Hydraulic fracturing technology has played an important role in the exploitation of unconventional oil and gas resources,however,its application to gas hydrate reservoirs has been rarely studied.Currently,there is sti...Hydraulic fracturing technology has played an important role in the exploitation of unconventional oil and gas resources,however,its application to gas hydrate reservoirs has been rarely studied.Currently,there is still limited understanding of the propagation and extension of fractures around the wellbore during the fracturing process of horizontal wells in hydrate reservoirs,as well as the stress interference patterns between fractures.This study simulates hydraulic fracturing processes in hydrate reservoirs using a fluidsolid coupling discrete element method(DEM),and analyzes the impacts of hydrate saturation and geological and engineering factors on fracture extension and stress disturbance.The results show that hydraulic fracturing is more effective when hydrate saturation exceeds 30%and that fracture pressure increases with saturation.The increase in horizontal stress differential enhances the directionality of fracture propagation and reduces stress disturbance.The distribution uniformity index(DUI)reveals that injection pressure is directly proportional to the number of main fractures and inversely proportional to fracturing time,with fracturing efficiency depending on the spacing between injection points and the distance between wells.This work may provide reference for the commercial exploitation of natural gas hydrates.展开更多
A mathematical energy coupling model was developed to analyze the light transmission in the keyhole and energy distribution on the keyhole wall.The main characteristics of the model include:1) a prototype of the key...A mathematical energy coupling model was developed to analyze the light transmission in the keyhole and energy distribution on the keyhole wall.The main characteristics of the model include:1) a prototype of the keyhole and the inverse Bremsstrahlung absorption coefficient in the keyhole plasma are obtained from the experiments;2) instead of using a parallel incident beam,a focused laser beam with real Gaussian intensity distribution is implemented;3) both Fresnel absorption and inverse Bremsstrahlung absorption during multiple reflections are considered.The calculation results show that the distribution of absorbed laser intensity by the keyhole wall is not uniform.The maximum laser energy is absorbed by the bottom of the keyhole,although no rays irradiate directly onto the bottom.According to analysis of beam focusing characteristics,the location of the focal plane plays a more important role in the laser energy absorption by the front wall than by the rear wall.展开更多
The shape of strip is calculated by iterative method which combines strip plastic deformation model with rolls elastic deformation model through their calculation results, which can be called results coupling method. ...The shape of strip is calculated by iterative method which combines strip plastic deformation model with rolls elastic deformation model through their calculation results, which can be called results coupling method. Be- cause the shape and rolling force distribution are very sensitive to strip thickness transverse distribution% variation, the iterative course is rather unstable and sometimes convergence cannot be achieved. In addition, the calculating speed of results coupling method is low, which restricts its usable range. To solve the problem, a new model cou- pling method is developed, which takes the force distribution between rolls, rolling force distribution and strip's exit transverse displacement distribution as basic unknowns, and integrates strip plastic deformation model and rolls elas- tic deformation model as a unified linear equations through their internal relation, so the iterative calculation between the strip plastic deformation model and rolls elastic deformation model can be avoided. To prove the effectiveness of the model coupling method, two examples are calculated by results coupling method and model coupling method re- spectively. The results of front tension stress, back tension stress, strip^s exit gauge, the force between rolls and rolling force distribution calculated by model coupling method coincide very well with results coupling method. How- ever the calculation course of model coupling method is more steady than results coupling method, and its calculating speed is about ten times as much as the maximal speed of results coupling method, which validates its practicability and reliability.展开更多
The aerodynamic design of a rigid-flexible coupling profile is the decisive factor for the flow-field quality of a supersonic free jet wind tunnel nozzle, and its mechanic dynamic features are the key for engineering ...The aerodynamic design of a rigid-flexible coupling profile is the decisive factor for the flow-field quality of a supersonic free jet wind tunnel nozzle, and its mechanic dynamic features are the key for engineering implementation of continuous Mach number regulations. To fulfill the requirements of a free jet inlet/engine compatibility test within a wide simulation envelop, both uniform flow-fields of continuous acceleration and deceleration are necessary. In this paper, the aerodynamic design methods of an expansion wall and machinery implementation plan for the halfflexible single jack nozzle were researched. The profile control in nozzle flexible plate design was studied with a rigid-flexible coupling method. Design and calculations were performed with the help of numerical simulation. The technique of axial free stretching of the flexible plate was used to improve the matching performance between the designed elasticity profile and the theoretical one, and the rigid-flexible coupling structure was calibrated by wind tunnel tests. Results indicate that the flexible plate aerodynamic design method used here is effective and feasible. Via rigidflexible coupling design, the flexible plate agrees with the rigid body very well, and continuous Mach number changes can be achieved during the tests. The nozzle’s exit flow-field uniformity meets the requirements of China Military Standard(GJB).展开更多
