Parameter extraction of photovoltaic(PV)models is crucial for the planning,optimization,and control of PV systems.Although some methods using meta-heuristic algorithms have been proposed to determine these parameters,...Parameter extraction of photovoltaic(PV)models is crucial for the planning,optimization,and control of PV systems.Although some methods using meta-heuristic algorithms have been proposed to determine these parameters,the robustness of solutions obtained by these methods faces great challenges when the complexity of the PV model increases.The unstable results will affect the reliable operation and maintenance strategies of PV systems.In response to this challenge,an improved rime optimization algorithm with enhanced exploration and exploitation,termed TERIME,is proposed for robust and accurate parameter identification for various PV models.Specifically,the differential evolution mutation operator is integrated in the exploration phase to enhance the population diversity.Meanwhile,a new exploitation strategy incorporating randomization and neighborhood strategies simultaneously is developed to maintain the balance of exploitation width and depth.The TERIME algorithm is applied to estimate the optimal parameters of the single diode model,double diode model,and triple diode model combined with the Lambert-W function for three PV cell and module types including RTC France,Photo Watt-PWP 201 and S75.According to the statistical analysis in 100 runs,the proposed algorithm achieves more accurate and robust parameter estimations than other techniques to various PV models in varying environmental conditions.All of our source codes are publicly available at https://github.com/dirge1/TERIME.展开更多
The persistently high incidence of breast cancer emphasizes the need for precise detection in its diagnosis.Computer-aided medical systems are designed to provide accurate information and reduce human errors,in which ...The persistently high incidence of breast cancer emphasizes the need for precise detection in its diagnosis.Computer-aided medical systems are designed to provide accurate information and reduce human errors,in which accurate and effective segmentation of medical images plays a pivotal role in improving clinical outcomes.Multilevel Threshold Image Segmentation(MTIS)is widely favored due to its stability and straightforward implementation.Especially when dealing with sophisticated anatomical structures,high-level thresholding is a crucial technique in identifying fine details.To enhance the accuracy of complex breast cancer image segmentation,this paper proposes an improved version of RIME optimizer EECRIME,denoted as the double Enhanced solution quality Crisscross RIME algorithm.The original RIME initially conducts an efficient optimization to target promising solutions.The double-enhanced solution quality(EESQ)mechanism is proposed for thorough exploitation without falling into local optimum.In contrast,the crisscross operations perform a further local exploration of the generated feasible solutions.The performance of EECRIME is verified with basic and advanced algorithms on IEEE CEC2017 benchmark functions.Furthermore,an EECRIME-based MTIS method in combination with Kapur’s entropy is applied to segment breast Infiltrating Ductal Carcinoma(IDC)histology images.The results demonstrate that the developed model significantly surpasses its competitors,establishing it as a practical approach for complex medical image processing.展开更多
基金supported by the National Natural Science Foundation of China[grant number 51775020]the Science Challenge Project[grant number.TZ2018007]+2 种基金the National Natural Science Foundation of China[grant number 62073009]the Postdoctoral Fellowship Program of CPSF[grant number GZC20233365]the Fundamental Research Funds for Central Universities[grant number JKF-20240559].
文摘Parameter extraction of photovoltaic(PV)models is crucial for the planning,optimization,and control of PV systems.Although some methods using meta-heuristic algorithms have been proposed to determine these parameters,the robustness of solutions obtained by these methods faces great challenges when the complexity of the PV model increases.The unstable results will affect the reliable operation and maintenance strategies of PV systems.In response to this challenge,an improved rime optimization algorithm with enhanced exploration and exploitation,termed TERIME,is proposed for robust and accurate parameter identification for various PV models.Specifically,the differential evolution mutation operator is integrated in the exploration phase to enhance the population diversity.Meanwhile,a new exploitation strategy incorporating randomization and neighborhood strategies simultaneously is developed to maintain the balance of exploitation width and depth.The TERIME algorithm is applied to estimate the optimal parameters of the single diode model,double diode model,and triple diode model combined with the Lambert-W function for three PV cell and module types including RTC France,Photo Watt-PWP 201 and S75.According to the statistical analysis in 100 runs,the proposed algorithm achieves more accurate and robust parameter estimations than other techniques to various PV models in varying environmental conditions.All of our source codes are publicly available at https://github.com/dirge1/TERIME.
基金supported in part by the Natural Science Foundation of Zhejiang Province(LZ22F020005)National Natural Science Foundation of China(62076185,62301367).
文摘The persistently high incidence of breast cancer emphasizes the need for precise detection in its diagnosis.Computer-aided medical systems are designed to provide accurate information and reduce human errors,in which accurate and effective segmentation of medical images plays a pivotal role in improving clinical outcomes.Multilevel Threshold Image Segmentation(MTIS)is widely favored due to its stability and straightforward implementation.Especially when dealing with sophisticated anatomical structures,high-level thresholding is a crucial technique in identifying fine details.To enhance the accuracy of complex breast cancer image segmentation,this paper proposes an improved version of RIME optimizer EECRIME,denoted as the double Enhanced solution quality Crisscross RIME algorithm.The original RIME initially conducts an efficient optimization to target promising solutions.The double-enhanced solution quality(EESQ)mechanism is proposed for thorough exploitation without falling into local optimum.In contrast,the crisscross operations perform a further local exploration of the generated feasible solutions.The performance of EECRIME is verified with basic and advanced algorithms on IEEE CEC2017 benchmark functions.Furthermore,an EECRIME-based MTIS method in combination with Kapur’s entropy is applied to segment breast Infiltrating Ductal Carcinoma(IDC)histology images.The results demonstrate that the developed model significantly surpasses its competitors,establishing it as a practical approach for complex medical image processing.