期刊文献+
共找到573篇文章
< 1 2 29 >
每页显示 20 50 100
A Motion-decoupled Pneumatic Rigid-Flexible Hybrid Joint with Independently-Controlled Variable Stiffness for Continuum Robot
1
作者 Wenbiao Wang Jiahao Shi +4 位作者 Ke Wu Rui Chen Zean Yuan Shibo Cai Guanjun Bao 《Chinese Journal of Mechanical Engineering》 2025年第5期650-660,共11页
Continuum robots have been a hot topic in recent years due to their intrinsic features of agility,flexibility,and safety.To successfully deploy continuum robots in practical applications,further enhancements in variab... Continuum robots have been a hot topic in recent years due to their intrinsic features of agility,flexibility,and safety.To successfully deploy continuum robots in practical applications,further enhancements in variable stiffness,decoupled motion,and embedded sensing are highly desirable.Since continuum robots are usually composed of multiple joints assembled in series,their mechanical properties and performance will certainly rely on the connected joints.This paper proposes a motion-decoupled variable stiffness-decoupled pneumatic rigid-flexible hybrid joint(RFHJ),which is modular designed and integrated with a rigid hinge,a stiffness-tuning module,and soft actuators.The soft pneumatic muscle actuators are pre-stretched during assembly,ensuring the stable initial state of RFHJ.A novel musculature-mounting configuration is also presented,which enables RFHJs to achieve independent motions in two orthogonal planes.Furthermore,the variable stiffness module is embedded in the RFHJ’s structure to offer real-time and independent stiffness tunability across multiple scales in two perpendicular directions.The proposed RFHJ makes most of the advantages of soft continuum robots and conventional rigid serial robots by introducing a hybrid structure to provide both safe human-robot interaction(HRI),accurate control and reliable stiffness variation,presenting promising potentials for robotic systems,which have been theoretically proved and experimentally verified on the physical prototype.The experimental results also indicate that the developed RFHJ can work with variable stiffness ranging in[1.2,49.9]N·m/rad.A variable stiffness rigid-flexible hybrid continuum arm(RFHA)is designed with three RFHJs in series.Primary tests on the developed RFHA prototype demonstrate that it has the characteristics of decoupled driving,bidirectional stiffness tunability and self-stability. 展开更多
关键词 Variable stiffness Pneumatic artificial muscles rigid-flexible hybrid joint rigid-flexible hybrid arm
在线阅读 下载PDF
Complete geometric nonlinear formulation for rigid-flexible coupling dynamics 被引量:4
2
作者 刘铸永 洪嘉振 刘锦阳 《Journal of Central South University》 SCIE EI CAS 2009年第1期119-124,共6页
A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms relate... A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed. 展开更多
关键词 flexible beam rigid-flexible coupling dynamic modeling numerical simulation
在线阅读 下载PDF
Dynamic modeling and analysis on rigid-flexible coupling between vertical chatter and transverse bending vibration in process of cold rolling
3
作者 Xiao-yong Wang Zhi-ying Gao +1 位作者 Yan-li Xin Qing-dong Zhang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第11期2740-2754,共15页
Considering the dynamic variation of roll gap and the transverse distribution of dynamic rolling force along the work roll width direction, the movement and deformation of rolls system, influenced by the coupling of v... Considering the dynamic variation of roll gap and the transverse distribution of dynamic rolling force along the work roll width direction, the movement and deformation of rolls system, influenced by the coupling of vertical chatter and transverse bending vibration, may cause instability and also bring product defect of thickness difference. Therefore, a rigid-flexible coupling vibration model of the rolls system was presented. The influence of dynamic characteristics on the rolling process stability and strip thickness distribution was investigated. Firstly, assuming the symmetry of upper and lower structures of six-high rolling mill, a transverse bending vibration model of three-beam system under simply supported boundary conditions was established, and a semi-analytical solution method was proposed to deal with this model. Then, considering both variation and change rate of the roll gap, a roll vertical chatter model with structure and process coupled was constructed, and the critical rolling speed for self-excited instability was determined by Routh stability criterion. Furthermore, a rigid-flexible coupling vibration model of the rolls system was built by connecting the vertical chatter model and transverse bending vibration model through the distribution of dynamic rolling force, and the dynamic characteristics of rolls system were analyzed. Finally, the strip exit thickness distributions under the stable and unstable rolling process were compared, and the product shape and thickness distribution characteristics were quantitatively evaluated by the crown and maximum longitudinal thickness difference. 展开更多