In the present research two different whole vehicle multibody models are established respectively, including rigid and rigid-flexible coupling multibody vehicle models. The former is all composed by rigid bodies while...In the present research two different whole vehicle multibody models are established respectively, including rigid and rigid-flexible coupling multibody vehicle models. The former is all composed by rigid bodies while in the later model, the flexible rear suspension is built based on the finite element method (FEM) and mode superposition method, in which the deformations of the components are considered. The ride simulations with different speeds are carried out on a 3D digitalized road, and the weighted root mean square (RMS) of accelerations on the seat surface,backrest and at the feet are calculated. The comparison between the responses of the rigid and rigid-flexible coupling multibody models shows that the flexibility of the vehicle parts significantly affects the accelerations at each position, and it is necessary to take the flexibility effects into account for the assessment of ride comfort. C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi: 10.1063/2.1301304]展开更多
A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms relate...A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed.展开更多
A new electrical method of conductive carbon-film(with waterproof and anticorrosion ability)was proposed to continuously measure crack propagation rate of brittle rock under THMC coupling condition.A self-designed cou...A new electrical method of conductive carbon-film(with waterproof and anticorrosion ability)was proposed to continuously measure crack propagation rate of brittle rock under THMC coupling condition.A self-designed coupling testing system was used to conduct THMC coupling fracture tests of the pre-cracked red sandstone specimens(where the temperature is only changed)by this new electrical method of conductive carbon-film.Calculation results obtained by the energy method coincide well with the test results.And the higher the temperature is,the earlier the crack is initiated and the larger the crack propagation rate and accelerated velocity are,which can prove the validity of the new electrical method.This new electrical method has advantages of continuously measuring crack propagation rate over the conventional electrical,optical and acoustic methods,and can provide important basis for safety assessment and cracking-arrest design of deep rock mass engineering.展开更多
An adaptive finite element-element-free Galerkin (FE-EFG) coupling method is proposed and developed for the numerical simulation of bulk metal forming processes. This approach is able to adaptively convert distorted F...An adaptive finite element-element-free Galerkin (FE-EFG) coupling method is proposed and developed for the numerical simulation of bulk metal forming processes. This approach is able to adaptively convert distorted FE elements to EFG domain in analysis. A new scheme to implement adaptive conversion and coupling is presented. The coupling method takes both advantages of finite element method (FEM) and meshless methods. It is capable of handling large deformations with no need of remeshing procedures, while it is computationally more efficient than those full meshless methods. The effectiveness of the proposed method is demonstrated with the numerical simulations of the bulk metal forming processes including forging and extrusion.展开更多
During the launching stage,hydrodynamic pressure and adapters' reaction loads can influence the vehicle's rigid motion as well as cause its structural vibration,which is a typical rigid-flexible coupling dynam...During the launching stage,hydrodynamic pressure and adapters' reaction loads can influence the vehicle's rigid motion as well as cause its structural vibration,which is a typical rigid-flexible coupling dynamic problem. This paper presents a 2-D rigid-flexible coupling model to calculate the vehicle's dynamic responses in that period.The vehicle was equivalent to a flexure beam with axial deformation. Hybrid coordinate and modal superposition methods were used to describe its large rigid displacement and small deformation. By the second Lagrange equation,the vehicle centroid's displacements,rotational angle and modal coordinates were chosen as generalized coordinates and then the vehicle 's rigid-flexible coupling dynamic equations were obtained. By numerical simulation,the results of vehicle's motion parameters and transverse internal loads were acquired.The calculation results showed that differences of the vehicle's motion parameters between the rigid-flexible coupling model and the rigid body assumption are noticeable and the peak magnitude of the vehicle's transverse internal loads in the rigid-flexible coupling model is higher remarkably than that in the rigid body assumption.展开更多
