclaimed farmland was less effective in retaining water and in supporting plant growth than that of the unaltered farmland. Some measures are proposed, such as reducing the drainage velocity to allow sedimentation and retention of the clay and silt, changing the techniques of filling the Yellow River sediment and increasing the organic matter content in the soil layers to improve the capacity to retain water in the reclaimed farmland.展开更多
To study the current status and causes of the microplastic pollution in surface water of the Qinghai-Tibet Plateau,this paper compared the average microplastic abundance in sediments and surface water of the Qinghai-T...To study the current status and causes of the microplastic pollution in surface water of the Qinghai-Tibet Plateau,this paper compared the average microplastic abundance in sediments and surface water of the Qinghai-Tibet Plateau and the results are as follows.First,the average microplastic abundance in surface water of the independent rivers and the whole area is 247−2686 items/m^(3) and 856 items/m^(3),respectively.The average microplastic abundance in sediments of independent rivers or lakes and the whole area is 0−933 items/m^(2) and 362 items/m^(2),respectively.Meanwhile,the degree of microplastic pollution in river sediments is higher than that in lake sediments,and the rivers suffering from microplastic pollution mainly include the Brahmaputra River,Tongtian River,and Nujiang River.Second,compared with the microplastic pollution in other areas of the world,the levelof microplastic pollution in the lakes and rivers of the Qinghai-Tibet plateau is not lower than that of well-developed areas with more intensive human activities.Finally,this study suggests that relevant government departments of the Qinghai-Tibet Plateau should strengthen waste management strategies while developing tourism and that much attention should be paid to the impacts of microplastics in the water environment.展开更多
Alluviation and sedimentation of the Yellow River are important factors influencing the surface soil structure and organic carbon content in its lower reaches.Selecting Kaifeng and Zhoukou as typical cases of the Yell...Alluviation and sedimentation of the Yellow River are important factors influencing the surface soil structure and organic carbon content in its lower reaches.Selecting Kaifeng and Zhoukou as typical cases of the Yellow River flooding area,the field survey,soil sample collection,laboratory experiment and Geographic Information System(GIS)spatial analysis methods were applied to study the spatial distribution characteristics and change mechanism of organic carbon components at different soil depths.The results revealed that the soil total organic carbon(TOC),active organic carbon(AOC)and nonactive organic carbon(NOC)contents ranged from 0.05–30.03 g/kg,0.01–8.86 g/kg and 0.02–23.36 g/kg,respectively.The TOC,AOC and NOC contents in the surface soil layer were obviously higher than those in the lower soil layer,and the sequence of the content and change range within a single layer was TOC>NOC>AOC.Geostatistical analysis indicated that the TOC,AOC and NOC contents were commonly influenced by structural and random factors,and the influence magnitudes of these two factors were similar.The overall spatial trends of TOC,AOC and NOC remained relatively consistent from the 0–20 cm layer to the 20–100 cm layer,and the transition between high-and low-value areas was obvious,while the spatial variance was high.The AOC and NOC contents and spatial distribution better reflected TOC spatial variation and carbon accumulation areas.The distribution and depth of the sediment,agricultural land-use type,cropping system,fertilization method,tillage process and cultivation history were the main factors impacting the spatial variation in the soil organic carbon(SOC)components.Therefore,increasing the organic matter content,straw return,applying organic manure,adding exogenous particulate matter and conservation tillage are effective measures to improve the soil quality and attain sustainable agricultural development in the alluvial/sedimentary zone of the Yellow River.展开更多