关键词 Transverse bending vibration Vertical chatter rigid-flexible coupling vibration Strip thickness distribution Rolling process stability
原文传递
Numerical simulation of aircraft arresting process with an efficient full-scale rigid-flexible coupling dynamic model
4
作者 Haoyuan SHAO Daochun LI +3 位作者 Zi KAN Lanxi BI Zhuoer YAO Jinwu XIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第5期586-602,共17页
The arresting process of carrier-based aircraft is widely recognized as a challenging task,characterized by the highest accident rate among all carrier-based aircraft operations.Dynamic simulation plays a crucial role... The arresting process of carrier-based aircraft is widely recognized as a challenging task,characterized by the highest accident rate among all carrier-based aircraft operations.Dynamic simulation plays a crucial role in assessing the intricate responses of the arresting process,favoring the design of carrier-based aircraft.An efficient and accurate rigid-flexible coupling model for analyzing the dynamic response of the arresting process is proposed.By combining the dynamic characteristics of airframe,landing gear,arresting hook and arresting gear system,the rigid-flexible coupling dynamic model is established to reflect the relative motion of the coupling parts and arresting load.The dynamic model is verified through simulations of landing gear landing drops and by comparing the arresting simulation results with corresponding data in the US military standard.Additionally,simulations of the arresting process under different off-center distance and aircraft yaw angle are conducted to obtain the dynamic response of the aircraft during the arresting process.The result indicates that the rigid-flexible coupling dynamic model proposed is effective for analyzing the arresting dynamics response of carrier-based aircraft.The axial force of the arresting cable on both sides of the hook engagement point,pitch and yaw angle of aircraft are inconsistent under yaw and off-center arresting.The analysis method and obtained results provide valuable references for assessing the dynamic responses of carrier-based aircraft during arresting process and offer valuable in-sights in the design of carrier-based aircraft. 展开更多
关键词 Carrier-based aircraft Deck landing rigid-flexible coupling dynamic model Finite element method Dynamic analysis
原文传递
Multi-Objective Trajectory Optimization for Rigid-Flexible Coupling Spray-Painting Robot Integrated with Coating Process Constraints
5
作者 Feng Xu Bin Zi +1 位作者 Jingyuan Wang Zhaoyi Yu 《Chinese Journal of Mechanical Engineering》 CSCD 2024年第6期396-413,共18页
Robot-automated spraying is widely used in various fields,such as the automotive,metalworking,furniture,and aero-space industries.Spraying quality is influenced by multiple factors,including robot speed,acceleration,e... Robot-automated spraying is widely used in various fields,such as the automotive,metalworking,furniture,and aero-space industries.Spraying quality is influenced by multiple factors,including robot speed,acceleration,end-effector trajectory,and spraying process constraints.To achieve high-quality spraying under the influence of multiple factors,this study proposes a multi-objective optimization method for the spraying trajectory that integrates spraying process constraints into the optimization process.First,a 7-degree-of-freedom rigid-flexible coupling serial spray painting robot system is introduced,which includes a motion decoupling mechanism and a tension amplification mechanism.Subsequently,a paint deposition model for the spray gun was established,and the influence of process constraints on spraying quality was analyzed.Trajectory planning for the spray painting robot,based on the septic B-spline interpolation method,was then performed.Based on this foundation,objective functions and constraint equations for spraying trajectory optimization were established.A multi-objective trajectory optimization method for spraying by the robot is proposed based on the NSGA-Ⅱ,which integrates the spraying process constraints.Finally,a prototype system of a 7-degree-of-freedom rigid-flexible coupling serial spray painting robot was constructed.Simulations and spraying experiments were conducted to verify the effectiveness of the proposed multi-objective trajectory optimization method.This paper presents a multi-objective optimization method for the spraying trajectory of a robot.In the proposed method,the optimized spraying trajectory is generated with the spraying process as the constraint and time,energy consumption,and impact during the spraying operation of the robot as the optimization objectives. 展开更多
