This work reviews models and methods for determining the dynamic response of pavements to moving vehicle loads in the framework of continuum-based three dimensional models and linear theories.This review emphasizes th...This work reviews models and methods for determining the dynamic response of pavements to moving vehicle loads in the framework of continuum-based three dimensional models and linear theories.This review emphasizes the most representative models and methods of analysis in the existing literature and illustrates all of them by numerical examples.Thus,13 such examples are presented here in some detail.Both flexible and rigid(concrete)pavement models involving simple and elaborate cases with respect to geometry and material behavior are considered.Thus,homogeneous or layered half-spaces with isotropic or cross-anisotropic and elastic,viscoelastic or poroelastic properties are considered.The vehicles are modeled as simple point or distributed loads or discrete spring-mass-dashpot system moving with constant or variable velocity.The dynamic response of the above pavement-vehicle systems is obtained by analytical/numerical or purely numerical methods of solution.Analytical/numerical methods have mainly to do with Fourier transforms or complex Fourier series with respect to both space and time.Purely numerical methods involve the finite element method(FEM)and the boundary element method(BEM)working in time or frequency domain.Critical discussions on the advantages and disadvantages of the various pavement-vehicle models and their methods of analysis are provided and the effects of the main parameters on the pavement response are determined through parametric studies and presented in the examples.Finally,conclusions are provided and suggestions for future research are made.展开更多
A theoretical study is presented herein on the pen- etration of a semi-infinite target by a spherical-headed long rod for Yp 〉 S, where Yp is the penetrator strength and S is the static target resistance. For Yp 〉 S...A theoretical study is presented herein on the pen- etration of a semi-infinite target by a spherical-headed long rod for Yp 〉 S, where Yp is the penetrator strength and S is the static target resistance. For Yp 〉 S, depending upon initial impact velocity, there exist three types of penetration, namely, penetration by a rigid long rod, penetration by a deforming non-erosive long rod and penetration by an erosive long rod. If the impact velocity of the penetrator is higher than the hydrodynamic velocity (VH), it will penetrate the target in an erosive mode; if the impact velocity lies between the hydrodynamic velocity (VH) and the rigid body velocity (VR), it will penetrate the target in a deformable mode; if the impact velocity is less than the rigid body velocity (VR), it will penetrate the target in a rigid mode. The critical conditions for the transition among these three penetration modes are proposed. It is demonstrated that the present model predictions correlate well with the experimental observations in terms of depth of penetration (DOP) and the critical transition conditions.展开更多
This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to ...This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to experimentally investigate the hysteretic behavior of six different types of rigid bus-flexible connectors 220 kV electrical substations when subjected to cyclic loading.Another objective is to theoretically study the flexibility and effectiveness of a previously proposed analytical model in fitting the experimental hysteresis loops of the tested rigid bus-flexible connectors.The experimental investigation indicates that the tested rigid bus-flexible connectors exhibit highly asymmetric hysteresis behavior along with tension stiffening effect.The theoretical study demonstrates that the generalized Bouc-Wen model has high flexibility and is effective in fitting the experimental hysteresis resisting force-displacement curves of the six tested rigid bus-flexible connectors.展开更多
This paper focuses on the prediction of the safe autorotation landing operations of a helicopter following engine failure.The autorotation landing procedure is formulated as a nonlinear optimal control problem based o...This paper focuses on the prediction of the safe autorotation landing operations of a helicopter following engine failure.The autorotation landing procedure is formulated as a nonlinear optimal control problem based on an augmented six-degree-of-freedom rigid-body flight dynamic model.First,the cost function and constraints are properly selected.The direct transcription approach is then employed to solve the optimal control problem.For a UH-60 helicopter,the optimal solutions with the rigid-body model are compared with those obtained using a two-dimensional point-mass model.It is found that the optimal solutions using the two different models show reasonably good agreement,and furthermore the optimal solutions using the rigid-body model involve the time histories of angular rates and attitudes,lateral velocity and position,as well as pitch controls.Finally the optimal control formulations with different cost functions are proposed for taking account of 1-s time delay and minimum touchdown speed.The calculated control strategies and trajectories are realistic.展开更多