Mercury methylation rates in fresh and pre dried river sediments were determined in sediment water systems spiked with 203 HgCl 2 at a level of 0.75—0.95 ppm as Hg. At the end of the incubation period (21...Mercury methylation rates in fresh and pre dried river sediments were determined in sediment water systems spiked with 203 HgCl 2 at a level of 0.75—0.95 ppm as Hg. At the end of the incubation period (21—38 days), methylmercury production in the fresh sediments was in the order of 3.0% to 13.75%, whereas in the pre dried sediments the methylation was much lower, at 0.6% to 3.9%. The highest methylation levels were generally recorded in the uppermost, 1 cm layer of the sediment column. Total mercury concentration in water in equilibrium with the 203 Hg spiked fresh sediments was in the range of 44.7 to 634 ng/L, whereas in equilibrium with the pre dried sediments the concentration was in the range of 19.5 to 34.5 ng/L. The proportion of methylmercury to total mercury in the water varied from 9.4% to 66.6% over the fresh sediments, and from 7.1% to 10.8% over the pre dried sediments. In the system consisting of water, sediment and sediment inverterbrates the concentrations of methylmercury were 8.61 to 15.69 ng/g in the sediment, 0.011 ng/ml in the water, and 9.22 to 40.69 ng/g in the inverterbrates. Methylmercury bioaccumualtion factors (BAFs) were in the order of 274 to 8087 relative to the water, and 0.25 to 7.31 relative to the sediment. These results provide further evidence for the tendency of methylmercury to accumulate in high concentrations in aquatic organisms, even at very low total mercury concentration in water.展开更多
文摘The economy of West African countries is mainly based on agriculture. However, the trace metal(loid)s contamination status in rivers is relatively unknown in the region. In this work, 45 surface sediments collected from the Bandama, Comoé, and Bia Rivers in south and south eastern Côte d’Ivoire (West Africa), were analyzed for total metal concentrations and chemical speciation. The results showed that the river sediments were considerably contaminated by Cd and moderately contaminated by As, Cu, Pb, and Zn. Significant spatial variations were observed among the stations but not between the rivers. Metals Cd and Cu were likely to cause more ecological risks. The speciation analysis unravelled that the metal(loid)s partitioned mainly in the residual fraction, with the potential mobile fraction varying from 14% to 28%. The study calls for establishment of strict policies relative to the application of fertilizers and agrochemicals and mining activities to protect the environment and human health risks.
基金Funded by the Doctoral Program of Higher Education of China(No.20100131110005)
文摘To solve the disposal problems of solid wastes, dehydrated sewage sludge and Yellow River sediments were tested as components for production of ultra-lightweight ceramsite. The effects of Yellow River sediments addition on the characteristics of ceramsite were investigated. Ceramsite with different Yellow River sediments additions was characterized using thermal analysis, X-ray diffraction, morphological structures analyses, pore size distributions and porosity analyses. Chemical components, especially ratios of Si O2 + Al2O3/Flux, were used to explain the glassy shell formation, physical properties and pores distribution of ultralightweight ceramsite; physical forces for instance expansion force and frictional resistance which combined with Si O2 + Al2O3/Flux ratios were used to explain the bloating mechanism. Results showed that the maximum addition of Yellow River sediments for making ultra-lightweight ceramsite was 35%. Macropores(between 0.226 μm and 0.554 μm) of ultra-lightweight ceramsite were dominant in the pore structures of ultra-lightweight ceramsite and its porosity was up to 67.7%. Physical force of expansion force was constant with the variation of Yellow River sediments content and physical force of frictional resistance was decreased with the increase of Yellow River sediments addition. The relationship between expansion and frictional resistance could determine the expansion rate of ceramsite. Larger pores inside the ceramsite bodies could be obtained as Yellow River sediments additions ranged from 10% to 30%. Ceramsite with higher Yellow River sediments additions of 40%(Si O2 + Al2O3/Flux ratios 4.25) became denser and have lower porosity. Crystal components analysis proved that the sintering process made some components of raw materials transfer into other crystals having better thermostability.
基金Project supported by the National Specially Major Fund of Water Pollution Control and Management (No. 2008ZX07314-003)the National Science & Technology Pillar Program (No. 2009BAC-60B03)the Tianjin Municipal Science and Technology Commission (No. 08ZCGYSF00100),China
文摘A quantitative method to evaluate the amounts of heavy metals in river sediments is established. Using the BT Drainage River in North China as a study object, six representative cross sections were selected for measurement of heavy metal indicators in sediments, and then the main contamination indicators were determined by performing a potential ecological risk assessment. Using a section of this river as an example, the total amounts of the main pollution indicators and those of their harmful forms are estimated by the Surfer software, which simulates the pollution status within the downstream sediments of the outfall at this section. The calculation results could provide a theoretical guideline and data support for pollution treatment of the BT Drainage River.