A loose coupling method is used to solve the electromagnetic tube bulging.ANSYS/EMAG is used to model the time varying electromagnetic field with the discharge current used as excitation,in order to obtain the radial ...A loose coupling method is used to solve the electromagnetic tube bulging.ANSYS/EMAG is used to model the time varying electromagnetic field with the discharge current used as excitation,in order to obtain the radial and axial magnetic pressure acting on the tube,the magnetic pressure is then used as boundary conditions to model the high velocity deformation of tube with DYNAFORM,The radial magnetic pressure on the tube decreases from the center to the tube end,axial magnetic pressure is greater near the location equal to the coil height and slight in the other region.The radial displacement of deformed workpicces is distributed uniformly near the tube center and decreases from the center to the end;Deformation from the location equal to coil height to the tube end is little.This distribution is consistent with the distribution of radial pressure;Effect of the axial magnetic pressure on deformation can be ignored,The calculated results show well agreements with the experimental results.展开更多
One of major difficulties in the implementation of meshfree methods using the mov- ing least square (MLS) approximation, such as element-free Galerkin method (EFG), is the im- position of essential boundary condit...One of major difficulties in the implementation of meshfree methods using the mov- ing least square (MLS) approximation, such as element-free Galerkin method (EFG), is the im- position of essential boundary conditions as the approximations do not pass through the nodal parameter values. Another class of meshfree methods based on the radial basis point interpola- tion can satisfy the essential boundary conditions exactly since its approximation function passes through each node in an influence domain and thus its shape functions possess the properties of delta function. In this paper, a coupled element-free Galerkin(EFG)-radial point interpola- tion method (RPIM) is proposed to enhance their advantages and avoid their disadvantages. Discretized equations of equilibrium are obtained in the RPIM region and the EFG region, respectively. Then a collocation approach is introduced to couple the RPIM and the EFG method. This method satisfies the linear consistency exactly and can maintain the stiffness matrix symmetric. Numerical tests show that this method gives reasonably accurate results consistent with the theory.展开更多
A Coupling Magneto-Electro-Elastic(MEE)Node-based Smoothed Radial Point Interpolation Method(CM-NS-RPIM)was proposed to solve the free vibration and transient responses of Functionally Graded Magneto-Electro-Elastic(F...A Coupling Magneto-Electro-Elastic(MEE)Node-based Smoothed Radial Point Interpolation Method(CM-NS-RPIM)was proposed to solve the free vibration and transient responses of Functionally Graded Magneto-Electro-Elastic(FGMEE)structures.By introducing the modified Newmark method,the displacement,electrical potential and magnetic potential of the structures under transient mechanical loading were obtained.Based on G space theory and the weakened weak(W2)formulation,the equations of the multi-physics coupling problems were derived.Using triangular background elements,the free vibration and transient responses of three numerical examples were studied.Results proved that CM-NS-RPIM performed better than the standard FEM by reducing the overly-stiff of structures.Moreover,CM-NS-RPIM could reduce the number of nodes while guaranteeing the accuracy.Besides,triangular elements could be generated automatically even for complex geometries.Therefore,the effectiveness and validity of CM-NS-RPIM were demonstrated,which were valuable for the design of intelligence devices,such as energy harvesters and sensors.展开更多
The future climate dynamical downscaling method is that output of general circulation models( GCMs) is employed to provide initial conditions,lateral boundary conditions,sea surface temperatures,and initial land surfa...The future climate dynamical downscaling method is that output of general circulation models( GCMs) is employed to provide initial conditions,lateral boundary conditions,sea surface temperatures,and initial land surface conditions to regional climate models( RCMs). There are two methods of downscaling: offline coupling and online coupling. The two kinds of coupling methods are described in detail by coupling the Weather Research and Forecasting model( WRF) with the Institute of Atmospheric Physics of Chinese Academy of Sciences Atmospheric General Circulation Model Version 4. 0( IAP AGCM4. 0) in the study. And the extreme precipitation event over Beijing on July 212012 is simulated by using the two coupling methods. Results show that online coupling method is of great value in improving the model simulation. Furthermore,the data exchange frequency of online coupling has some effect on simulation result.展开更多
Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of ...Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling.展开更多
