The water distribution network is an important part of the plain water environment improvement system. To make efficient use of the regional water diversion source, scientifically distribute the water diversion flow a...The water distribution network is an important part of the plain water environment improvement system. To make efficient use of the regional water diversion source, scientifically distribute the water diversion flow and improve the water environment carrying capacity of Haishu Plain, the river network hydrodynamic model is used in this paper to simulate the water intake location, reasonable water quantity and influence range of water transfer in Haishu Plain. The simulation results have high accuracy, which can provide a scientific basis for the scale, water transfer mechanism and project layout of water transfer construction in Haishu Plain and show a strong reference value for the study of water diversion and distribution scheme of coastal plain river network.展开更多
Complex water movement and insufficient observation stations are the unfavorable factors in improving the accuracy of flow calculation of river networks. A water level updating model for river networks was set up base...Complex water movement and insufficient observation stations are the unfavorable factors in improving the accuracy of flow calculation of river networks. A water level updating model for river networks was set up based on a three-step method at key nodes, and model correction values were collected from gauge stations. To improve the accuracy of water level and discharge forecasts for the entire network, the discrete coefficients of the Saint-Venant equations for river sections were regarded as the media carrying the correction values from observation locations to other cross-sections of the river network system. To examine the applicability, the updating model was applied to flow calculation of an ideal river network and the Chengtong section of the Yangtze River. Comparison of the forecast results with the observed data demonstrates that this updating model can improve the forecast accuracy in both ideal and real river networks.展开更多
In this study, 1D and 2D shallow-water models were coupled to simulate unsteady flow in channel networks and embayment. The 1D model solved the 1D shallow-water equations (St. Venant) using the Preissmann box method a...In this study, 1D and 2D shallow-water models were coupled to simulate unsteady flow in channel networks and embayment. The 1D model solved the 1D shallow-water equations (St. Venant) using the Preissmann box method and targeted long narrow reaches of the river networks, while the 2D model targeted broad channels and embayment and solved the 2D shallow-water equations using a semi-implicit scheme applied to an unstructured grid of triangular cells. The 1D and 2D models were solved simultaneously by building a matrix for the free surface elevation at every 1D junction and 2D cell center. Velocities were then computed explicitly based on the results at the previous time step and the updated water level. The originality of the scheme arose from a novel coupling method. The results showed that the coupled 1D/2D model produced identical results as the full 2D model in classical to benchmark problems with considerable savings in computational effort. Application of the model to the Pearl River Estuary in southern China showed that complex patterns of tidal wave propagation could be efficiently modeled.展开更多
Due to its great strategic significance in integrating regional coordinated development and enhancing the rise of Central China, urban agglomeration in the middle reaches of Changjiang (Yangtze) River has attracted ...Due to its great strategic significance in integrating regional coordinated development and enhancing the rise of Central China, urban agglomeration in the middle reaches of Changjiang (Yangtze) River has attracted much attention from both theoretical and practical aspects. Such research into the area's economic network structure is beneficial for the formation of an urban- and regional-development strategy. This paper constructs an economic tie model based on a modified gravitation model. Subsequently, referring to social network analysis, the paper empirically studies the network density, network centrality, subgroups and structural holes of the middle reaches of Changjiang River's urban agglomeration economic network. The findings are fourfold: (1) an economic network of urban agglomeration in the middle reaches of Changjiang River has been formed, and economic ties between the cities in this network are comparatively dense; (2) the urban agglomeration in the middle reaches of Changjiang River can be divided into four significant subgroups, with each subgroup having its own obvious economic communications, while there is less economic-behavioral heterogeneity among subgroups - this is especially true for the two subgroups that exist in the Poyang Lake Ecological Economic Zone; (3) an economy pattern driven by the central cities of Wuhan, Changsha and Nanchang has emerged in the urban agglomeration of the middle reaches of Changjiang River, while these three capital cities have exerted great radiation abilities to their surrounding cities, the latter are less able to absorb resources from the former (4) the Wuhan Metropolitan Areas and the Poyang Lake Ecological Economic Zone have more structural holes than the Ring of Changsha, Zhuzhou and the Xiangtan City Clusters, meaning that cities at the periphery of these two areas are easily constrained by central cities. The Ring of Changsha, Zhuzhou and the Xiangtan City Clusters have fewer structural holes; thus, the cities in this area will not face as many constraints as those in the other two areas.展开更多