基金supported by the National Natural Science Foundation of China(Nos.51879228,51769034)the National Science Funds for Creative Research Groups of China(No.51421006)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Numerous studies have evaluated the toxicity and endocrine disrupting properties of organic UV filters for aquatic organisms,but little is known about their biodegradation in river sediments and their impact on microorganisms.We have set up the sterile and microbiological systems in the laboratory,adding 2-ethylhexyl-4-methoxycinnamate(EHMC),one of organic UV filters included in the list of high yield chemicals,at concentrations of 2,20 and 200μg/L,and characterized the microbial community composition and diversity in sediments.Monitoring of EHMC degradation within 30 days revealed that the half-life in the microbial system(3.49 days)was much shorter than that in the sterile system(7.55 days).Two potential degradation products,4-mercaptobenzoic acid and 3-methoxyphenol were identified in the microbial system.Furthermore,high-throughput 16s and 18s rRNA gene sequencing showed that Proteobacteria dominated the sediment bacterial assemblages followed by Chloroflexi,Acidobacteria,Bacteroidetes and Nitrospirae;Eukaryota_uncultured fungus dominated the sediment fungal assemblages.Correlation analysis demonstrated that two bacterium genera(Anaerolineaceae_uncultured and Burkholderiaceae_uncultured)were significantly correlated with the biodegradation of EHMC.These results illustrate the biodegradability of EHMC in river sediments and its potential impact on microbial communities,which can provide useful information for eliminating the pollution of organic UV filters in natural river systems and assessing their potential ecological risks.
基金supported by the Key Research and Development Program (Scientific and Technological Project)of Henan Province (Nos.212102310080,222102320294,and 232102231062)the Fundamental Research Funds for the Central Universities (No.220602024)the Major Focus Project of Henan Academy of Sciences (No.220102002)。
文摘This study investigated the distribution of microplastics and heavy metals,along with the interaction between the two in the sediments of urban rivers in China.Results showed that the abundance of microplastics ranged from 2412±187.5 to 7638±1312items kg^(-1)dry sediment across different survey stations,with an average abundance at(4388±713)items kg^(-1)dry sediment.Upon further categorization,it was found that transparent fragments were the primary color and type of microplastics present.The potential ecological risk index(RI)of heavy metals in sediments suggested a low level of ecological risk within a majority of the urban rivers studied.Cd was identified as the main potential ecological risk factor in the sediments of the studied areas.There was a relatively good significant linear relationship between the RI of heavy metals and the abundance of microplastics,bolstering the linkage between these two environmental pollutants.However,the concentrations of heavy metals in microplastics were not dependent on their corresponding contents in sediments.In fact,the concentration of Cu,Cd,and As in microplastics were higher than those in the sediments.This finding confirmed that microplastics could serve as carriers of heavy metals and introduce potential risks to aquatic wildlife and human through the food chain.
文摘Arsenic (As), Barium (Ba), Cadmium (Cd), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Manganese (Mn), Lead (Pb) and Zinc (Zn) concentrations were investigated in sediments collected from sixteen sampling sites in the Lubumbashi river basin and five sites in Kafubu, Kimilolo and Kinkalabwamba rivers during February, March and April 2016. Analyses of the samples were carried out using a portable X-RFS (X-Ray Fluorescence Spectrometer). Water pH and OM (Organic Matter) content of the sediments were also determined. Trace metal toxicity risk to aquatic organisms was assessed using SQGs (Sediment Quality Guidelines)---TELs (Threshold Effect Levels) and PELs (Probable Effect Levels)---for freshwater sediments. Mean values ofpH and OM ranged from 4.2 to 7.8 and from 1.27% to 6.22%, respectively. The highest mean levels of trace metals in sediments were 5,438 mg·kg-1·dw and 902.5 mg·kg-1·dw for Cu and Co, respectively in Lubumbashi river 1.45 kilometer downward the Lubumbashi Slag heap, 1,534.5 mg·kg-1·dw and 342 mg·kg-1·dwdw for Zn and Pb, respectively at the confluence of Lubumbashi and Kafubu rivers, 108,900 mg·kg-1·dw, 547 mg·kg-1·dw and 174.5 mg·kg-1·dw for Fe, Ba and Cr, respectively in Kinkalabwamba river, 531 mg·kg-1·dw and 22 mg-kgl'dw for Mn and Cd, respectively in Kimilolo river, and 37 mg·kg-1·dw for As at the confluence of Tshondo and Lubumbashi rivers. The mean concentrations of As, Cd, Cr, Cu, Pb and Zn in the sediments exceeded the corresponding SQGs' PELvalues and could have adverse effects on aquatic organisms of those rivers. Trace metal contamination of the studied sediments might he partially attributed to natural processes, unplanned urbanization and poor waste management and mostly to abandoned and ongoing mining and ore processing activities in Lubumbashi city.