Na-W-Mn-Zr-S-P/SiO2 catalysts for oxidative coupling of methane (OCM) were prepared by incipient wetness impregnation, sol-gel and mixture slurry methods. The catalyst prepared by mixture slurry method showed the be...Na-W-Mn-Zr-S-P/SiO2 catalysts for oxidative coupling of methane (OCM) were prepared by incipient wetness impregnation, sol-gel and mixture slurry methods. The catalyst prepared by mixture slurry method showed the best catalytic performance among all samples. In addition, the effects of different addition sequences of Na, W, Mn, Zr, S and P on the catalytic performance were studied. The absence of Na before the addition of Mn and Zr in the catalysts preparation depressed the formation of the active phases of Mn2O3 and ZrO2 and decreased the activities of the catalysts significantly.展开更多
In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible plat...In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible platform was performed.Relevant hydrodynamic parameters were obtained using the retardation function method of three-dimensional frequency-domain potential flow theory.The results of the hydrodynamic analysis were highly consistent with the test findings,verifying the accuracy of the multifloating hydrodynamic coupling analysis,and key hydrodynamic parameters were solved for different water depths and the coupling effect.According to the obtained results,the hydrodynamic influence was the largest in shallow waters when the coupling effect was considered.Furthermore,the coupled motion equation combined with viscous damping,fender system,and mooring system was established,and the hydrodynamics,floating body motion,and dynamic response of the fender system were analyzed.Motion analysis revealed good agreement among the surge,sway,and yaw motions of the two floating bodies.However,when the wave period reached 10 s,the motion of the two floating bodies showed severe shock,and a relative motion was also observed.Therefore,excessive constraints should be added between the two floating bodies during construction to ensure construction safety.The numerical analysis and model test results of the semisubmersible platform and HYSY 229 barge at a water depth of 42 m and sea conditions of 0°,45°,and 90° were in good agreement,and the error was less than 5%.The maximum movement of the HYSY 229 barge reached 2.61 m in the sway direction,whereas that of the semisubmersible platform was 2.11 m.During construction,excessive constraints should be added between the two floating bodies to limit their relative movement and ensure construction safety.展开更多
In this paper,we present the applications of Boundary Element Method(BEM) to simulate the electro-mechanical coupling responses of Micro-Electro-Mechanical systems(MEMS). The algorithm is programmed in our research gr...In this paper,we present the applications of Boundary Element Method(BEM) to simulate the electro-mechanical coupling responses of Micro-Electro-Mechanical systems(MEMS). The algorithm is programmed in our research group based on BEM modeling for electrostatics and elastostatics.Good agreement is shown while the simulation results of the pull-in voltages are compared with the theoretical/experimental ones for some examples.展开更多
The influence of the flexible body for the motion of gear transmission system is analyzed and the foundation for a more accurate assessment of gear transmission system is established when it has battle damage faults. ...The influence of the flexible body for the motion of gear transmission system is analyzed and the foundation for a more accurate assessment of gear transmission system is established when it has battle damage faults. By using Pro / E software,the virtual prototype model of gear transmission system in the speed reducer is established,and the rigid model and rigid-flexible coupling model are simulated respectively in ADAMS to obtain the data of gear meshing force. It can be concluded that rigid-flexible coupling model can reflect the real motion better than rigid model by comparing the simulation data of two models.展开更多
Elasto-plastic consolidation is one of the classic coupling questions in geomechanics. To solve this problem, an elasto-plastic constitutive model is derived based on the numerical modeling method. The model is applie...Elasto-plastic consolidation is one of the classic coupling questions in geomechanics. To solve this problem, an elasto-plastic constitutive model is derived based on the numerical modeling method. The model is applied to Blot's consolidation theory. Incremental governing partial differential equations are established using this method. According to the stress path, the decoupling condition of these equations is discussed. Based on these conditions, an incremental diffusion equation and uncoupling governing equations are presented. The method is then applied to numerical analyses of three examples. The results show that (1) the effect of the stress path should be taken into account in the simulation of the soil consolidation question; (2) this decoupling method can predict the evolvement of pore water pressure; (3) the settlement using cam-clay model is less than that using numerical model because of dilatancy.展开更多