Recently, literature on urban network research from the perspective of ?rm networks has been increasing. This research mainly used data from the headquarters and branches of all 2581 listed manufacturing companies in ...Recently, literature on urban network research from the perspective of ?rm networks has been increasing. This research mainly used data from the headquarters and branches of all 2581 listed manufacturing companies in the Yangtze River Delta from 1990 to 2017, and studied the urban network through an interlocking network model that quantifies the links between enterprises. The results showed that the spatial distribution of listed manufacturing industries in the Yangtze River Delta was relatively concentrated, and cities such as Shanghai, Nanjing, and Hangzhou were hot spots for the spatial distribution of listed manufacturing industries. However, Fuyang, Suqian, Chizhou, Lishui and other network edge cities were less distributed in manufacturing. The urban network of the Yangtze River Delta has significant hierarchical characteristics. The urban network of the Yangtze River Delta presents a multi-center network development mode with Shanghai as the center and Nanjing, Hangzhou, and Hefei as the sub-centers. Moreover, we found that the development of inter-city connections in the Yangtze River Delta was driven by network mechanisms of priority attachment and path dependence. The radiating capacity and agglomeration capacity of cities in the Yangtze River Delta have a strong polarization characteristic. The core cities such as Shanghai, Nanjing, Hangzhou, and Hefei have much higher network radiation capabilities than network aggregation capabilities. However, other non-core cities and network edge cities have weak network radiation capabilities, and mainly accept network radiation from core cities. It enriches the research of urban networks based on real inter-?rm connections, and provides ideas for the wider regional study and the combination of econometric techniques and social network analysis.展开更多
In this study, the capability of two different types of models including Hydrological Simulation Program-Fortran (HSPF) as a process-based model and ANN as a data-driven model in simulating runoff was evaluated. The c...In this study, the capability of two different types of models including Hydrological Simulation Program-Fortran (HSPF) as a process-based model and ANN as a data-driven model in simulating runoff was evaluated. The considered area is the Balkhichai River watershed in northwest of Iran. HSPF is a semi-distributed deterministic, continuous and physically-based model that can simulate the hydrologic cycle, associated water quality and quantity and process on pervious and impervious land surfaces and streams. Artificial neural network (ANN) is probably the most successful learning machine technique with flexible mathematical structure which is capable of identifying complex non-linear relationships between input and output data without attempting to reach the understanding of the nature of the phenomena. Statistical approach depending on cross-, auto- and partial-autocorrelation of the observed data is used as a good alternative to the trial and error method in identifying model inputs. The performances of ANN and HSPF models in calibration and validation stages are compared with the observed runoff values in order to identify the best fit forecasting model based upon a number of selected performance criteria. Results of runoff simulation indicated that the simulated runoff by ANN was generally closer to the observed values than those predicted by HSPF.展开更多
In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi...In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi-period and multi-variable joint optimization scheduling model for flood control, drainage, and irrigation. In this model, the number of sluice holes, pump units, and hydropower station units to be opened were used as decision variables, and different optimization objectives and constraints were considered. This model was solved with improved genetic algorithms and verified using the Huaian Water Conservancy Project as an example. The results show that the use of the joint optimization scheduling led to a 10% increase in the power generation capacity and a 15% reduction in the total energy consumption. The change in the water level was reduced by 0.25 m upstream of the Yundong Sluice, and by 50% downstream of pumping stations No. 1, No. 2, and No. 4. It is clear that the joint optimization scheduling proposed in this study can effectively improve power generation capacity of the project, minimize operating costs and energy consumption, and enable more stable operation of various hydraulic structures. The results may provide references for the management of water conservancy projects in complex river networks.展开更多