关键词 rigid-flexible coupling spray-painting robot Painting process Multi-objective optimization Trajectory planning NSGA-II
在线阅读 下载PDF
A systematic review of rigid-flexible composite pavement
6
作者 Zhaohui Liu Shiqing Yu +2 位作者 You Huang Li Liu Yu Pan 《Journal of Road Engineering》 2024年第2期203-223,共21页
Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote ... Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote its application and address key issues while identifying future directions.The design theory and methodology of rigid-flexible composite pavement are discussed,followed by a description of its structural and mechanical behavior characteristics.The load stress,temperature stress,and their interactive effects between the asphalt layer and the rigid base were analyzed.It is clarified that the asphalt layer serves a dual role as both a“functional layer”and a“structural layer”.Typical distresses of rigid-flexible composite pavement,which primarily occur in the asphalt layer,were discussed.These distresses include reflective cracking,top-down cracking,rutting,and compressive-shear failure.Generally,the integrity of the rigid base and the interlaminar bonding conditions significantly impact the performance and distress of the asphalt layer.The technology for enhancing the performance of rigid-flexible composite pavement is summarized in three aspects:asphalt layer properties,rigid base integrity,and interlaminar bonding condition.The study concludes that developing high-performance pavement materials based on their structural behaviors is an effective approach to improve the performance and durability of rigid-flexible composite pavement.The integrated design of structure and materials represents the future direction of road design. 展开更多
关键词 rigid-flexible composite pavement Structural mechanical properties Compression-shear failure Integrated design of structure and material
在线阅读 下载PDF
Dynamic response of high-speed railway vehicle and welded turnout on large-span bridges based on rigid-flexible coupling system
7
作者 Xiaopei Cai Zijie Zhong +2 位作者 Albert Lau Qian Zhang Yue Hou 《High-Speed Railway》 2024年第4期203-218,共16页
Welded Turnout on Large-span Bridge(WTLB)is a complex multi-layer heterogeneous system and can significantly influence the service performance of High-Speed Railway(HSR).Understanding the coupling dynamic response of ... Welded Turnout on Large-span Bridge(WTLB)is a complex multi-layer heterogeneous system and can significantly influence the service performance of High-Speed Railway(HSR).Understanding the coupling dynamic response of the vehicle and WTLB is essential.Previous research did not consider the dynamic behavior of foundations,leading to an underestimation of the vehicle-turnout-foundation coupling dynamic response,particularly when turnouts were laid on large-span bridges.This study proposes a novel modeling method that includes the foundations,to overcome the previous shortcomings by applying a rigid-flexible coupling system.In this approach,the vehicle was modeled as a rigid body sub-model in a Multi-Body Software(MBS),while WTLB was modeled as a flexible bodies sub-model using Finite Element(FE)software.The modal information from the FE model was imported into the MBS software.The two sub-models were coupled by the wheel-rail contact in the MBS environment and then the Vehicle-turnout-bridge Rigid-flexible Coupling Dynamic(VRCD)calculation model was established and it was discovered that the calculation results showed good agreement with the field test data.Through the VRCD model,the safety of the structure,the stability of the vehicle and the comfort of passengers were investigated,as well as several important infrastructure factors.The results demonstrate that this novel method provides accurate calculations and highlights the complex and significant interactions in the vehicle-turnout-bridge system. 展开更多
关键词 High-speed railway Welded turnout Large-span bridge Dynamic response rigid-flexible coupling system
在线阅读 下载PDF
A new rope-sheave traction contact force model incorporating complex geometric features developed through parameter identification methods
8
作者 Yunting HAN Hui HU +1 位作者 Haoran SUN Xi SHI 《Applied Mathematics and Mechanics(English Edition)》 2025年第10期1983-2006,共24页