In order to present a dynamic analysis method for the rigid-flexible coupled bar linkage system(RFCBLS),the flexible element motion equation was gotten by Lagrange Equation and the rigid element motion equation was go...In order to present a dynamic analysis method for the rigid-flexible coupled bar linkage system(RFCBLS),the flexible element motion equation was gotten by Lagrange Equation and the rigid element motion equation was gotten based on rigid constraint conditions.The multi-body system(MBS) is a complex mechanism and its components have quite different rigidities.If it is considered as a rigid MBS(RMBS) to do its dynamic analysis,elastic deformation's ignorance will lead to inaccurate analysis.If it is considered as a flexible MBS(FMBS) to establish,analyze,and solve the model,quite large system equations make it difficult to solve.The better method is as follows:the complex mechanism system is regarded as a rigid-flexible coupled system(RFCS) to make dynamic characteristic of rigid components be equivalent,system equation is established by FMBS' way,and system equation dimensions are reduced by transition matrices' introduction.A dynamic analysis method for rigid element and flexible element coupling was presented based on the FMBS.The analyzed crank slide-block mechanism results show that the dynamic analysis method for RFCBLS is quick and convenient.展开更多
基金financially supported by the National Key Research and Development Plan(2023YFC2811001)the National Natural Science Foundation of China(42206233)the Taishan Scholars Program(tsqn202312280,tsqn202306297)。
文摘Hydraulic fracturing technology has played an important role in the exploitation of unconventional oil and gas resources,however,its application to gas hydrate reservoirs has been rarely studied.Currently,there is still limited understanding of the propagation and extension of fractures around the wellbore during the fracturing process of horizontal wells in hydrate reservoirs,as well as the stress interference patterns between fractures.This study simulates hydraulic fracturing processes in hydrate reservoirs using a fluidsolid coupling discrete element method(DEM),and analyzes the impacts of hydrate saturation and geological and engineering factors on fracture extension and stress disturbance.The results show that hydraulic fracturing is more effective when hydrate saturation exceeds 30%and that fracture pressure increases with saturation.The increase in horizontal stress differential enhances the directionality of fracture propagation and reduces stress disturbance.The distribution uniformity index(DUI)reveals that injection pressure is directly proportional to the number of main fractures and inversely proportional to fracturing time,with fracturing efficiency depending on the spacing between injection points and the distance between wells.This work may provide reference for the commercial exploitation of natural gas hydrates.
基金Projects (51175162, 50805045) supported by the National Natural Science Foundation of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,China
文摘A mathematical energy coupling model was developed to analyze the light transmission in the keyhole and energy distribution on the keyhole wall.The main characteristics of the model include:1) a prototype of the keyhole and the inverse Bremsstrahlung absorption coefficient in the keyhole plasma are obtained from the experiments;2) instead of using a parallel incident beam,a focused laser beam with real Gaussian intensity distribution is implemented;3) both Fresnel absorption and inverse Bremsstrahlung absorption during multiple reflections are considered.The calculation results show that the distribution of absorbed laser intensity by the keyhole wall is not uniform.The maximum laser energy is absorbed by the bottom of the keyhole,although no rays irradiate directly onto the bottom.According to analysis of beam focusing characteristics,the location of the focal plane plays a more important role in the laser energy absorption by the front wall than by the rear wall.
基金Sponsored by National Science and Technology Support Plan of China (2009AA04Z143)Science and Technology Support Plan of Hebei Province of China (10212101D)Important Natural Science Foundation of Hebei Province of China (E2006001038)
文摘The shape of strip is calculated by iterative method which combines strip plastic deformation model with rolls elastic deformation model through their calculation results, which can be called results coupling method. Be- cause the shape and rolling force distribution are very sensitive to strip thickness transverse distribution% variation, the iterative course is rather unstable and sometimes convergence cannot be achieved. In addition, the calculating speed of results coupling method is low, which restricts its usable range. To solve the problem, a new model cou- pling method is developed, which takes the force distribution between rolls, rolling force distribution and strip's exit transverse displacement distribution as basic unknowns, and integrates strip plastic deformation model and rolls elas- tic deformation model as a unified linear equations through their internal relation, so the iterative calculation between the strip plastic deformation model and rolls elastic deformation model can be avoided. To prove the effectiveness of the model coupling method, two examples are calculated by results coupling method and model coupling method re- spectively. The results of front tension stress, back tension stress, strip^s exit gauge, the force between rolls and rolling force distribution calculated by model coupling method coincide very well with results coupling method. How- ever the calculation course of model coupling method is more steady than results coupling method, and its calculating speed is about ten times as much as the maximal speed of results coupling method, which validates its practicability and reliability.