The Interconnected River System Network (IRSN) plays a crucial role in water resource allocation, water ecological restoration and water quality improvement. It has become a key part of the urban lake management. An e...The Interconnected River System Network (IRSN) plays a crucial role in water resource allocation, water ecological restoration and water quality improvement. It has become a key part of the urban lake management. An evaluation methodology system for IRSN project can provide important guidance for the selection of different water diversion schemes. However, few if any comprehensive evaluation systems have been developed to evaluate the hydrodynamics and water quality of connected lakes. This study developed a comprehensive evaluation system based on multi-indexes including aspects of water hydrodynamics, water quality and socioeconomics. A two-dimensional (2-D) mathematical hydrodynamics and water quality model was built, using NH<sub>3</sub>-N, TN and TP as water quality index. The IRSN project in Tangxun Lake group was used as a testbed here, and five water diversion schemes were simulated and evaluated. Results showed that the IRSN project can improve the water fluidity and the water quality obviously after a short time of water diversion, while the improvement rates decreased gradually as the water diversion went on. Among these five schemes, Scheme V showed the most noticeable improvement in hydrodynamics and water quality, and brought the most economic benefits. This comprehensive evaluation method can provide useful reference for the implementation of other similar IRSN projects.展开更多
Based on the basic principles of BP artificial neural network model and the fundamental law of water and sediment yield in a river basin, a BP neural network model is developed by using observed data, with rainfall co...Based on the basic principles of BP artificial neural network model and the fundamental law of water and sediment yield in a river basin, a BP neural network model is developed by using observed data, with rainfall conditions serving as affecting factors. The model has satisfactory performance of learning and generalization and can be also used to assess the influence of human activities on water and sediment yield in a river basin. The model is applied to compute the runoff and sediment transmission at Xingshan, Bixi and Shunlixia stations. Comparison between the results from the model and the observed data shows that the model is basically reasonable and reliable.展开更多
为探究黄河流域复合型灾害的特征及其风险演化模式,首先厘清复合型灾害的基本特征,基于黄河流域2000-2023年的1553条灾害数据,归纳出10种典型的灾害链演化路径。通过构建复合型灾害的复杂网络模型,运用基于节点相似度和标签传播的加权...为探究黄河流域复合型灾害的特征及其风险演化模式,首先厘清复合型灾害的基本特征,基于黄河流域2000-2023年的1553条灾害数据,归纳出10种典型的灾害链演化路径。通过构建复合型灾害的复杂网络模型,运用基于节点相似度和标签传播的加权网络社团划分算法(Weighted Network Community Division Method based on Node Similarity and Label Propagation,SLWCD)对网络节点进行分类,识别影响复合型灾害风险水平的关键节点。结果表明:洪涝灾害为黄河流域复合型灾害网络中的核心节点,具有最强的全局影响力;水污染事故较易受到自然灾害或首发事故的触发,干旱与地震则为黄河流域的高频灾害。聚类分析结果揭示了四类显著的效应机制,分别为:风雨沙灾害与社会安全事件的时空累积效应、各类灾害与公共卫生事件的级联效应、地质灾害与事故灾难的联动效应及土地问题对公共卫生事件的长期影响。此外,通过Python模拟,研究发现黄河流域复合型灾害网络中潜在路径长度大于4的灾害链条共有7646条。基于研究结果,提出了以下政策建议:增强灾害预警与应急响应能力,统筹跨部门协作,强化高风险区域的监测,推进生态保护与可持续发展,优化水资源与污染防控,采取综合适应策略应对气候变化,以有效提升黄河流域应对复合型灾害的能力。展开更多
文摘The water distribution network is an important part of the plain water environment improvement system. To make efficient use of the regional water diversion source, scientifically distribute the water diversion flow and improve the water environment carrying capacity of Haishu Plain, the river network hydrodynamic model is used in this paper to simulate the water intake location, reasonable water quantity and influence range of water transfer in Haishu Plain. The simulation results have high accuracy, which can provide a scientific basis for the scale, water transfer mechanism and project layout of water transfer construction in Haishu Plain and show a strong reference value for the study of water diversion and distribution scheme of coastal plain river network.
基金supported by the Major Program of the National Natural Science Foundation of China(Grant No.51190091)the National Natural Science Foundation of China(Grant No.51009045)the Open Research Fund Program of the State Key Laboratory of Water Resources and Hydropower Engineering Science of Wuhan University(Grant No.2012B094)
文摘Complex water movement and insufficient observation stations are the unfavorable factors in improving the accuracy of flow calculation of river networks. A water level updating model for river networks was set up based on a three-step method at key nodes, and model correction values were collected from gauge stations. To improve the accuracy of water level and discharge forecasts for the entire network, the discrete coefficients of the Saint-Venant equations for river sections were regarded as the media carrying the correction values from observation locations to other cross-sections of the river network system. To examine the applicability, the updating model was applied to flow calculation of an ideal river network and the Chengtong section of the Yangtze River. Comparison of the forecast results with the observed data demonstrates that this updating model can improve the forecast accuracy in both ideal and real river networks.