The complex geometrical features of mechanical components significantly influence contact interactions and system dynamics.However,directly modeling contact forces on surfaces with intricate geometries presents consid... The complex geometrical features of mechanical components significantly influence contact interactions and system dynamics.However,directly modeling contact forces on surfaces with intricate geometries presents considerable challenges.This study focuses on the helically twisted wire rope-sheave contact and proposes a contact force model that incorporates complex geometric features through a parameter identification approach.The model's impact on contact forces and system dynamics is thoroughly investigated.Leveraging a point contact model and an elliptic integral approximation,a loss function is formulated using the finite element(FE)contact model results as the reference data.Geometric parameters are subsequently determined by optimizing this loss function via a genetic algorithm(GA).The findings reveal that the contact stiffness increases with the wire rope pitch length,the radius of principal curvature,and the elliptic eccentricity of the contact zone.The proposed contact force model is integrated into a rigid-flexible coupled dynamics model,developed by the absolute node coordinate formulation,to examine the effects of contact geometry on system dynamics.The results demonstrate that the variations in wire rope geometry alter the contact stiffness,which in turn affects dynamic rope tension through frictional energy dissipation.The enhanced model's predictions exhibit superior alignment with the experimental data,thereby validating the methodology.This approach provides new insights for deducing the contact geometry from kinetic parameters and monitoring the performance degradation of mechanical components. 展开更多
关键词 complex contact geometry contact force modeling parameter identification helical wire rope rigid-flexible couple dynamics modeling
在线阅读 下载PDF
Ride comfort evaluation for road vehicle based on rigid-flexible coupling multibody dynamics 被引量:12
9
作者 Guangqiang Wu Guodong Fan Jianbo Guo 《Theoretical & Applied Mechanics Letters》 CAS 2013年第1期39-43,共5页
In the present research two different whole vehicle multibody models are established respectively, including rigid and rigid-flexible coupling multibody vehicle models. The former is all composed by rigid bodies while... In the present research two different whole vehicle multibody models are established respectively, including rigid and rigid-flexible coupling multibody vehicle models. The former is all composed by rigid bodies while in the later model, the flexible rear suspension is built based on the finite element method (FEM) and mode superposition method, in which the deformations of the components are considered. The ride simulations with different speeds are carried out on a 3D digitalized road, and the weighted root mean square (RMS) of accelerations on the seat surface,backrest and at the feet are calculated. The comparison between the responses of the rigid and rigid-flexible coupling multibody models shows that the flexibility of the vehicle parts significantly affects the accelerations at each position, and it is necessary to take the flexibility effects into account for the assessment of ride comfort. C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi: 10.1063/2.1301304] 展开更多
关键词 ride comfort rigid-flexible coupling multibody system
在线阅读 下载PDF
Design and implementation of rigid-flexible coupling for a half-flexible single jack nozzle 被引量:12
10
作者 Chen Pengfei Wu Feng +2 位作者 Xu Jinglei Feng Xudong Yang Qiao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第6期1477-1483,共7页
The aerodynamic design of a rigid-flexible coupling profile is the decisive factor for the flow-field quality of a supersonic free jet wind tunnel nozzle, and its mechanic dynamic features are the key for engineering ... The aerodynamic design of a rigid-flexible coupling profile is the decisive factor for the flow-field quality of a supersonic free jet wind tunnel nozzle, and its mechanic dynamic features are the key for engineering implementation of continuous Mach number regulations. To fulfill the requirements of a free jet inlet/engine compatibility test within a wide simulation envelop, both uniform flow-fields of continuous acceleration and deceleration are necessary. In this paper, the aerodynamic design methods of an expansion wall and machinery implementation plan for the halfflexible single jack nozzle were researched. The profile control in nozzle flexible