In this investigation,a hybrid approach integrating the IDDES turbulence model and FW-H is employed to forecast the hydroacoustic of the rim driven thruster(RDT)under non-cavitation and uniform flow conditions at vary...In this investigation,a hybrid approach integrating the IDDES turbulence model and FW-H is employed to forecast the hydroacoustic of the rim driven thruster(RDT)under non-cavitation and uniform flow conditions at varying loading conditions(J=0.3 and J=0.6).It is revealed that the quadrupole term contribution in the P-FWH method significantly affects the monopole term in the low-frequency region,while it mainly affects the dipole term in the high-frequency region.Specifically,the overall sound pressure levels(SPL)of the RDT using the P-FWH method are 2.27 dB,10.03 dB,and 16.73 dB at the receiving points from R1 to R3 under the heavy-loaded condition,while they increase by 0.67 dB at R1,and decrease by 14.93 dB at R2,and 22.20 dB at R3,for the light-loaded condition.The study also utilizes the pressure-time derivatives to visualize the numerical noise and to pinpoint the dynamics of the vortex cores,and the optimization of the grid design can significantly reduce the numerical noise.The computational accuracy of the P-FWH method can meet the noise requirements for the preliminary design of rim driven thrusters.展开更多
Addressing the ongoing challenge of enhancing propulsion efficiency in rim-driven thrusters(RDTs),a novel energy-saving appendage was designed to mitigate energy dissipation and improve efficiency.Computational fluid ...Addressing the ongoing challenge of enhancing propulsion efficiency in rim-driven thrusters(RDTs),a novel energy-saving appendage was designed to mitigate energy dissipation and improve efficiency.Computational fluid dynamics was utilized to examine the disparities in openwater performance between RDTs with and without this appendage.The Reynolds-Averaged Navier–Stokes equations were solved using the Moving Reference Frame approach within the established STAR-CCM+software.The accuracy of these methodologies was confirmed through a comparison of numerical simulations with experimental data.A meticulous analysis evaluated the alterations in propulsion efficiency of RDTs pre-and post-appendage integration across various advance coefficients.Additionally,a comprehensive assessment of thrust and torque coefficient distributions facilitated a comprehensive understanding of the appendage’s energy-saving potential.Results demonstrated that the new appendage diminishes the diffusive wake behind the rotor disk,fostering a more uniform flow distribution.A notable reduction in the lowpressure zone on the rotor blade’s thrust side was observed,accompanied by an elevation in the high-pressure area.This generated a distinct pressure disparity between the blade’s thrust and suction sides,mitigating the low-pressure region at the blade tip and reducing the likelihood of cavitation.The manuscript further elucidates the rationale behind these alterations,providing detailed insights into flow field dynamics.展开更多
基金The National Natural Science Foundation of China(Grant No.52201376)the Natural Science Foundation of Hubei Province,China(Grant No.2023AFB683).
文摘In this investigation,a hybrid approach integrating the IDDES turbulence model and FW-H is employed to forecast the hydroacoustic of the rim driven thruster(RDT)under non-cavitation and uniform flow conditions at varying loading conditions(J=0.3 and J=0.6).It is revealed that the quadrupole term contribution in the P-FWH method significantly affects the monopole term in the low-frequency region,while it mainly affects the dipole term in the high-frequency region.Specifically,the overall sound pressure levels(SPL)of the RDT using the P-FWH method are 2.27 dB,10.03 dB,and 16.73 dB at the receiving points from R1 to R3 under the heavy-loaded condition,while they increase by 0.67 dB at R1,and decrease by 14.93 dB at R2,and 22.20 dB at R3,for the light-loaded condition.The study also utilizes the pressure-time derivatives to visualize the numerical noise and to pinpoint the dynamics of the vortex cores,and the optimization of the grid design can significantly reduce the numerical noise.The computational accuracy of the P-FWH method can meet the noise requirements for the preliminary design of rim driven thrusters.
文摘Addressing the ongoing challenge of enhancing propulsion efficiency in rim-driven thrusters(RDTs),a novel energy-saving appendage was designed to mitigate energy dissipation and improve efficiency.Computational fluid dynamics was utilized to examine the disparities in openwater performance between RDTs with and without this appendage.The Reynolds-Averaged Navier–Stokes equations were solved using the Moving Reference Frame approach within the established STAR-CCM+software.The accuracy of these methodologies was confirmed through a comparison of numerical simulations with experimental data.A meticulous analysis evaluated the alterations in propulsion efficiency of RDTs pre-and post-appendage integration across various advance coefficients.Additionally,a comprehensive assessment of thrust and torque coefficient distributions facilitated a comprehensive understanding of the appendage’s energy-saving potential.Results demonstrated that the new appendage diminishes the diffusive wake behind the rotor disk,fostering a more uniform flow distribution.A notable reduction in the lowpressure zone on the rotor blade’s thrust side was observed,accompanied by an elevation in the high-pressure area.This generated a distinct pressure disparity between the blade’s thrust and suction sides,mitigating the low-pressure region at the blade tip and reducing the likelihood of cavitation.The manuscript further elucidates the rationale behind these alterations,providing detailed insights into flow field dynamics.