基金financially supporrted by the National Key Research and Development Program of China(Grant No.2017YFC1404200)the National Natural Science Foundation of China(Grant Nos.51779150 and 51979040)
文摘In this study, 1D and 2D shallow-water models were coupled to simulate unsteady flow in channel networks and embayment. The 1D model solved the 1D shallow-water equations (St. Venant) using the Preissmann box method and targeted long narrow reaches of the river networks, while the 2D model targeted broad channels and embayment and solved the 2D shallow-water equations using a semi-implicit scheme applied to an unstructured grid of triangular cells. The 1D and 2D models were solved simultaneously by building a matrix for the free surface elevation at every 1D junction and 2D cell center. Velocities were then computed explicitly based on the results at the previous time step and the updated water level. The originality of the scheme arose from a novel coupling method. The results showed that the coupled 1D/2D model produced identical results as the full 2D model in classical to benchmark problems with considerable savings in computational effort. Application of the model to the Pearl River Estuary in southern China showed that complex patterns of tidal wave propagation could be efficiently modeled.
基金National Natural Science Foundation of China, No.41371182 Key Project of Hunan Social Science Foundation, No. 12ZDB01 Entrusting Project of Hunan Social Science Foundation Base, No. 12JD 12
文摘Due to its great strategic significance in integrating regional coordinated development and enhancing the rise of Central China, urban agglomeration in the middle reaches of Changjiang (Yangtze) River has attracted much attention from both theoretical and practical aspects. Such research into the area's economic network structure is beneficial for the formation of an urban- and regional-development strategy. This paper constructs an economic tie model based on a modified gravitation model. Subsequently, referring to social network analysis, the paper empirically studies the network density, network centrality, subgroups and structural holes of the middle reaches of Changjiang River's urban agglomeration economic network. The findings are fourfold: (1) an economic network of urban agglomeration in the middle reaches of Changjiang River has been formed, and economic ties between the cities in this network are comparatively dense; (2) the urban agglomeration in the middle reaches of Changjiang River can be divided into four significant subgroups, with each subgroup having its own obvious economic communications, while there is less economic-behavioral heterogeneity among subgroups - this is especially true for the two subgroups that exist in the Poyang Lake Ecological Economic Zone; (3) an economy pattern driven by the central cities of Wuhan, Changsha and Nanchang has emerged in the urban agglomeration of the middle reaches of Changjiang River, while these three capital cities have exerted great radiation abilities to their surrounding cities, the latter are less able to absorb resources from the former (4) the Wuhan Metropolitan Areas and the Poyang Lake Ecological Economic Zone have more structural holes than the Ring of Changsha, Zhuzhou and the Xiangtan City Clusters, meaning that cities at the periphery of these two areas are easily constrained by central cities. The Ring of Changsha, Zhuzhou and the Xiangtan City Clusters have fewer structural holes; thus, the cities in this area will not face as many constraints as those in the other two areas.
文摘Recently, literature on urban network research from the perspective of ?rm networks has been increasing. This research mainly used data from the headquarters and branches of all 2581 listed manufacturing companies in the Yangtze River Delta from 1990 to 2017, and studied the urban network through an interlocking network model that quantifies the links between enterprises. The results showed that the spatial distribution of listed manufacturing industries in the Yangtze River Delta was relatively concentrated, and cities such as Shanghai, Nanjing, and Hangzhou were hot spots for the spatial distribution of listed manufacturing industries. However, Fuyang, Suqian, Chizhou, Lishui and other network edge cities were less distributed in manufacturing. The urban network of the Yangtze River Delta has significant hierarchical characteristics. The urban network of the Yangtze River Delta presents a multi-center network development mode with Shanghai as the center and Nanjing, Hangzhou, and Hefei as the sub-centers. Moreover, we found that the development of inter-city connections in the Yangtze River Delta was driven by network mechanisms of priority attachment and path dependence. The radiating capacity and agglomeration capacity of cities in the Yangtze River Delta have a strong polarization characteristic. The core cities such as Shanghai, Nanjing, Hangzhou, and Hefei have much higher network radiation capabilities than network aggregation capabilities. However, other non-core cities and network edge cities have weak network radiation capabilities, and mainly accept network radiation from core cities. It enriches the research of urban networks based on real inter-?rm connections, and provides ideas for the wider regional study and the combination of econometric techniques and social network analysis.
文摘In this study, the capability of two different types of models including Hydrological Simulation Program-Fortran (HSPF) as a process-based model and ANN as a data-driven model in simulating runoff was evaluated. The considered area is the Balkhichai River watershed in northwest of Iran. HSPF is a semi-distributed deterministic, continuous and physically-based model that can simulate the hydrologic cycle, associated water quality and quantity and process on pervious and impervious land surfaces and streams. Artificial neural network (ANN) is probably the most successful learning machine technique with flexible mathematical structure which is capable of identifying complex non-linear relationships between input and output data without attempting to reach the understanding of the nature of the phenomena. Statistical approach depending on cross-, auto- and partial-autocorrelation of the observed data is used as a good alternative to the trial and error method in identifying model inputs. The performances of ANN and HSPF models in calibration and validation stages are compared with the observed runoff values in order to identify the best fit forecasting model based upon a number of selected performance criteria. Results of runoff simulation indicated that the simulated runoff by ANN was generally closer to the observed values than those predicted by HSPF.