基金Supported by National Natural Science Foundation of China(40532011)~~
文摘[Objective] This study aimed to investigate the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea in Pearl River Estuary sediment.[Method] Firstly,the amoA gene library was constructed;then based on that,the content and diversity of amoA genes of ammonia-oxidizing bacteria and ammonia-oxidizing archaea in Pearl River Estuary sediment were detected by using quantitative real-time polymerase chain reaction(Q-PCR).[Result] The results of Q-PCR presented that ammonia-oxidizing archaea(AOA) were more abundant than ammonia-oxidizing bacteria(AOB) in the top of sediment cores,with ratios of AOA to AOB of 22 and 9 at the two sites.It suggested that ammonia-oxidizing archaea may play more important roles than ammonia-oxidizing bacteria in the process of ammonia oxidation in the Pearl River Estuary sediment.The phylogenetic tree based on amoA gene sequences revealed that the amoA sequences of both AOA and AOB shared high similarity with the clones from uncultured environment.In the top sediment layer at site Q7,AOB amoA-like gene sequences were dominated by Nitrosomonas-like sequence types,which could be classified into five groups(clusters A,B,C,D and E).Cluster A accounted for 72.1% of the library.In the top sediment layer,the AOA amoA gene fell into two groups "water column/sediment" cluster(52.2%) and "soil/sediment" cluster(47.8%).But in the bottom sediment layer of Q7,most of the AOA amoA sequences(93.3%) fell into "soil/sediment" cluster,and a little part(6.7%) fell into the "water/sediment" cluster.In addition,the total amount of amoA genes in the bottom sediment was higher than that in top sediment.[Conclusion] This study helps to realize the cycle of nitrogen in Pearl River Estuary Region,and thus to provide theoretical support for the treatment of nitrogen eutrophication.
基金supported by the National Natural Science Foundation of China(Nos.41030744 and 41173123)
文摘Concentrations of heavy metals in 74 sediment samples from the Fenghe River, which originates from the north of the Qinling Mountains and flows through Xi'an, Shaanxi Province, China, were characterized by employing geographic information system(GIS)mapping, fuzzy synthetic assessment, and multivariate statistical analysis to determine the enrichment characteristics of heavy metals as well as their potential risks of pollution to sediments. Al, Cd, and Co were the major pollutants, with a high enrichment factor(EF) value. Heavy metal concentrations from samples near the paper plant were maintained at a high level. Significant enrichment of Al, Ba, Cr, Ni, Pb, and Co was found in the midstream and downstream, while high concentration of Cu occurred in the headwater stream. Based on the cluster and principal component analyses, sediment metals mainly came from the paper plants, agronomic practices, natural sources, and tourism, with a contribution of 51.59%, 23.01%, 14.21%, and 9.88%, respectively. Sediment pollution assessment explored using fuzzy theory based on the entropy method and toxicity coefficient showed that 26, 32, and 11 sites fell into Class III(slightly polluted), Class IV(moderately polluted), and Class V(heavily polluted), respectively, and their scores of membership degree in the polluted level were on the rise, suggesting a relatively high degree of sediment metal pollution in the study area. Closely related to the excessive industrial and agricultural applications, metal pollution in sediment is necessary to be addressed in the Fenghe River.
基金This work was financially supported by the National Natural Science Foundation of China(No.41771542)The authors would like to express appreciation to members of the research group at the China University of Mining and Technology for providing great help in terms of experiments.