Based on the assumption that the slope bodies are rigid, the dynamic model of the landsiding (forward model) was put forward. According to the dynamic model, the system equations of Kalman filter were constituted. The...Based on the assumption that the slope bodies are rigid, the dynamic model of the landsiding (forward model) was put forward. According to the dynamic model, the system equations of Kalman filter were constituted. The mechanical status of a slope was hence combined with the monitoring data by Kalman filter. The model uncertainties or model errors could also be considered through some fictitious observation equations. Different from existed methods, the presented method can make use for not only the statistic information contained in the data but also the information provided by the mechanical and geological aspect of slopes. At last a numerical example was given out to show the feasibility of the method. [展开更多
The state of deep mine rigid shaft fUrniture horizontal force calculation in China is introduced and the calculating model of horizontal force is determined. Based on the interaction between hoisting vessel and shaft ...The state of deep mine rigid shaft fUrniture horizontal force calculation in China is introduced and the calculating model of horizontal force is determined. Based on the interaction between hoisting vessel and shaft furniture, the vertical mobel test device is built and a large number of model tests and analyses are carried out. At last, the relationship between horizontal force and hoisting end load, hoisting speed or bunton level interval is gained. The three parameters horizontal force calculating equation of beep mine rigid shaft furniture is given and it can guide the design and calculation of shaft engineering.展开更多
Energies of the yrast positive-and negative-parity excited states in140 Xe are reproduced by two different models considering quadrupole-octupole deformations, namely the axial vibrational-rotational model and the tri...Energies of the yrast positive-and negative-parity excited states in140 Xe are reproduced by two different models considering quadrupole-octupole deformations, namely the axial vibrational-rotational model and the triaxial rigid rotor model, and compared with the stable octupole-deformed222 Th. The origin of the energy difference between the opposite parity sequences is considered from two different mechanisms, the vibration in axial deformed energy minima and the rotation considering the effective triaxial deformation. The success of reproducing the data in both the models implies that these two mechanisms are equivalent on some level for the octupole-soft nuclei. By investigating the probability distributions for projection of total angular momentum in the triaxial rigid rotor model, it is found that such an energy difference is associated with the difference of orientation of the rotational axis.展开更多
In this paper we compute general-relativistic polytropic models simulating rigidly rotating, pulsating neutron stars. These relativistic compact objects, with a radius of ~10 km and mass between ~1.4 and 3.2 solar mas...In this paper we compute general-relativistic polytropic models simulating rigidly rotating, pulsating neutron stars. These relativistic compact objects, with a radius of ~10 km and mass between ~1.4 and 3.2 solar masses, are closely related to pulsars. We emphasize on computing the change in the pulsation eigenfrequencies owing to a rigid rotation, which, in turn, is a decisive issue for studying stability of such objects. In our computations, we keep rotational perturbation terms of up to second order in the angular velocity.展开更多
Based on Maxwell’s constraint counting theory, rigidity percolation in GexSe1-x glasses occurs when the mean coordination number reaches the value of 2.4. This corresponds to Ge0.20Se0.80 glass. At this composition, ...Based on Maxwell’s constraint counting theory, rigidity percolation in GexSe1-x glasses occurs when the mean coordination number reaches the value of 2.4. This corresponds to Ge0.20Se0.80 glass. At this composition, the number of constraints experienced by an atom equals the number of degrees of freedom in three dimensions. Hence, at this composition, the network changes from a floppy phase to a rigid phase, and rigidity starts to percolate. In this work, we use reverse Monte Carlo (RMC) modeling to model the structure of Ge0.20Se0.80 glass by simulating its experimental total atomic pair distribution function (PDF) obtained via high energy synchrotron radiation. A three-dimensional configuration of 2836 atoms was obtained, from which we extracted the partial atomic pair distribution functions associated with Ge-Ge, Ge-Se and Se-Se real space correlations that are hard to extract experimentally from total scattering methods. Bond angle distributions, coordination numbers, mean coordination numbers and the number of floppy modes were also extracted and discussed. More structural insights about network topology at this composition were illustrated. The results indicate that in Ge0.20Se0.80 glass, Ge atoms break up and cross-link the Se chain structure, and form structural units that are four-fold coordinated (the GeSe4 tetrahedra). These tetrahedra form the basic building block and are connected via shared Se atoms or short Se chains. The extent of the intermediate ranged oscillations in real space (as extracted from the width of the first sharp diffraction peak) was found to be around 19.6 ?. The bonding schemes in this glass are consistent with the so-called “8-N” rule and can be interpreted in terms of a chemically ordered network model.展开更多