plate design was studied with a rigid-flexible coupling method. Design and calculations were performed with the help of numerical simulation. The technique of axial free stretching of the flexible plate was used to improve the matching performance between the designed elasticity profile and the theoretical one, and the rigid-flexible coupling structure was calibrated by wind tunnel tests. Results indicate that the flexible plate aerodynamic design method used here is effective and feasible. Via rigidflexible coupling design, the flexible plate agrees with the rigid body very well, and continuous Mach number changes can be achieved during the tests. The nozzle’s exit flow-field uniformity meets the requirements of China Military Standard(GJB). 展开更多
关键词 Aerodynamic profile Flow-field quality Free jet NOZZLE rigid-flexible coupling Variable Mach number Wind tunnel
原文传递
Rigid-Flexible Coupling Dynamic Analysis of Sub-Launched Vehicle During the Vertical Tube-Exit Stage 被引量:3
11
作者 Weiyao Zhang Jingbo Gao Cong Wang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第2期26-33,共8页
During the launching stage,hydrodynamic pressure and adapters' reaction loads can influence the vehicle's rigid motion as well as cause its structural vibration,which is a typical rigid-flexible coupling dynam... During the launching stage,hydrodynamic pressure and adapters' reaction loads can influence the vehicle's rigid motion as well as cause its structural vibration,which is a typical rigid-flexible coupling dynamic problem. This paper presents a 2-D rigid-flexible coupling model to calculate the vehicle's dynamic responses in that period.The vehicle was equivalent to a flexure beam with axial deformation. Hybrid coordinate and modal superposition methods were used to describe its large rigid displacement and small deformation. By the second Lagrange equation,the vehicle centroid's displacements,rotational angle and modal coordinates were chosen as generalized coordinates and then the vehicle 's rigid-flexible coupling dynamic equations were obtained. By numerical simulation,the results of vehicle's motion parameters and transverse internal loads were acquired.The calculation results showed that differences of the vehicle's motion parameters between the rigid-flexible coupling model and the rigid body assumption are noticeable and the peak magnitude of the vehicle's transverse internal loads in the rigid-flexible coupling model is higher remarkably than that in the rigid body assumption. 展开更多
关键词 sub-launched vehicle rigid-flexible coupling hybrid coordinate dynamic responses
在线阅读 下载PDF
A homogeneous and mechanically stable artificial diffusion layer using rigid-flexible hybrid polymer for high-performance lithium metal batteries 被引量:3
12
作者 Zhenkang Lin Yuyan Ma +5 位作者 Wei Wang Yu He Menghao Wang Jun Tang Cheng Fan Kening Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期631-638,I0015,共9页
Artificial solid electrolyte interphase(SEI) is promising to inhibit uncontrollable lithium dendrites and enable long cycling stability for lithium metal batteries. However, the essential mechanical stability is limit... Artificial solid electrolyte interphase(SEI) is promising to inhibit uncontrollable lithium dendrites and enable long cycling stability for lithium metal batteries. However, the essential mechanical stability is limited since organic layers generally have low modulus whereas intrinsic brittleness for inorganic ones remains a great concern. Polymer-based SEIs with rigid and flexible chains in adequate mechanical properties are supposed to address this issue. Herein, a homogeneous and mechanically stable diffusion layer is achieved by blending rigid chains of polyphenylene sulfone(PPSU) with flexible chains of poly(vinylidene fluoride)(PVDF) in a hybrid membrane, enabling uniform diffusion and stabilizing the lithium metal anode. The Li||Cu cell with the protected electrode exhibits a long lifetime more than 450 cycles(0.5 m A cm^(-2), 1.0 m A h cm^(-2))(fourfold longer than the control group) with higher average Coulombic efficiency of 98.7%. Enhanced performances are also observed at Li||Li and full cell configurations. The improved performances are attributed to the controlled morphology and stable interphase, according to scanning electron microscopy(SEM) and electrochemical impedance. This research advances the idea of uniform lithium plating and provides a new insight on how to create a homogeneous and mechanically stable diffusion layer using rigid-flexible polymers. 展开更多
关键词 Lithium metal battery Lithium dendrite Uniform diffusion rigid-flexible artificial layer Electrochemical impedance