文摘Underground coal mining causes land subsidence,and backfilling with Yellow River sediment is an effective reclamation technology to restore farmland in China.To date,two-layer soil reconstructed(TSR)for subsided land reclamation resulted in poor capacity to retain water.To solve this problem,multi-layered soil reconstructed(MSR),sandwiching soil interlayers between sediment,was developed as a new reclamation strategy with Yellow River sediment.In order to evaluate the impact of soil interlayer on moisture characteristics,laboratory experiments of infiltration and evaporation were conducted.Two control treatments(CK1,CK2)and four experimental treatments(T1-T4)were designed.CK1 was undamaged farmland,CK2 was conventional reconstructed two-layers soil profile(filled sediment with 40 cm soil cover).T1-T4 were multiple-layers soil profiles sandwiching different structures of soil interlayers between sediment layers.The results indicated that putting interlayers into sediment reduced water leakage and water evaporation,improved the water-holding capacity of conventional two-layer soil profiles.The total thickness of soil interlayers of 30 cm(T3 and T4)was better than 20 cm(T1 and T2)and two soil interlayers(T2)were better than one(T1)on water-holding capacity.Furthermore,the best reconstructed soil profile was T3,sandwiched two soil interlayer and the first thickness was 20 cm.This treatment had the greatest improvement on soil water holding capacity with an increase of 49.14%compared to CK2 at the end of the evaporation and was closest to CK1(402.31 mm).This study provided experimental evidence that compares with TSR,MRS improved the moisture characteristics of backfilling with Yellow River sediment.
基金supported by the National Basic Research Program(973) of China(No.2015CB453103)National Key Research and Development Plan(No.2016YFC0202500)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB14020102)the National Natural Science Foundation of China(Nos.21677163,21377147,and 21321004)
文摘Hexabromocyclododecanes(HBCDs),a new type of persistent organic pollutants widely used as brominated flame retardants,have attracted wide attention due to their increasing level and toxicity. A method based on high-performance liquid chromatography mass spectrometry(HPLC–MS–MS)in electrospray ionization mode has been developed by optimization of various parameters,which effectively improved the separation degree and responsive intensity of α-,β-and γ-HBCD isomers. The concentrations and distribution profiles of three HBCD isomers were investigated in sediments from the Haihe River in China.It was observed that the concentrations of HBCDs varied in the range of 0.4–58.82 ng/g,showing a decreasing trend along the flow direction,possibly due to attenuation and biodegradation along the flow direction of the Haihe River. The distribution profile of α-,β-,γ-HBCD was 7.91%–88.6%,0–91.47%,and 0.62%–42.83%,respectively. Interestingly,α-HBCD dominated in most sample sites. This was different from the distribution profile in commercial industrial products,which might be attributed to the inter-transformation and different degradation rates of the three HBCD isomers. The potential ecological risk of HBCDs in sediment was characterized under the two-tiered procedure of the European Medicines Evaluation Agency for environmental risk assessment. Although the HBCDs in the selected section of the Haihe River presented "no risk" in the sediment compartment,its risk in sediment cannot be neglected since sediment is one of the important sinks and reservoirs of pollutants.
基金supported by the Chinese Public Welfare Projects on Environmental Protection (No. 201309030)the National Natural Science Foundation of China (Nos. 21077102 and 41201491)
文摘Concentrations of 16 polybrominated diphenyl ether(PBDE) congeners were measured in river sediments, paddy soils and three species of paddy-field organisms(crab, loach and carp) collected from the Liaohe River Basin, northeastern China. The total contents of PBDEs(∑_(16)PBDEs) in sediments and paddy soils were in the ranges of 273.4–3246.3 pg/g dry weight(dw), and 192.1–1783.8 pg/g dw, respectively. BDE 209 was the dominant congener both in sediments and paddy soils. The concentrations of ∑_(16)PBDEs in sediments were significantly higher than those in the adjacent paddy soils, indicating a potential transport of PBDEs from river to paddy ecosystems via river water irrigation. The biota–soil accumulation factor(BSAF) was calculated as the ratio between the lipid-normalized concentration in paddyfield organisms and the total organic carbon-normalized concentration in paddy soil. The average BSAF values of ∑15PBDEs followed the sequence of crab(3.6) 〉 loach(3.3) 〉 carp(2.1). BDE 154 had the highest BSAF value, and a parabolic trend between BSAF values of individual PBDE congeners and their log KOWvalues was observed. In view of the fact that crab had the larger BSAF value and higher lipid content, the ecological risk and health risk for crab cultivation in paddy fields should be of particular concern.