The paper builds a multi-rigid-body model of human with a 4-rigid-body foot in the 3D CAD software Solidworks, based on human anatomy. By controlling the rotation of the ankle and major joints of human body while walk...The paper builds a multi-rigid-body model of human with a 4-rigid-body foot in the 3D CAD software Solidworks, based on human anatomy. By controlling the rotation of the ankle and major joints of human body while walking, the Kinematic simulation was performed in the dynamics simulation software ADAMS. The paper analyzes the simulate results and points out deficiencies in the current work and the direction of research efforts in future.展开更多
The dynamics of a coupled rigid-flexible rocket launcher is reported. The coupled rigid-flexible rocket launcher is divided into two subsystems, one is a system of rigid bodies, the other a flexible launch tube which ...The dynamics of a coupled rigid-flexible rocket launcher is reported. The coupled rigid-flexible rocket launcher is divided into two subsystems, one is a system of rigid bodies, the other a flexible launch tube which can undergo large overall motions spatially. First, the mathematical models for these two subsystems were established respectively. Then the dynamic model for the whole system was obtained by considering the coupling effect between these two subsystems. The approach, which divides a complex system into several simple subsystems first and then obtains the dynamic model for the whole system via combining the existing dynamic models for simple subsystems, can make the modeling procedure efficient and convenient.展开更多
Semi-rigid liquid crystal polymer is a class of liquid crystal polymers different from long rigid rod liquid crystal polymer to which the well-known Onsager and Flory theories are applied. In this paper, three statist...Semi-rigid liquid crystal polymer is a class of liquid crystal polymers different from long rigid rod liquid crystal polymer to which the well-known Onsager and Flory theories are applied. In this paper, three statistical models for the semi-rigid nematic polymer were addressed. They are the elastically jointed rod model, worm-like chain model, and non-homogeneous chain model. The nematic-isotropic transition temperature was examined. The pseudo-second transition temperature is expressed analytically. Comparisons with the experiments were made and the agreements were found.展开更多
In 3D models retrieval, feature description and retrieval of non-rigid model face more complex problems due to the isometry transformation of itself. We introduce the hierarchical combination matching into the feature...In 3D models retrieval, feature description and retrieval of non-rigid model face more complex problems due to the isometry transformation of itself. We introduce the hierarchical combination matching into the feature comparison, and build a map between the divided regions of two models, and then achieve accurate feature matching based on patch-by-patch, which successfully introduces the spatial information into feature matching. Verified by experiment, the 3D model retrieval method proposed in this paper based on hierarchical combination matching can make sure more accurate feature matching, so as to enhance the precision of retrieval.展开更多
This paper aims to reveal the depth distribution law of non-limit passive soil pressure on rigid retaining wall that rotates about the top of the wall(rotation around the top(RT) model). Based on Coulomb theory, the d...This paper aims to reveal the depth distribution law of non-limit passive soil pressure on rigid retaining wall that rotates about the top of the wall(rotation around the top(RT) model). Based on Coulomb theory, the disturbance degree theory, as well as the spring-element model, by setting the rotation angle of the wall as the disturbance parameter, we establish both a depth distribution function for sand and a nonlinear depth distribution calculation method for the non-limit passive soil pressure on a rigid retaining wall under the RT model, which is then compared with experiment. The results suggest that under the RT model: the non-limit soil pressure has a nonlinear distribution; the backfill disturbance degree and the lateral soil pressure increase with an increase in the wall rotation angle; and, the points where the resultant lateral soil pressure acts on the retaining wall are less than 2/3 of the height of the wall. The soil pressure predicted by the theoretical calculation put forward in this paper are quite similar to those obtained by the model experiment, which verifies the theoretical value, and the engineering guidance provided by the calculations are of significance.展开更多
High-speed axial piston pumps are hydraulic power supplies for electro-hydrostatic actuators(EHAs). The efficiency of a pump directly affects the operating performance of an EHA, and an understanding of the physical p...High-speed axial piston pumps are hydraulic power supplies for electro-hydrostatic actuators(EHAs). The efficiency of a pump directly affects the operating performance of an EHA, and an understanding of the physical phenomena occurring in the cylinder/valve plate interface is essential to investigate energy dissipation. The effects of the splined shaft bending rigidity on the cylinder tilt behaviour in an EHA pump need to be considered, because the deflection and radial expansion of a steel shaft rotating at a high speed cannot be ignored. This paper proposes a new mathematical model to predict the cylinder tilt behaviour by establishing a quantitative relationship between the splined shaft deflection, the cylinder tilt angle, and the tilt azimuth angle. The moments exerted by the splined shaft are included in the equilibrium equation of the cylinder. The effects of solid and hollow splined shafts equipped in an EHA pump prototype are compared at variable speeds of 5000–10,000 r/min. With a weight saving of 29.7%, the hollow shaft is experimentally found to have almost no influence on the volumetric efficiency, but to reduce the mechanical efficiency by 0.6–2.4%. The results agree with the trivial differences of the simulated central gap heights of the interface between the two shafts and the enlargement of the simulated tilt angles by the hollow shaft. The findings could guide designs of the cylinder/valve plate interface and the splined shaft to improve both the efficiency and power density of an EHA pump.展开更多
