To increase the absorption in a thin layer of absorbing material (amorphous silicon, a-Si), a light trapping design is presented. The designed structure incorporates periodic metal-insulator-metal waveguides to enha...To increase the absorption in a thin layer of absorbing material (amorphous silicon, a-Si), a light trapping design is presented. The designed structure incorporates periodic metal-insulator-metal waveguides to enhance the optical path length of light within the solar cells. The new design can result in broadband optical absorption enhancement not only for transverse magnetic (TM)-polarized light, but also for transverse electric (TE)-polarized light. No plasmonic modes can be excited in TE-polarization, but because of the coupling into the a-Si planar waveguide guiding modes and the diffraction of light by the bottom periodic structures into higher diffraction orders, the total absorption in the active region is also increased. The results from rigorous coupled wave analysis show that the overall optical absorption in the active layer can be greatly enhanced by up to 40%. The designed structures presented in this paper can be integrated with back contact technology to potentially produce high-efficiency thin-film solar cell devices.展开更多
基金Project supported by the Postgraduate Innovation Foundation of Jiangsu Province,China (Grant No.CX09B 090Z)the Key Postgraduate Plan of Nanjing University of Science and Technology,China
文摘To increase the absorption in a thin layer of absorbing material (amorphous silicon, a-Si), a light trapping design is presented. The designed structure incorporates periodic metal-insulator-metal waveguides to enhance the optical path length of light within the solar cells. The new design can result in broadband optical absorption enhancement not only for transverse magnetic (TM)-polarized light, but also for transverse electric (TE)-polarized light. No plasmonic modes can be excited in TE-polarization, but because of the coupling into the a-Si planar waveguide guiding modes and the diffraction of light by the bottom periodic structures into higher diffraction orders, the total absorption in the active region is also increased. The results from rigorous coupled wave analysis show that the overall optical absorption in the active layer can be greatly enhanced by up to 40%. The designed structures presented in this paper can be integrated with back contact technology to potentially produce high-efficiency thin-film solar cell devices.