基金supported by the Major Science And Technology Program of Inner Mongolia(Grant No.2021ZD0007)National Natural Science Foundation of China(Grant Nos.52209134 and 52322810)+1 种基金Natural Science Foundation of Hubei Province for Distinguished Young Scholars(No.2023AFA080)Youth Science Foundation of Jiangsu Province of China(Grant No.BK20220230).
文摘The Yellow River sediment(YRS)is an important potential soil resource for the mine land reclamation and ecological restoration in the arid regions of northern China.However,it has the shortcomings of poor water-holding capacity and needs to be modified urgently.Therefore,two types of biochar,namely rice husk biochar(RHB)and coconut shell biochar(CSB),were utilized in this study to modify the YRS and compared with rice husk ash(RHA).Some engineering properties of the modified YRS(MYRS),including pore structure,water retention,permeability,and vegetation performance,were investigated by considering the effects of biochar types and dosages.Results showed that the addition of the three materials decreased the bulk density of the YRS and increased the volume of extremely micro pore(d<0.3µm),as well as the effective porosity and capillary porosity,thus contributed to an increase in the water-holding capacity of the sediment.Among the three conditioners,RHB is optimal choice for improving the water-holding capacity of YRS.Furthermore,the effect becomes more pronounced with increasing application rates.With the addition of the three materials,the permeability coefficients of MYRS gradually decreased,while the water retention rate during evaporation significantly increased.The pot experiment showed that the three conditioners all had significant promoting effect on the growth of oats.In particular,compared to plain soil,the total biomass of oats grown for 21 days increased by 17.46%,32.14%,and 49.60%after adding 2%,4%,and 8%RHB,respectively.This study introduces a new approach for using YRS as planting soil in arid and semi-arid areas of China to facilitate mine ecological restoration.
文摘The five chemical bound forms of Fe, Al and Mn in sediments in the main channel of the Zhujiang River.and its estuary, namely, exchangeable, carbonic, oxidative, organic and residual (in crystal) forms, were determined. The method of sequential extraction was used for separating the five bound forms.The main chemical form of the three elements in the sediments of the Zhujiang River and its estuarine zone is the residual one. The exchangeable form exists only in a small fraction.Correlationships between the concentration of a certain form of heavy metals and Eh. pH and salinity were discussed. The principles of geochemistry are used to explain the mechanism of heavy metal transport in the river.It was also found that the distribution rule of the chemical forms of Fe, Al and Mn in sediments in the lower reaches of the Zhujiang River was similar to the one in the lower reaches of the Yamaska River.
文摘The concentrations of natural radionuclides, radium-226, radium-228, and potassium-40, and the artificial radionuclide caesium-137, in river bottom sediments and suspended matter were monitored in the Czech Republic by the Czech Hydrometeorological Institute during the period 2000-2010 and 2001-2010 respectively. The data were used to evaluate the natural background levels of these radionuclides and the impact of human activities on the water environment. For potassium-40 in sediments, the natural background level was estimated to be 570 Bq/kg. To evaluate the background level for radium-226, the river sites affected by human activities (mining and processing uranium ore, coal) were eliminated from the assessment. The average natural background values were 47.8 Bq/kg for radium-226 and 47.2 Bq/kg for radium-228 in sediments and 86.5 Bq/kg for radium-226 and 87.9 Bq/kg for radium-228 in suspended matter. The river sediments were identified as good indicators of radioactive contamination, especially radium-226, which recorded historic contamination due to former uranium mining and milling. The radium-226 contamination rate was assessed using the ratio of radium-226 to radium-228. This ratio was used to classify sediment according to the relative contamination from the uranium industry. The residual contamination of caesium-137 due to the Chernobyl accident in 1986 was also assessed. Average values of caesium-137 were 14.0 Bq/kg in sediments and 25.0 Bq/kg in suspended matter.