The present paper aims to reveal the significance of rigid-body motions for the flutter mechanism of a span-morphing wing model. The inclusion of rigid-body motions into aeroelastic formulation and flutter analysis is...The present paper aims to reveal the significance of rigid-body motions for the flutter mechanism of a span-morphing wing model. The inclusion of rigid-body motions into aeroelastic formulation and flutter analysis is presented. A state-space aeroelastic equation combining the dynamics of stepped Euler-Bernoulli beam with unsteady strip aerodynamic theory is developed by quasi-static modeling. Using a numerical example, variations of flutter mechanism from the bending-torsional flutter to the body-freedom flutter are observed as the span increases. In addition,effects of some dimensionless parameters on the variations of flutter mechanism are investigated.The investigated parameters belonging to the fuselage have limited influences on the bendingtorsional flutter but a significant impact on the body-freedom flutter.展开更多
A unilateral non-penetration constraint dynamical simulation model withfriction is constructed based on compliant model for mechanical system VP (virtual prototyping)simulation. This model combines computer graphics w...A unilateral non-penetration constraint dynamical simulation model withfriction is constructed based on compliant model for mechanical system VP (virtual prototyping)simulation. This model combines computer graphics with multi-body system dynamics. It avoidshandling multiplicity of solution, such as cases of no solution, multi-solution brought about byfriction during traditional construction of non-penetration constraint based on rigid model. At thesame time, the realism of VE (virtual environment) is improved in process of simulation.Furthermore, the valid condition of rolling and sliding unilateral contact is constituted based onsingular perturbation and linear complementary theory. Finally, the compliant method is verified byan interaction between a multi-legged robot and VE.展开更多
For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy...For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy, different analytical models have been proposed for the velocity profile in the two layers. This paper evaluates the four analytical models of Klopstra et al., Defina & Bixio, Yang et al. and Nepf against a wide range of independent experimental data available in the literature. To test the applicability and robust of the models, the author used the 19 datasets with various relative depths of submergence, different vegetation densities and bed slopes (1.8 × 10?6 - 4.0 × 10?3). This study shows that none of the models can predict the velocity profiles well for all datasets. The three models except Yang’s model performed reasonably well in certain cases, but Yang’s model failed in most the cases studied. It was also found that the Defina model is almost the same as the Klopstra model, if the same mixing length scale of eddies (λ) is used. Finally, close examination of the mixing length scale of eddies (λ) in the Defina model showed that when λ/h = 1/40(H/h)1/2, this model can predict velocity profiles well for all the datasets used.展开更多
Assessment of the magnitude and pattern of wall shear stress(WSS)in vivo is the prerequisite for studying the quantitative relationship between exercise-induced WSS and arterial endothelial function.In the previous st...Assessment of the magnitude and pattern of wall shear stress(WSS)in vivo is the prerequisite for studying the quantitative relationship between exercise-induced WSS and arterial endothelial function.In the previous studies,the calculation of the WSS modulated by exercise training was primarily based upon the rigid tube model,which did not take non-linear effects of vessel elastic deformation into consideration.In this study,with an elastic tube model,we estimated the effect of a bout of 30-minute acute cycling exercise on the WSS and the flow rate in the common carotid artery according to the measured inner diameter,center-line blood flow velocity,heart rates and the brachial blood pressures before and after exercise training.Furthermore,the roles of exerciseinduced arterial diameter and blood flow rate in the change of WSS were also determined.The numerical results demonstrate that acute exercise significantly increases the magnitudes of blood flow rate and WSS.Moreover,the vessel elastic deformation is a non-negligible factor in the calculation of the WSS induced by exercise,which generates greater effects on the minimum WSS than the maximum WSS.Additionally,the contributions of exercise-induced variations in blood flow rate and diameter are almost identical in the change of the mean WSS.展开更多