基金supported by the National Natural Science Foundation of China (Nos. 90916023 and 51176075)
文摘The aerodynamic design of a rigid-flexible coupling profile is the decisive factor for the flow-field quality of a supersonic free jet wind tunnel nozzle, and its mechanic dynamic features are the key for engineering implementation of continuous Mach number regulations. To fulfill the requirements of a free jet inlet/engine compatibility test within a wide simulation envelop, both uniform flow-fields of continuous acceleration and deceleration are necessary. In this paper, the aerodynamic design methods of an expansion wall and machinery implementation plan for the halfflexible single jack nozzle were researched. The profile control in nozzle flexible plate design was studied with a rigid-flexible coupling method. Design and calculations were performed with the help of numerical simulation. The technique of axial free stretching of the flexible plate was used to improve the matching performance between the designed elasticity profile and the theoretical one, and the rigid-flexible coupling structure was calibrated by wind tunnel tests. Results indicate that the flexible plate aerodynamic design method used here is effective and feasible. Via rigidflexible coupling design, the flexible plate agrees with the rigid body very well, and continuous Mach number changes can be achieved during the tests. The nozzle’s exit flow-field uniformity meets the requirements of China Military Standard(GJB).
基金supported by the National Natural Science Foundation of China(51175379)the National Basic Research Program of China(2011CB711200)
文摘In the present research two different whole vehicle multibody models are established respectively, including rigid and rigid-flexible coupling multibody vehicle models. The former is all composed by rigid bodies while in the later model, the flexible rear suspension is built based on the finite element method (FEM) and mode superposition method, in which the deformations of the components are considered. The ride simulations with different speeds are carried out on a 3D digitalized road, and the weighted root mean square (RMS) of accelerations on the seat surface,backrest and at the feet are calculated. The comparison between the responses of the rigid and rigid-flexible coupling multibody models shows that the flexibility of the vehicle parts significantly affects the accelerations at each position, and it is necessary to take the flexibility effects into account for the assessment of ride comfort. C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi: 10.1063/2.1301304]
基金Project(10772113) supported by the National Natural Science Foundation of China
文摘A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed.
基金Projects(51474251,51874351) supported by the National Natural Science Foundation of China
文摘A new electrical method of conductive carbon-film(with waterproof and anticorrosion ability)was proposed to continuously measure crack propagation rate of brittle rock under THMC coupling condition.A self-designed coupling testing system was used to conduct THMC coupling fracture tests of the pre-cracked red sandstone specimens(where the temperature is only changed)by this new electrical method of conductive carbon-film.Calculation results obtained by the energy method coincide well with the test results.And the higher the temperature is,the earlier the crack is initiated and the larger the crack propagation rate and accelerated velocity are,which can prove the validity of the new electrical method.This new electrical method has advantages of continuously measuring crack propagation rate over the conventional electrical,optical and acoustic methods,and can provide important basis for safety assessment and cracking-arrest design of deep rock mass engineering.
基金Project (No. 50575143) supported by the National Natural Science Foundation of China
文摘An adaptive finite element-element-free Galerkin (FE-EFG) coupling method is proposed and developed for the numerical simulation of bulk metal forming processes. This approach is able to adaptively convert distorted FE elements to EFG domain in analysis. A new scheme to implement adaptive conversion and coupling is presented. The coupling method takes both advantages of finite element method (FEM) and meshless methods. It is capable of handling large deformations with no need of remeshing procedures, while it is computationally more efficient than those full meshless methods. The effectiveness of the proposed method is demonstrated with the numerical simulations of the bulk metal forming processes including forging and extrusion.
文摘During the launching stage,hydrodynamic pressure and adapters' reaction loads can influence the vehicle's rigid motion as well as cause its structural vibration,which is a typical rigid-flexible coupling dynamic problem. This paper presents a 2-D rigid-flexible coupling model to calculate the vehicle's dynamic responses in that period.The vehicle was equivalent to a flexure beam with axial deformation. Hybrid coordinate and modal superposition methods were used to describe its large rigid displacement and small deformation. By the second Lagrange equation,the vehicle centroid's displacements,rotational angle and modal coordinates were chosen as generalized coordinates and then the vehicle 's rigid-flexible coupling dynamic equations were obtained. By numerical simulation,the results of vehicle's motion parameters and transverse internal loads were acquired.The calculation results showed that differences of the vehicle's motion parameters between the rigid-flexible coupling model and the rigid body assumption are noticeable and the peak magnitude of the vehicle's transverse internal loads in the rigid-flexible coupling model is higher remarkably than that in the rigid body assumption.