基金supported by the Water Conservancy Science and Technology Project of Jiangsu Province(Grant No.2012041)the Jiangsu Province Ordinary University Graduate Student Research Innovation Project(Grant No.CXZZ13_0256)
文摘In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi-period and multi-variable joint optimization scheduling model for flood control, drainage, and irrigation. In this model, the number of sluice holes, pump units, and hydropower station units to be opened were used as decision variables, and different optimization objectives and constraints were considered. This model was solved with improved genetic algorithms and verified using the Huaian Water Conservancy Project as an example. The results show that the use of the joint optimization scheduling led to a 10% increase in the power generation capacity and a 15% reduction in the total energy consumption. The change in the water level was reduced by 0.25 m upstream of the Yundong Sluice, and by 50% downstream of pumping stations No. 1, No. 2, and No. 4. It is clear that the joint optimization scheduling proposed in this study can effectively improve power generation capacity of the project, minimize operating costs and energy consumption, and enable more stable operation of various hydraulic structures. The results may provide references for the management of water conservancy projects in complex river networks.
基金National Key Research and Development Program,No.2017YFA0603704,No.2017YFC1502500
文摘The Interconnected River System Network (IRSN) plays a crucial role in water resource allocation, water ecological restoration and water quality improvement. It has become a key part of the urban lake management. An evaluation methodology system for IRSN project can provide important guidance for the selection of different water diversion schemes. However, few if any comprehensive evaluation systems have been developed to evaluate the hydrodynamics and water quality of connected lakes. This study developed a comprehensive evaluation system based on multi-indexes including aspects of water hydrodynamics, water quality and socioeconomics. A two-dimensional (2-D) mathematical hydrodynamics and water quality model was built, using NH<sub>3</sub>-N, TN and TP as water quality index. The IRSN project in Tangxun Lake group was used as a testbed here, and five water diversion schemes were simulated and evaluated. Results showed that the IRSN project can improve the water fluidity and the water quality obviously after a short time of water diversion, while the improvement rates decreased gradually as the water diversion went on. Among these five schemes, Scheme V showed the most noticeable improvement in hydrodynamics and water quality, and brought the most economic benefits. This comprehensive evaluation method can provide useful reference for the implementation of other similar IRSN projects.
文摘Based on the basic principles of BP artificial neural network model and the fundamental law of water and sediment yield in a river basin, a BP neural network model is developed by using observed data, with rainfall conditions serving as affecting factors. The model has satisfactory performance of learning and generalization and can be also used to assess the influence of human activities on water and sediment yield in a river basin. The model is applied to compute the runoff and sediment transmission at Xingshan, Bixi and Shunlixia stations. Comparison between the results from the model and the observed data shows that the model is basically reasonable and reliable.
文摘为探究黄河流域复合型灾害的特征及其风险演化模式,首先厘清复合型灾害的基本特征,基于黄河流域2000-2023年的1553条灾害数据,归纳出10种典型的灾害链演化路径。通过构建复合型灾害的复杂网络模型,运用基于节点相似度和标签传播的加权网络社团划分算法(Weighted Network Community Division Method based on Node Similarity and Label Propagation,SLWCD)对网络节点进行分类,识别影响复合型灾害风险水平的关键节点。结果表明:洪涝灾害为黄河流域复合型灾害网络中的核心节点,具有最强的全局影响力;水污染事故较易受到自然灾害或首发事故的触发,干旱与地震则为黄河流域的高频灾害。聚类分析结果揭示了四类显著的效应机制,分别为:风雨沙灾害与社会安全事件的时空累积效应、各类灾害与公共卫生事件的级联效应、地质灾害与事故灾难的联动效应及土地问题对公共卫生事件的长期影响。此外,通过Python模拟,研究发现黄河流域复合型灾害网络中潜在路径长度大于4的灾害链条共有7646条。基于研究结果,提出了以下政策建议:增强灾害预警与应急响应能力,统筹跨部门协作,强化高风险区域的监测,推进生态保护与可持续发展,优化水资源与污染防控,采取综合适应策略应对气候变化,以有效提升黄河流域应对复合型灾害的能力。