With the development of deepwater oil and gas exploration, Steel Catenary Risers(SCRs) become preferred risers for resource production, import and export. Vortex induced vibration(VIV) is the key problem encountered i...With the development of deepwater oil and gas exploration, Steel Catenary Risers(SCRs) become preferred risers for resource production, import and export. Vortex induced vibration(VIV) is the key problem encountered in the design of SCRs. In this study, a new model, the rigid swing model, is proposed based on the consideration of large curvature of SCRs. The sag bend of SCRs is assumed as a rigid swing system around the axis from the hanging point to the touch down point(TDP) in the model. The torque, produced by the lift force and the swing vector, provides the driving torque for the swing system, and the weight of SCRs provides the restoring torque. The simulated response of rigid swing is coupled with bending vibration, and then the coupling VIV model of SCRs is studied in consideration of bending vibration and rigid motion. The calculated results indicate that the rigid swing has a magnitude equal to that of bending vibration, and the rigid motion affects the dynamic response of SCRs and can not be neglected in the VIV analysis.展开更多
文摘This work reviews models and methods for determining the dynamic response of pavements to moving vehicle loads in the framework of continuum-based three dimensional models and linear theories.This review emphasizes the most representative models and methods of analysis in the existing literature and illustrates all of them by numerical examples.Thus,13 such examples are presented here in some detail.Both flexible and rigid(concrete)pavement models involving simple and elaborate cases with respect to geometry and material behavior are considered.Thus,homogeneous or layered half-spaces with isotropic or cross-anisotropic and elastic,viscoelastic or poroelastic properties are considered.The vehicles are modeled as simple point or distributed loads or discrete spring-mass-dashpot system moving with constant or variable velocity.The dynamic response of the above pavement-vehicle systems is obtained by analytical/numerical or purely numerical methods of solution.Analytical/numerical methods have mainly to do with Fourier transforms or complex Fourier series with respect to both space and time.Purely numerical methods involve the finite element method(FEM)and the boundary element method(BEM)working in time or frequency domain.Critical discussions on the advantages and disadvantages of the various pavement-vehicle models and their methods of analysis are provided and the effects of the main parameters on the pavement response are determined through parametric studies and presented in the examples.Finally,conclusions are provided and suggestions for future research are made.
基金supported by the National Natural Science Foundation of China (10872195)
文摘A theoretical study is presented herein on the pen- etration of a semi-infinite target by a spherical-headed long rod for Yp 〉 S, where Yp is the penetrator strength and S is the static target resistance. For Yp 〉 S, depending upon initial impact velocity, there exist three types of penetration, namely, penetration by a rigid long rod, penetration by a deforming non-erosive long rod and penetration by an erosive long rod. If the impact velocity of the penetrator is higher than the hydrodynamic velocity (VH), it will penetrate the target in an erosive mode; if the impact velocity lies between the hydrodynamic velocity (VH) and the rigid body velocity (VR), it will penetrate the target in a deformable mode; if the impact velocity is less than the rigid body velocity (VR), it will penetrate the target in a rigid mode. The critical conditions for the transition among these three penetration modes are proposed. It is demonstrated that the present model predictions correlate well with the experimental observations in terms of depth of penetration (DOP) and the critical transition conditions.
基金National Natural Science Foundation of China under Grant No.51978397。
文摘This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to experimentally investigate the hysteretic behavior of six different types of rigid bus-flexible connectors 220 kV electrical substations when subjected to cyclic loading.Another objective is to theoretically study the flexibility and effectiveness of a previously proposed analytical model in fitting the experimental hysteresis loops of the tested rigid bus-flexible connectors.The experimental investigation indicates that the tested rigid bus-flexible connectors exhibit highly asymmetric hysteresis behavior along with tension stiffening effect.The theoretical study demonstrates that the generalized Bouc-Wen model has high flexibility and is effective in fitting the experimental hysteresis resisting force-displacement curves of the six tested rigid bus-flexible connectors.
文摘This paper focuses on the prediction of the safe autorotation landing operations of a helicopter following engine failure.The autorotation landing procedure is formulated as a nonlinear optimal control problem based on an augmented six-degree-of-freedom rigid-body flight dynamic model.First,the cost function and constraints are properly selected.The direct transcription approach is then employed to solve the optimal control problem.For a UH-60 helicopter,the optimal solutions with the rigid-body model are compared with those obtained using a two-dimensional point-mass model.It is found that the optimal solutions using the two different models show reasonably good agreement,and furthermore the optimal solutions using the rigid-body model involve the time histories of angular rates and attitudes,lateral velocity and position,as well as pitch controls.Finally the optimal control formulations with different cost functions are proposed for taking account of 1-s time delay and minimum touchdown speed.The calculated control strategies and trajectories are realistic.