文摘A loose coupling method is used to solve the electromagnetic tube bulging.ANSYS/EMAG is used to model the time varying electromagnetic field with the discharge current used as excitation,in order to obtain the radial and axial magnetic pressure acting on the tube,the magnetic pressure is then used as boundary conditions to model the high velocity deformation of tube with DYNAFORM,The radial magnetic pressure on the tube decreases from the center to the tube end,axial magnetic pressure is greater near the location equal to the coil height and slight in the other region.The radial displacement of deformed workpicces is distributed uniformly near the tube center and decreases from the center to the end;Deformation from the location equal to coil height to the tube end is little.This distribution is consistent with the distribution of radial pressure;Effect of the axial magnetic pressure on deformation can be ignored,The calculated results show well agreements with the experimental results.
基金supported by the National Natural Science Foundation of China (No. 11172192)the College Postgraduate Research and Innovation Project of Jiangsu Province (No. CX10B 029Z)the Nominated Excellent Thesis for PHD Candidates Program of Soochow University (No. 23320957)
文摘One of major difficulties in the implementation of meshfree methods using the mov- ing least square (MLS) approximation, such as element-free Galerkin method (EFG), is the im- position of essential boundary conditions as the approximations do not pass through the nodal parameter values. Another class of meshfree methods based on the radial basis point interpola- tion can satisfy the essential boundary conditions exactly since its approximation function passes through each node in an influence domain and thus its shape functions possess the properties of delta function. In this paper, a coupled element-free Galerkin(EFG)-radial point interpola- tion method (RPIM) is proposed to enhance their advantages and avoid their disadvantages. Discretized equations of equilibrium are obtained in the RPIM region and the EFG region, respectively. Then a collocation approach is introduced to couple the RPIM and the EFG method. This method satisfies the linear consistency exactly and can maintain the stiffness matrix symmetric. Numerical tests show that this method gives reasonably accurate results consistent with the theory.
基金co-supported by the National Key R&D Program of China(Nos.2018YFF01012401-05)the National Natural Science Foundation of China(No.51975243)+2 种基金Jilin Provincial Department of Education(No.JJKH20180084KJ),Chinathe Fundamental Research Funds for the Central Universities and Jilin Provincial Department of Science&Technology Fund Project,China(Nos.20170101043JC and 20180520072JH)Graduate Innovation Fund of Jilin University,China(No.101832018C184).
文摘A Coupling Magneto-Electro-Elastic(MEE)Node-based Smoothed Radial Point Interpolation Method(CM-NS-RPIM)was proposed to solve the free vibration and transient responses of Functionally Graded Magneto-Electro-Elastic(FGMEE)structures.By introducing the modified Newmark method,the displacement,electrical potential and magnetic potential of the structures under transient mechanical loading were obtained.Based on G space theory and the weakened weak(W2)formulation,the equations of the multi-physics coupling problems were derived.Using triangular background elements,the free vibration and transient responses of three numerical examples were studied.Results proved that CM-NS-RPIM performed better than the standard FEM by reducing the overly-stiff of structures.Moreover,CM-NS-RPIM could reduce the number of nodes while guaranteeing the accuracy.Besides,triangular elements could be generated automatically even for complex geometries.Therefore,the effectiveness and validity of CM-NS-RPIM were demonstrated,which were valuable for the design of intelligence devices,such as energy harvesters and sensors.
基金Supported by the National Natural Science Foundation of China(No.61602477)China Postdoctoral Science Foundation(No.2016M601158)National Key Research and Development Program of China(No.2016YFB0200804)
文摘The future climate dynamical downscaling method is that output of general circulation models( GCMs) is employed to provide initial conditions,lateral boundary conditions,sea surface temperatures,and initial land surface conditions to regional climate models( RCMs). There are two methods of downscaling: offline coupling and online coupling. The two kinds of coupling methods are described in detail by coupling the Weather Research and Forecasting model( WRF) with the Institute of Atmospheric Physics of Chinese Academy of Sciences Atmospheric General Circulation Model Version 4. 0( IAP AGCM4. 0) in the study. And the extreme precipitation event over Beijing on July 212012 is simulated by using the two coupling methods. Results show that online coupling method is of great value in improving the model simulation. Furthermore,the data exchange frequency of online coupling has some effect on simulation result.
基金This work was supported by the National Natural Science Foundation of China(No.52172409)Sichuan Outstanding Youth Fund(No.2022JDJQ0025).
文摘Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling.
