2The joint opening degree is a critical index for assessing the stability of jointed rock masses,which directly impacts the rock mass quality.It is also a key factor influencing the design of tunnel support structures...2The joint opening degree is a critical index for assessing the stability of jointed rock masses,which directly impacts the rock mass quality.It is also a key factor influencing the design of tunnel support structures.Hammer and rotary drilling rigs,commonly employed as rock-breaking equipment in tunneling,inevitably encounter joints with varying opening degrees during construction.This research aims to enhance the sampling frequency of hammer and rotary drilling rigs and optimize the joint detection algorithm,thereby equipping these rigs with the capability to detect joint opening degrees.This paper develops high-frequency acquisition equipment for drilling parameters to realize millimeter-level data acquisition.Drilling experiments on jointed rock mass are conducted under conditions corresponding to joint opening degrees of 1 mm,3 mm,and 5 mm.The relationships among joint opening degree,drilling parameters,and width of rock failure region are investigated.A joint opening degree detection algorithm is proposed based on the drilling parameters and moving average filter.The results indicate that the curves of penetration velocity and rotary pressure along the drilling direction exhibit a three-segment distribution,i.e."stable segment-adjustment segment-stable segment".The variation curves of drilling parameters display a“velocity mountain”and a“pressure valley”in the failure region.The relative errors in joint opening degree estimation based on penetration velocity and rotary pressure range from 3.4%to 32%and from 6%to 35%,with average relative errors of 12.95%and 16.24%,respectively.展开更多
Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/appro...Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/approach-Finite element method was employed to analyze the stress and strain distribution on the track wheel web surface under varying wheel-rail forces.Locations with minimal coupling interference between vertical and lateral forces were identified as suitable for strain gauge installation.Findings-The results show that due to the track wheel web’s unique curved shape and wheel-rail force loading mechanism,both tensile and compressive states exit on the surface of the web.When vertical force is applied,Mises stress and strain are relatively high near the inner radius of 710 mm and the outer radius of 1110mmof the web.Under lateral force,high Mises stress and strain are observed near the radius of 670mmon the inner and outer sides of the web.As the wheel-rail force application point shifts laterally toward the outer side,the Mises stress and strain near the inner radius of 710 mm of the web gradually decrease under vertical force while gradually increasing near the outer radius of 1110 mm of the web.Under lateral force,the Mises stress and strain on the surface of the web remain relatively unchanged regardless of the wheel-rail force application point.Based on the analysis of stress and strain on the surface of the web under different wheel-rail forces,the inner radius of 870 mm is recommended as the optimal mounting location of strain gauges for measuring vertical force,while the inner radius of 1143 mm is suitable for measuring lateral force.Originality/value-The research findings provide valuable insights for determining optimal strain gauge locations and designing an effective track wheel force measurement system.展开更多
Purpose–In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface,this study aims to analyze the utilization of wheel-rail adhesio...Purpose–In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface,this study aims to analyze the utilization of wheel-rail adhesion coefficient under different medium conditions and propose relevant measures for reasonable and optimized utilization of adhesion to ensure the traction/braking performance and operation safety of trains.Design/methodology/approach–Based on the PLS-160 wheel-rail adhesion simulation test rig,the study investigates the variation patterns of maximum utilized adhesion characteristics on the rail surface under different conditions of small creepage and large slip.Through statistical analysis of multiple sets of experimental data,the statistical distribution patterns of maximum utilized adhesion on the rail surface are obtained,and a method for analyzing wheel-rail adhesion redundancy based on normal distribution is proposed.The study analyzes the utilization of traction/braking adhesion,as well as adhesion redundancy,for different medium under small creepage and large slip conditions.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived.Findings–When the third-body medium exists on the rail surface,the train should adopt the low-level service braking to avoid the braking skidding by extending the braking distance.Compared with the current adhesion control strategy of small creepage,adopting appropriate strategies to control the train’s adhesion coefficient near the second peak point of the adhesion coefficient-slip ratio curve in large slip can effectively improve the traction/braking adhesion redundancy and the upper limit of adhesion utilization,thereby ensuring the traction/braking performance and operation safety of the train.Originality/value–Most existing studies focus on the wheel-rail adhesion coefficient values and variation patterns under different medium conditions,without considering whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train.Therefore,there is a risk of traction overspeeding/braking skidding.This study analyzes whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train and whether there is redundancy.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived to further ensure operation safety of the train.展开更多