文摘Based on the assumption that the slope bodies are rigid, the dynamic model of the landsiding (forward model) was put forward. According to the dynamic model, the system equations of Kalman filter were constituted. The mechanical status of a slope was hence combined with the monitoring data by Kalman filter. The model uncertainties or model errors could also be considered through some fictitious observation equations. Different from existed methods, the presented method can make use for not only the statistic information contained in the data but also the information provided by the mechanical and geological aspect of slopes. At last a numerical example was given out to show the feasibility of the method. [
文摘The state of deep mine rigid shaft fUrniture horizontal force calculation in China is introduced and the calculating model of horizontal force is determined. Based on the interaction between hoisting vessel and shaft furniture, the vertical mobel test device is built and a large number of model tests and analyses are carried out. At last, the relationship between horizontal force and hoisting end load, hoisting speed or bunton level interval is gained. The three parameters horizontal force calculating equation of beep mine rigid shaft furniture is given and it can guide the design and calculation of shaft engineering.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11675094 and 11622540the Young Scholars Program of Shandong University under Grant No 2015WHWLJH01
文摘Energies of the yrast positive-and negative-parity excited states in140 Xe are reproduced by two different models considering quadrupole-octupole deformations, namely the axial vibrational-rotational model and the triaxial rigid rotor model, and compared with the stable octupole-deformed222 Th. The origin of the energy difference between the opposite parity sequences is considered from two different mechanisms, the vibration in axial deformed energy minima and the rotation considering the effective triaxial deformation. The success of reproducing the data in both the models implies that these two mechanisms are equivalent on some level for the octupole-soft nuclei. By investigating the probability distributions for projection of total angular momentum in the triaxial rigid rotor model, it is found that such an energy difference is associated with the difference of orientation of the rotational axis.
文摘In this paper we compute general-relativistic polytropic models simulating rigidly rotating, pulsating neutron stars. These relativistic compact objects, with a radius of ~10 km and mass between ~1.4 and 3.2 solar masses, are closely related to pulsars. We emphasize on computing the change in the pulsation eigenfrequencies owing to a rigid rotation, which, in turn, is a decisive issue for studying stability of such objects. In our computations, we keep rotational perturbation terms of up to second order in the angular velocity.
文摘Based on Maxwell’s constraint counting theory, rigidity percolation in GexSe1-x glasses occurs when the mean coordination number reaches the value of 2.4. This corresponds to Ge0.20Se0.80 glass. At this composition, the number of constraints experienced by an atom equals the number of degrees of freedom in three dimensions. Hence, at this composition, the network changes from a floppy phase to a rigid phase, and rigidity starts to percolate. In this work, we use reverse Monte Carlo (RMC) modeling to model the structure of Ge0.20Se0.80 glass by simulating its experimental total atomic pair distribution function (PDF) obtained via high energy synchrotron radiation. A three-dimensional configuration of 2836 atoms was obtained, from which we extracted the partial atomic pair distribution functions associated with Ge-Ge, Ge-Se and Se-Se real space correlations that are hard to extract experimentally from total scattering methods. Bond angle distributions, coordination numbers, mean coordination numbers and the number of floppy modes were also extracted and discussed. More structural insights about network topology at this composition were illustrated. The results indicate that in Ge0.20Se0.80 glass, Ge atoms break up and cross-link the Se chain structure, and form structural units that are four-fold coordinated (the GeSe4 tetrahedra). These tetrahedra form the basic building block and are connected via shared Se atoms or short Se chains. The extent of the intermediate ranged oscillations in real space (as extracted from the width of the first sharp diffraction peak) was found to be around 19.6 ?. The bonding schemes in this glass are consistent with the so-called “8-N” rule and can be interpreted in terms of a chemically ordered network model.
文摘The paper builds a multi-rigid-body model of human with a 4-rigid-body foot in the 3D CAD software Solidworks, based on human anatomy. By controlling the rotation of the ankle and major joints of human body while walking, the Kinematic simulation was performed in the dynamics simulation software ADAMS. The paper analyzes the simulate results and points out deficiencies in the current work and the direction of research efforts in future.