在线阅读 下载PDF
Dynamic Simulation for Rigid-Flexible Coupling Model of Gear Transmission System Based on ADAMS 被引量:1
13
作者 陈材 石全 +1 位作者 王广彦 戈洪宇 《Journal of Donghua University(English Edition)》 EI CAS 2016年第2期192-195,共4页
The influence of the flexible body for the motion of gear transmission system is analyzed and the foundation for a more accurate assessment of gear transmission system is established when it has battle damage faults. ... The influence of the flexible body for the motion of gear transmission system is analyzed and the foundation for a more accurate assessment of gear transmission system is established when it has battle damage faults. By using Pro / E software,the virtual prototype model of gear transmission system in the speed reducer is established,and the rigid model and rigid-flexible coupling model are simulated respectively in ADAMS to obtain the data of gear meshing force. It can be concluded that rigid-flexible coupling model can reflect the real motion better than rigid model by comparing the simulation data of two models. 展开更多
关键词 ADAMS gear transmission rigid-flexible coupling SIMULATION
在线阅读 下载PDF
A rigid-flexible coupling finite element model of coupler for analyzing train instability behavior during collision 被引量:2
14
作者 Jingke Zhang Tao Zhu +5 位作者 Bing Yang Xiaorui Wang Shoune Xiao Guangwu Yang Yanwen Liu Quanwei Che 《Railway Engineering Science》 2023年第4期325-339,共15页
Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of ... Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling. 展开更多
关键词 Intermediate coupler rigid-flexible coupling finite element model Design buckling load Actual buckling load Lateral buckling instability
在线阅读 下载PDF
A Study of Dynamic Analysis Method for the Rigid-Flexible Coupled Bar Linkage System 被引量:1
15
作者 陆念力 张广芸 《Journal of Donghua University(English Edition)》 EI CAS 2011年第6期616-620,共5页
In order to present a dynamic analysis method for the rigid-flexible coupled bar linkage system(RFCBLS),the flexible element motion equation was gotten by Lagrange Equation and the rigid element motion equation was go... In order to present a dynamic analysis method for the rigid-flexible coupled bar linkage system(RFCBLS),the flexible element motion equation was gotten by Lagrange Equation and the rigid element motion equation was gotten based on rigid constraint conditions.The multi-body system(MBS) is a complex mechanism and its components have quite different rigidities.If it is considered as a rigid MBS(RMBS) to do its dynamic analysis,elastic deformation's ignorance will lead to inaccurate analysis.If it is considered as a flexible MBS(FMBS) to establish,analyze,and solve the model,quite large system equations make it difficult to solve.The better method is as follows:the complex mechanism system is regarded as a rigid-flexible coupled system(RFCS) to make dynamic characteristic of rigid components be equivalent,system equation is established by FMBS' way,and system equation dimensions are reduced by transition matrices' introduction.A dynamic analysis method for rigid element and flexible element coupling was presented based on the FMBS.The analyzed crank slide-block mechanism results show that the dynamic analysis method for RFCBLS is quick and convenient. 展开更多
关键词 rigid-flexible coupled linkage system flexible element rigid element transition matrices dynamic analysis
在线阅读 下载PDF
Nonlinear dynamic analysis on rigid-flexible coupling system of an elastic beam 被引量:1
16
作者 Feiyun Zhao Jinyang Liu Jiazhen Hong 《Theoretical & Applied Mechanics Letters》 2012年第2期68-71,共4页
Previous work examined the effect of the attached stiffness matrix terms on stability of an elastic beam undergoing prescribed large overall motion. The aim of the present work is to extend the nonlinear formulations ... Previous work examined the effect of the attached stiffness matrix terms on stability of an elastic beam undergoing prescribed large overall motion. The aim of the present work is to extend the nonlinear formulations to an elastic beam with free large overall motion. Based on initial stress method, the nonlinear coupling equations of elastic beams are obtained with free large overall motion and the attached stiffness matrix is derived by solving sub-static formulation. The angular velocity and the tip deformation of the elastic pendulum are calculated. The analytical results show that the simulation results of the present model are tabled and coincide with the one-order approximate model. It is shown that the simulation results accord with energy conservation principle. 展开更多
关键词 elastic beam nonlinear analysis initial stress method rigid-flexible coupling
在线阅读 下载PDF