Background With the development of virtual reality(VR)technology,there is a growing need for customized 3D avatars.However,traditional methods for 3D avatar modeling are either time-consuming or fail to retain the sim...Background With the development of virtual reality(VR)technology,there is a growing need for customized 3D avatars.However,traditional methods for 3D avatar modeling are either time-consuming or fail to retain the similarity to the person being modeled.This study presents a novel framework for generating animatable 3D cartoon faces from a single portrait image.Methods First,we transferred an input real-world portrait to a stylized cartoon image using StyleGAN.We then proposed a two-stage reconstruction method to recover a 3D cartoon face with detailed texture.Our two-stage strategy initially performs coarse estimation based on template models and subsequently refines the model by nonrigid deformation under landmark supervision.Finally,we proposed a semantic-preserving face-rigging method based on manually created templates and deformation transfer.Conclusions Compared with prior arts,the qualitative and quantitative results show that our method achieves better accuracy,aesthetics,and similarity criteria.Furthermore,we demonstrated the capability of the proposed 3D model for real-time facial animation.展开更多
In this paper we present a theoretical analysis on the determination of the scaling parameter in the complex-rotated Hamiltonian, which has served as a basis for successful applications of the rigged Hilbert space the...In this paper we present a theoretical analysis on the determination of the scaling parameter in the complex-rotated Hamiltonian, which has served as a basis for successful applications of the rigged Hilbert space theory for resonances. Based on the complex energy eigenvalue, E(θ) = ER(θ) - iГ(θ)/2, as a function of the scaling parameter θ, we find that for potential barrier scattering, the condition dГ(θI)/dθ = 0 uniquely determines the scaling parameter 8. The condition d ER (θR)/ dθ = 0 is merely a consequence of the Virial theorem and θI =θR is not a necessary condition for a resonance state. We also provide a harmonic approximation formMism for resonances in scattering over a potential barrier.展开更多
A subdynamics theory framework for describing multi coupled quantum computing systems is presented first. A general kinetic equation for the reduced system is given then, enabling a sufficient condition to be formula...A subdynamics theory framework for describing multi coupled quantum computing systems is presented first. A general kinetic equation for the reduced system is given then, enabling a sufficient condition to be formulated for constructing a pure coherent quantum computing system. This reveals that using multi coupled systems to perform quantum computing in Rigged Liouville Space opens the door to controlling or eliminating the intrinsic de coherence of quantum computing systems.展开更多
基金the National Natural Science Foundation of China(No.52378411)for the support in this research.
文摘2The joint opening degree is a critical index for assessing the stability of jointed rock masses,which directly impacts the rock mass quality.It is also a key factor influencing the design of tunnel support structures.Hammer and rotary drilling rigs,commonly employed as rock-breaking equipment in tunneling,inevitably encounter joints with varying opening degrees during construction.This research aims to enhance the sampling frequency of hammer and rotary drilling rigs and optimize the joint detection algorithm,thereby equipping these rigs with the capability to detect joint opening degrees.This paper develops high-frequency acquisition equipment for drilling parameters to realize millimeter-level data acquisition.Drilling experiments on jointed rock mass are conducted under conditions corresponding to joint opening degrees of 1 mm,3 mm,and 5 mm.The relationships among joint opening degree,drilling parameters,and width of rock failure region are investigated.A joint opening degree detection algorithm is proposed based on the drilling parameters and moving average filter.The results indicate that the curves of penetration velocity and rotary pressure along the drilling direction exhibit a three-segment distribution,i.e."stable segment-adjustment segment-stable segment".The variation curves of drilling parameters display a“velocity mountain”and a“pressure valley”in the failure region.The relative errors in joint opening degree estimation based on penetration velocity and rotary pressure range from 3.4%to 32%and from 6%to 35%,with average relative errors of 12.95%and 16.24%,respectively.
基金funded by the Fund Project of China Academy of Railway Sciences Corporation Limited[Grant No.2022YJ194,2023YJ254].