文摘The dynamics of a coupled rigid-flexible rocket launcher is reported. The coupled rigid-flexible rocket launcher is divided into two subsystems, one is a system of rigid bodies, the other a flexible launch tube which can undergo large overall motions spatially. First, the mathematical models for these two subsystems were established respectively. Then the dynamic model for the whole system was obtained by considering the coupling effect between these two subsystems. The approach, which divides a complex system into several simple subsystems first and then obtains the dynamic model for the whole system via combining the existing dynamic models for simple subsystems, can make the modeling procedure efficient and convenient.
基金The work was supported by the Foundation of State Education Committee of China
文摘Semi-rigid liquid crystal polymer is a class of liquid crystal polymers different from long rigid rod liquid crystal polymer to which the well-known Onsager and Flory theories are applied. In this paper, three statistical models for the semi-rigid nematic polymer were addressed. They are the elastically jointed rod model, worm-like chain model, and non-homogeneous chain model. The nematic-isotropic transition temperature was examined. The pseudo-second transition temperature is expressed analytically. Comparisons with the experiments were made and the agreements were found.
基金Supported by National Nature Science Foundation of China(61379106,61379082,61227802)Shandong Provincial Natural Science Foundation(ZR2013FM036,ZR2015FM011,ZR2015FM022)
文摘In 3D models retrieval, feature description and retrieval of non-rigid model face more complex problems due to the isometry transformation of itself. We introduce the hierarchical combination matching into the feature comparison, and build a map between the divided regions of two models, and then achieve accurate feature matching based on patch-by-patch, which successfully introduces the spatial information into feature matching. Verified by experiment, the 3D model retrieval method proposed in this paper based on hierarchical combination matching can make sure more accurate feature matching, so as to enhance the precision of retrieval.
基金financially supported by the National Natural Science Foundation of China (No.51274192)Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Engineering Open Foundation of China (No.JSKL2014K12)Jiangsu Ordinary University Graduate Students Research and Innovation Project of China (No.KYLX-1392)
文摘This paper aims to reveal the depth distribution law of non-limit passive soil pressure on rigid retaining wall that rotates about the top of the wall(rotation around the top(RT) model). Based on Coulomb theory, the disturbance degree theory, as well as the spring-element model, by setting the rotation angle of the wall as the disturbance parameter, we establish both a depth distribution function for sand and a nonlinear depth distribution calculation method for the non-limit passive soil pressure on a rigid retaining wall under the RT model, which is then compared with experiment. The results suggest that under the RT model: the non-limit soil pressure has a nonlinear distribution; the backfill disturbance degree and the lateral soil pressure increase with an increase in the wall rotation angle; and, the points where the resultant lateral soil pressure acts on the retaining wall are less than 2/3 of the height of the wall. The soil pressure predicted by the theoretical calculation put forward in this paper are quite similar to those obtained by the model experiment, which verifies the theoretical value, and the engineering guidance provided by the calculations are of significance.
基金the financial supports received from the National Basic Research Program of China (973 Program) (No. 2014CB046403)the National Natural Science Foundation of China (Nos. U1509204 and 51605425)
文摘High-speed axial piston pumps are hydraulic power supplies for electro-hydrostatic actuators(EHAs). The efficiency of a pump directly affects the operating performance of an EHA, and an understanding of the physical phenomena occurring in the cylinder/valve plate interface is essential to investigate energy dissipation. The effects of the splined shaft bending rigidity on the cylinder tilt behaviour in an EHA pump need to be considered, because the deflection and radial expansion of a steel shaft rotating at a high speed cannot be ignored. This paper proposes a new mathematical model to predict the cylinder tilt behaviour by establishing a quantitative relationship between the splined shaft deflection, the cylinder tilt angle, and the tilt azimuth angle. The moments exerted by the splined shaft are included in the equilibrium equation of the cylinder. The effects of solid and hollow splined shafts equipped in an EHA pump prototype are compared at variable speeds of 5000–10,000 r/min. With a weight saving of 29.7%, the hollow shaft is experimentally found to have almost no influence on the volumetric efficiency, but to reduce the mechanical efficiency by 0.6–2.4%. The results agree with the trivial differences of the simulated central gap heights of the interface between the two shafts and the enlargement of the simulated tilt angles by the hollow shaft. The findings could guide designs of the cylinder/valve plate interface and the splined shaft to improve both the efficiency and power density of an EHA pump.