文摘This study focuses on the mineralogy and bulk chemical composition of 19 sediment samples,collected from the Sanaga River bed,between Nanga-Eboko and the Atlantic Ocean in Cameroon,to infer provenance,weathering,and tectonic setting.The textural analysis revealed that these sediments are mainly coarse-grained sands.X-ray diffraction and heavy mineral analyses show that these sands are made of quartz,microcline,plagioclase,muscovite,ilmenite,anatase,magnetite,opaques,and epidote.The Index of Chemical Variability values(1.07–2.68)indicates that the sands are immature.The Chemical Index of Alteration(53–66%),Plagioclase Index of Alteration(PIA;57–75%),and Mafic Index of Alteration(54–67%)values revealed a moderate intensity of weathering for these sediments.According to the compositional maturity diagram,the sands are mainly litharenites.The studied sands show enrichment in light rare earth elements relative to heavy rare earth elements and a negative anomaly in Eu(Eu/Eu*=0.32–0.83).These sands were derived from felsic metamorphic rocks dated Meso to Neoproterozoic from the Pan-African(700–1000 Ma)domain of south Cameroon.Th/U ratios(mean=5.40;n=19)reveal that these sands originating from felsic source rocks and are low to moderately recycled.On the tectonic discrimination diagrams,all the samples are plotted in the rift and passive margin domains,which is consistent with the tectonic history of Pan African in southern Cameroon.
基金supported by the Ministry of Water Resources Special Funds for Scientific Research on Public Causes(No.201301024)the Special Funds for Yellow River Institute of Hydraulic Research(No.HKY-JBYW-2016-09 and No.HKYJBYW-2016-29)
文摘The study of river dynamics requires knowledge of physical parameters, such as porosity, permeability, and wave propagation velocity, of river-bottom sediments. To do so, sediment properties are determined on mechanically sampled specimens and from subbottom profiling. However, mechanical sampling introduces disturbances that affect test results, with the exception of grain-size distribution. In this study, we perform inversion of acoustic data using the grain-size distribution of mechanically sampled specimens and the relation between porosity and permeability from the Kozeny-Carman equation as prior information. The wave reflection coefficient of the water-silt interface is extracted from the raw subbottom profile. Based on the effective density fluid model, we combine the Kozeny-Carman equation and the wave reflection coefficient. We use experimental data from two Yellow River reservoirs to obtain the wave velocity and density of multiple sections and their spatial variations, and find that the inversion and testing results are in good agreement.
基金This research was supported by National Key Technology Research and Development Program (2012BAC04B03) during the Twelfth Five-Year Plan Period and National Natural Science Foundation of China (Grant No. 41771542).
文摘Land subsidence caused by underground coal mining is one of the most prominent environment problems in China. The reclamation of mining subsidence land with Yellow River sediment was considered to be feasible, but its effectiveness needs to be verified. An integrated reclamation technology with Yellow River sediment was evaluated using a comparison of actual crop production soil profile analysis in Jining City, China. The results indicated that reconstructed soil profile of the reclaimed farmland was less effective in retaining water and in supporting plant growth than that of the unaltered farmland. Some measures are proposed, such as reducing the drainage velocity to allow sedimentation and retention of the clay and silt, changing the techniques of filling the Yellow River sediment and increasing the organic matter content in the soil layers to improve the capacity to retain water in the reclaimed farmland.
基金funded by the survey projects initiated by the Ministry of Natural Resources of the People’s Republic of China(DD20189220,1212010741003,1212011220224,and 121201011000150022)the Public Welfare Scientific Research Project launched by the Ministry of Natural Resources of the People’s Republic of China(201111020)+3 种基金the project of 2015 Natural Science Basic Research Plan of Shaanxi Province(2015JM4129)the project of 2016 Fundamental Research Funds for the Central Universities(open fund310829161128)the project of 2021 Fundamental Research Funds for the Central Universities(open fund).