Nonsmooth dynamic analysis of rigid-flexible interaction collision
17
作者 Ling TAO Zhongpan LI +2 位作者 Yan LI Huijian CHEN Zhiqiang FENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第11期1731-1746,共16页
This paper aims to explore the deformation of the collided bodies in multibody systems and to effectively simulate the motion path of colliding bodies.First,we describe the geometrically nonlinear problems of material... This paper aims to explore the deformation of the collided bodies in multibody systems and to effectively simulate the motion path of colliding bodies.First,we describe the geometrically nonlinear problems of materials by the total Lagrangian formulation.Second,a first-order integration scheme is used to solve the dynamics equations.An algorithm combining the bi-potential method with the node-to-point contact identification is proposed to solve the interface problems of rigid-flexible interaction collision.To observe the collision process more intuitively,the internal software FER/VIEW is introduced to visualize the results.The accuracy is proved by comparing the proposed method with the analytical solution or another numerical solution.Moreover,the proposed method has more numerical robustness,such as occupying less computer storage,saving the computational cost,and broadening the application range of the bi-potential method. 展开更多
关键词 COLLISION bi-potential method node-to-point rigid-flexible FER/VIEW
在线阅读 下载PDF
MODEL OF CENTRIFUGAL EFFECT AND ATTITUDEMANEUVER STABILITY OF A COUPLEDRIGID-FLEXIBLE SYSTEM
18
作者 李智斌 王照林 +1 位作者 王天舒 柳宁 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第5期594-603,共10页
The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigid-flexible system was deduced from the ide... The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigid-flexible system was deduced from the idea of “centrifugal potential field', and then the dynamic effects of the nonlinear centrifugal force to system attitude motion were analyzed by approximate calculation; At last, the Lyapunov function based on energy norm was selected, in the condition that only the measured values of attitude and attitude speed are available, and it is proved that the PD feedback control law can ensure the attitude stability during large angle maneuver. 展开更多
关键词 Coupled rigid-flexible system nonlinear rigid-body motion elastic vibration attitude stability
在线阅读 下载PDF
An analysis on a rigid-flexible coupling system of an oscillating massand a rotating disk
19
作者 Jian Liu Kai Zhang Zhanfang Liu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2022年第5期341-348,共8页
A mass-rod-disk system consisting of an oscillating mass attached to a rigid rotating disk by an elastic rod is designed to study rigid-flexible coupling mechanism.Suppose the rod is lightweight and has enough stiffne... A mass-rod-disk system consisting of an oscillating mass attached to a rigid rotating disk by an elastic rod is designed to study rigid-flexible coupling mechanism.Suppose the rod is lightweight and has enough stiffness,the theorems of linear momentum and angular momentum are applied to the mass-rod-disk system based on the kinematic description of the system.With respect to two deflections of the mass and one angular velocity of the system,a group of nonlinear differential equations are established where the tangential inertial force,centrifugal force,Coriolis force as well as the moments of additional inertial forces take important effects on the dynamic response.For the sake of description,these three types of inertial forces mentioned before are referred to as additional inertial forces in this paper.The horizontal deflections of the mass and the angular velocity of the disk rotating about a fixed-axis are numerically solved for the prescribed external torque.The oscillating trajectory of the mass is deeply influenced by the additional inertial forces,meanwhile the dynamic fluctuations of the angular velocity and rotary inertia of the system are strongly affected by the mass oscillation. 展开更多
关键词 rigid-flexible coupling Additional inertial forces Nonlinear differential equation Motion trajectory
在线阅读 下载PDF
基于CAS理论的公立医院财会监督体系运行机制模型探索
20
作者 陈隽 向炎珍 +1 位作者 曹卉 胡金艳 《中国卫生经济》 北大核心 2025年第4期99-103,共5页
公立医院财会监督是1项复杂的系统性工程,目前缺乏全面、系统的指导,需要通过实践完善相关理论体系。文章在运用复杂适应系统(Complex Adaptive System,CAS)理论框架对公立医院财会监督体系进行分析的基础上,构建了CAS理论的公立医院财... 公立医院财会监督是1项复杂的系统性工程,目前缺乏全面、系统的指导,需要通过实践完善相关理论体系。文章在运用复杂适应系统(Complex Adaptive System,CAS)理论框架对公立医院财会监督体系进行分析的基础上,构建了CAS理论的公立医院财会监督体系运行机制模型。公立医院财会监督符合CAS理论的聚集性、非线性、要素流和多样性的特征,通过构建公立医院财会监督CAS模型,对于推动复杂治理环境下的公立医院财会监督体系建设具备可行性与推广性。 展开更多
关键词 公立医院 财会监督体系 复杂适应系统理论
原文传递
上一页 1 2 29 下一页 到第
使用帮助 返回顶部