文摘The present paper aims to reveal the significance of rigid-body motions for the flutter mechanism of a span-morphing wing model. The inclusion of rigid-body motions into aeroelastic formulation and flutter analysis is presented. A state-space aeroelastic equation combining the dynamics of stepped Euler-Bernoulli beam with unsteady strip aerodynamic theory is developed by quasi-static modeling. Using a numerical example, variations of flutter mechanism from the bending-torsional flutter to the body-freedom flutter are observed as the span increases. In addition,effects of some dimensionless parameters on the variations of flutter mechanism are investigated.The investigated parameters belonging to the fuselage have limited influences on the bendingtorsional flutter but a significant impact on the body-freedom flutter.
基金This project is supported by National Natural Science Foundation of China (No.60375020, No.50305033, No.50405037)973 Program of China (N0.2002CB312106, No.2004CB719400)863 Program of China (No.2003-AA413310)Special Research Foundation of Ministry of Education for PhD Project in Colleges, China (No.20020335112).
文摘A unilateral non-penetration constraint dynamical simulation model withfriction is constructed based on compliant model for mechanical system VP (virtual prototyping)simulation. This model combines computer graphics with multi-body system dynamics. It avoidshandling multiplicity of solution, such as cases of no solution, multi-solution brought about byfriction during traditional construction of non-penetration constraint based on rigid model. At thesame time, the realism of VE (virtual environment) is improved in process of simulation.Furthermore, the valid condition of rolling and sliding unilateral contact is constituted based onsingular perturbation and linear complementary theory. Finally, the compliant method is verified byan interaction between a multi-legged robot and VE.
文摘For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy, different analytical models have been proposed for the velocity profile in the two layers. This paper evaluates the four analytical models of Klopstra et al., Defina & Bixio, Yang et al. and Nepf against a wide range of independent experimental data available in the literature. To test the applicability and robust of the models, the author used the 19 datasets with various relative depths of submergence, different vegetation densities and bed slopes (1.8 × 10?6 - 4.0 × 10?3). This study shows that none of the models can predict the velocity profiles well for all datasets. The three models except Yang’s model performed reasonably well in certain cases, but Yang’s model failed in most the cases studied. It was also found that the Defina model is almost the same as the Klopstra model, if the same mixing length scale of eddies (λ) is used. Finally, close examination of the mixing length scale of eddies (λ) in the Defina model showed that when λ/h = 1/40(H/h)1/2, this model can predict velocity profiles well for all the datasets used.
基金The research described in this paper was supported in part by the National Natural Science Foundation of China(Grant No.31370948,11672065).
文摘Assessment of the magnitude and pattern of wall shear stress(WSS)in vivo is the prerequisite for studying the quantitative relationship between exercise-induced WSS and arterial endothelial function.In the previous studies,the calculation of the WSS modulated by exercise training was primarily based upon the rigid tube model,which did not take non-linear effects of vessel elastic deformation into consideration.In this study,with an elastic tube model,we estimated the effect of a bout of 30-minute acute cycling exercise on the WSS and the flow rate in the common carotid artery according to the measured inner diameter,center-line blood flow velocity,heart rates and the brachial blood pressures before and after exercise training.Furthermore,the roles of exerciseinduced arterial diameter and blood flow rate in the change of WSS were also determined.The numerical results demonstrate that acute exercise significantly increases the magnitudes of blood flow rate and WSS.Moreover,the vessel elastic deformation is a non-negligible factor in the calculation of the WSS induced by exercise,which generates greater effects on the minimum WSS than the maximum WSS.Additionally,the contributions of exercise-induced variations in blood flow rate and diameter are almost identical in the change of the mean WSS.
基金funded by the National Natural Science Foundation of China(51079136,51179179,51239008)
文摘With the development of deepwater oil and gas exploration, Steel Catenary Risers(SCRs) become preferred risers for resource production, import and export. Vortex induced vibration(VIV) is the key problem encountered in the design of SCRs. In this study, a new model, the rigid swing model, is proposed based on the consideration of large curvature of SCRs. The sag bend of SCRs is assumed as a rigid swing system around the axis from the hanging point to the touch down point(TDP) in the model. The torque, produced by the lift force and the swing vector, provides the driving torque for the swing system, and the weight of SCRs provides the restoring torque. The simulated response of rigid swing is coupled with bending vibration, and then the coupling VIV model of SCRs is studied in consideration of bending vibration and rigid motion. The calculated results indicate that the rigid swing has a magnitude equal to that of bending vibration, and the rigid motion affects the dynamic response of SCRs and can not be neglected in the VIV analysis.