文摘To study the current status and causes of the microplastic pollution in surface water of the Qinghai-Tibet Plateau,this paper compared the average microplastic abundance in sediments and surface water of the Qinghai-Tibet Plateau and the results are as follows.First,the average microplastic abundance in surface water of the independent rivers and the whole area is 247−2686 items/m^(3) and 856 items/m^(3),respectively.The average microplastic abundance in sediments of independent rivers or lakes and the whole area is 0−933 items/m^(2) and 362 items/m^(2),respectively.Meanwhile,the degree of microplastic pollution in river sediments is higher than that in lake sediments,and the rivers suffering from microplastic pollution mainly include the Brahmaputra River,Tongtian River,and Nujiang River.Second,compared with the microplastic pollution in other areas of the world,the levelof microplastic pollution in the lakes and rivers of the Qinghai-Tibet plateau is not lower than that of well-developed areas with more intensive human activities.Finally,this study suggests that relevant government departments of the Qinghai-Tibet Plateau should strengthen waste management strategies while developing tourism and that much attention should be paid to the impacts of microplastics in the water environment.
基金National Natural Science Foundation of China,No.41101088,No.U1404401Natural Science Foundation of Henan Province,No.182300410129New Interdisciplinary and Characteristic Subject Cultivation Project of Henan University,No.XXJC20140003。
文摘Alluviation and sedimentation of the Yellow River are important factors influencing the surface soil structure and organic carbon content in its lower reaches.Selecting Kaifeng and Zhoukou as typical cases of the Yellow River flooding area,the field survey,soil sample collection,laboratory experiment and Geographic Information System(GIS)spatial analysis methods were applied to study the spatial distribution characteristics and change mechanism of organic carbon components at different soil depths.The results revealed that the soil total organic carbon(TOC),active organic carbon(AOC)and nonactive organic carbon(NOC)contents ranged from 0.05–30.03 g/kg,0.01–8.86 g/kg and 0.02–23.36 g/kg,respectively.The TOC,AOC and NOC contents in the surface soil layer were obviously higher than those in the lower soil layer,and the sequence of the content and change range within a single layer was TOC>NOC>AOC.Geostatistical analysis indicated that the TOC,AOC and NOC contents were commonly influenced by structural and random factors,and the influence magnitudes of these two factors were similar.The overall spatial trends of TOC,AOC and NOC remained relatively consistent from the 0–20 cm layer to the 20–100 cm layer,and the transition between high-and low-value areas was obvious,while the spatial variance was high.The AOC and NOC contents and spatial distribution better reflected TOC spatial variation and carbon accumulation areas.The distribution and depth of the sediment,agricultural land-use type,cropping system,fertilization method,tillage process and cultivation history were the main factors impacting the spatial variation in the soil organic carbon(SOC)components.Therefore,increasing the organic matter content,straw return,applying organic manure,adding exogenous particulate matter and conservation tillage are effective measures to improve the soil quality and attain sustainable agricultural development in the alluvial/sedimentary zone of the Yellow River.
文摘Mercury methylation rates in fresh and pre dried river sediments were determined in sediment water systems spiked with 203 HgCl 2 at a level of 0.75—0.95 ppm as Hg. At the end of the incubation period (21—38 days), methylmercury production in the fresh sediments was in the order of 3.0% to 13.75%, whereas in the pre dried sediments the methylation was much lower, at 0.6% to 3.9%. The highest methylation levels were generally recorded in the uppermost, 1 cm layer of the sediment column. Total mercury concentration in water in equilibrium with the 203 Hg spiked fresh sediments was in the range of 44.7 to 634 ng/L, whereas in equilibrium with the pre dried sediments the concentration was in the range of 19.5 to 34.5 ng/L. The proportion of methylmercury to total mercury in the water varied from 9.4% to 66.6% over the fresh sediments, and from 7.1% to 10.8% over the pre dried sediments. In the system consisting of water, sediment and sediment inverterbrates the concentrations of methylmercury were 8.61 to 15.69 ng/g in the sediment, 0.011 ng/ml in the water, and 9.22 to 40.69 ng/g in the inverterbrates. Methylmercury bioaccumualtion factors (BAFs) were in the order of 274 to 8087 relative to the water, and 0.25 to 7.31 relative to the sediment. These results provide further evidence for the tendency of methylmercury to accumulate in high concentrations in aquatic organisms, even at very low total mercury concentration in water.