文摘Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/approach-Finite element method was employed to analyze the stress and strain distribution on the track wheel web surface under varying wheel-rail forces.Locations with minimal coupling interference between vertical and lateral forces were identified as suitable for strain gauge installation.Findings-The results show that due to the track wheel web’s unique curved shape and wheel-rail force loading mechanism,both tensile and compressive states exit on the surface of the web.When vertical force is applied,Mises stress and strain are relatively high near the inner radius of 710 mm and the outer radius of 1110mmof the web.Under lateral force,high Mises stress and strain are observed near the radius of 670mmon the inner and outer sides of the web.As the wheel-rail force application point shifts laterally toward the outer side,the Mises stress and strain near the inner radius of 710 mm of the web gradually decrease under vertical force while gradually increasing near the outer radius of 1110 mm of the web.Under lateral force,the Mises stress and strain on the surface of the web remain relatively unchanged regardless of the wheel-rail force application point.Based on the analysis of stress and strain on the surface of the web under different wheel-rail forces,the inner radius of 870 mm is recommended as the optimal mounting location of strain gauges for measuring vertical force,while the inner radius of 1143 mm is suitable for measuring lateral force.Originality/value-The research findings provide valuable insights for determining optimal strain gauge locations and designing an effective track wheel force measurement system.
文摘Purpose–In response to the problem of insufficient traction/braking adhesion force caused by the existence of the third-body medium on the rail surface,this study aims to analyze the utilization of wheel-rail adhesion coefficient under different medium conditions and propose relevant measures for reasonable and optimized utilization of adhesion to ensure the traction/braking performance and operation safety of trains.Design/methodology/approach–Based on the PLS-160 wheel-rail adhesion simulation test rig,the study investigates the variation patterns of maximum utilized adhesion characteristics on the rail surface under different conditions of small creepage and large slip.Through statistical analysis of multiple sets of experimental data,the statistical distribution patterns of maximum utilized adhesion on the rail surface are obtained,and a method for analyzing wheel-rail adhesion redundancy based on normal distribution is proposed.The study analyzes the utilization of traction/braking adhesion,as well as adhesion redundancy,for different medium under small creepage and large slip conditions.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived.Findings–When the third-body medium exists on the rail surface,the train should adopt the low-level service braking to avoid the braking skidding by extending the braking distance.Compared with the current adhesion control strategy of small creepage,adopting appropriate strategies to control the train’s adhesion coefficient near the second peak point of the adhesion coefficient-slip ratio curve in large slip can effectively improve the traction/braking adhesion redundancy and the upper limit of adhesion utilization,thereby ensuring the traction/braking performance and operation safety of the train.Originality/value–Most existing studies focus on the wheel-rail adhesion coefficient values and variation patterns under different medium conditions,without considering whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train.Therefore,there is a risk of traction overspeeding/braking skidding.This study analyzes whether the rail surface with different medium can provide sufficient traction/braking utilized adhesion coefficient for the train and whether there is redundancy.Based on these findings,relevant measures for the reasonable and optimized utilization of adhesion are derived to further ensure operation safety of the train.
文摘Background With the development of virtual reality(VR)technology,there is a growing need for customized 3D avatars.However,traditional methods for 3D avatar modeling are either time-consuming or fail to retain the similarity to the person being modeled.This study presents a novel framework for generating animatable 3D cartoon faces from a single portrait image.Methods First,we transferred an input real-world portrait to a stylized cartoon image using StyleGAN.We then proposed a two-stage reconstruction method to recover a 3D cartoon face with detailed texture.Our two-stage strategy initially performs coarse estimation based on template models and subsequently refines the model by nonrigid deformation under landmark supervision.Finally,we proposed a semantic-preserving face-rigging method based on manually created templates and deformation transfer.Conclusions Compared with prior arts,the qualitative and quantitative results show that our method achieves better accuracy,aesthetics,and similarity criteria.Furthermore,we demonstrated the capability of the proposed 3D model for real-time facial animation.
文摘In this paper we present a theoretical analysis on the determination of the scaling parameter in the complex-rotated Hamiltonian, which has served as a basis for successful applications of the rigged Hilbert space theory for resonances. Based on the complex energy eigenvalue, E(θ) = ER(θ) - iГ(θ)/2, as a function of the scaling parameter θ, we find that for potential barrier scattering, the condition dГ(θI)/dθ = 0 uniquely determines the scaling parameter 8. The condition d ER (θR)/ dθ = 0 is merely a consequence of the Virial theorem and θI =θR is not a necessary condition for a resonance state. We also provide a harmonic approximation formMism for resonances in scattering over a potential barrier.
文摘A subdynamics theory framework for describing multi coupled quantum computing systems is presented first. A general kinetic equation for the reduced system is given then, enabling a sufficient condition to be formulated for constructing a pure coherent quantum computing system. This reveals that using multi coupled systems to perform quantum computing in Rigged Liouville Space opens the door to controlling or eliminating the intrinsic de coherence of quantum computing systems.