基金supported by the financial support from National Natural Science Foundation of China (20676116)
文摘Na-W-Mn-Zr-S-P/SiO2 catalysts for oxidative coupling of methane (OCM) were prepared by incipient wetness impregnation, sol-gel and mixture slurry methods. The catalyst prepared by mixture slurry method showed the best catalytic performance among all samples. In addition, the effects of different addition sequences of Na, W, Mn, Zr, S and P on the catalytic performance were studied. The absence of Na before the addition of Mn and Zr in the catalysts preparation depressed the formation of the active phases of Mn2O3 and ZrO2 and decreased the activities of the catalysts significantly.
基金the National Natural Science Foundation of China(No.U20A20328).
文摘In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible platform was performed.Relevant hydrodynamic parameters were obtained using the retardation function method of three-dimensional frequency-domain potential flow theory.The results of the hydrodynamic analysis were highly consistent with the test findings,verifying the accuracy of the multifloating hydrodynamic coupling analysis,and key hydrodynamic parameters were solved for different water depths and the coupling effect.According to the obtained results,the hydrodynamic influence was the largest in shallow waters when the coupling effect was considered.Furthermore,the coupled motion equation combined with viscous damping,fender system,and mooring system was established,and the hydrodynamics,floating body motion,and dynamic response of the fender system were analyzed.Motion analysis revealed good agreement among the surge,sway,and yaw motions of the two floating bodies.However,when the wave period reached 10 s,the motion of the two floating bodies showed severe shock,and a relative motion was also observed.Therefore,excessive constraints should be added between the two floating bodies during construction to ensure construction safety.The numerical analysis and model test results of the semisubmersible platform and HYSY 229 barge at a water depth of 42 m and sea conditions of 0°,45°,and 90° were in good agreement,and the error was less than 5%.The maximum movement of the HYSY 229 barge reached 2.61 m in the sway direction,whereas that of the semisubmersible platform was 2.11 m.During construction,excessive constraints should be added between the two floating bodies to limit their relative movement and ensure construction safety.
基金The project supported by the 973 Program (G1999033108)the National Natural Science Foundation of China (10125211)
文摘In this paper,we present the applications of Boundary Element Method(BEM) to simulate the electro-mechanical coupling responses of Micro-Electro-Mechanical systems(MEMS). The algorithm is programmed in our research group based on BEM modeling for electrostatics and elastostatics.Good agreement is shown while the simulation results of the pull-in voltages are compared with the theoretical/experimental ones for some examples.
文摘The influence of the flexible body for the motion of gear transmission system is analyzed and the foundation for a more accurate assessment of gear transmission system is established when it has battle damage faults. By using Pro / E software,the virtual prototype model of gear transmission system in the speed reducer is established,and the rigid model and rigid-flexible coupling model are simulated respectively in ADAMS to obtain the data of gear meshing force. It can be concluded that rigid-flexible coupling model can reflect the real motion better than rigid model by comparing the simulation data of two models.
文摘Elasto-plastic consolidation is one of the classic coupling questions in geomechanics. To solve this problem, an elasto-plastic constitutive model is derived based on the numerical modeling method. The model is applied to Blot's consolidation theory. Incremental governing partial differential equations are established using this method. According to the stress path, the decoupling condition of these equations is discussed. Based on these conditions, an incremental diffusion equation and uncoupling governing equations are presented. The method is then applied to numerical analyses of three examples. The results show that (1) the effect of the stress path should be taken into account in the simulation of the soil consolidation question; (2) this decoupling method can predict the evolvement of pore water pressure; (3) the settlement using cam-clay model is less than that using numerical model because of dilatancy.
基金Key Laboratory of Fundamental Science for National Defense,China(No. HIT. KLOF. 2009058)
文摘In order to present a dynamic analysis method for the rigid-flexible coupled bar linkage system(RFCBLS),the flexible element motion equation was gotten by Lagrange Equation and the rigid element motion equation was gotten based on rigid constraint conditions.The multi-body system(MBS) is a complex mechanism and its components have quite different rigidities.If it is considered as a rigid MBS(RMBS) to do its dynamic analysis,elastic deformation's ignorance will lead to inaccurate analysis.If it is considered as a flexible MBS(FMBS) to establish,analyze,and solve the model,quite large system equations make it difficult to solve.The better method is as follows:the complex mechanism system is regarded as a rigid-flexible coupled system(RFCS) to make dynamic characteristic of rigid components be equivalent,system equation is established by FMBS' way,and system equation dimensions are reduced by transition matrices' introduction.A dynamic analysis method for rigid element and flexible element coupling was presented based on the FMBS.The analyzed crank slide-block mechanism results show that the dynamic analysis method for RFCBLS is quick and convenient.