Reverse-sheared Alfv6n eigenmodes (RSAEs) have been observed by using an interferometer and ECE diagnostics in NBI heated ELMy H-mode plasma on EAST tokamak. A typical feature of these modes is a fast frequency swee...Reverse-sheared Alfv6n eigenmodes (RSAEs) have been observed by using an interferometer and ECE diagnostics in NBI heated ELMy H-mode plasma on EAST tokamak. A typical feature of these modes is a fast frequency sweeping upward from -80 kHz to -110 kHz in hundred milliseconds during which the plasma temperature, density and rotation keeps no change. Only core channels of the interferometer can observe these modes, implying a core localized mode. The ECE measurement further showed that these modes located at about ρ = 0.37-0.46, just around the position of qmin with ρ -0.4. These core localized modes are very weak in the magnetic fluctuations measured by mirnov probes mounted at the machine vacuum vessel. A multiple frequency fluctuation component, seemingly the so-called 'grand cascades', was also clearly observed on the ECE signal at ρ = 0.46. During the phase, a transient internal transport barrier (ITB) in ion temperature and toroidal rotation was observed and the ITB foot was just close to the position of qmin. A modulation of RSAE frequency by ELM event was observed and this modulation could be attributed to rotation decrease or qmin increase due to ELM. Further study of these modes in EAST can provide valuable constraints for the q profile measurement and will be important for the long pulse operation.展开更多
基金supported by the National Key R&D Program of China (No. 2014GB106004)National Natural Science Foundation of China (Nos. 11605235, 11675211, 11505221)Scientific Research Grant of Hefei Science Center of CAS (No. 2015SRG-HSC010)
文摘Reverse-sheared Alfv6n eigenmodes (RSAEs) have been observed by using an interferometer and ECE diagnostics in NBI heated ELMy H-mode plasma on EAST tokamak. A typical feature of these modes is a fast frequency sweeping upward from -80 kHz to -110 kHz in hundred milliseconds during which the plasma temperature, density and rotation keeps no change. Only core channels of the interferometer can observe these modes, implying a core localized mode. The ECE measurement further showed that these modes located at about ρ = 0.37-0.46, just around the position of qmin with ρ -0.4. These core localized modes are very weak in the magnetic fluctuations measured by mirnov probes mounted at the machine vacuum vessel. A multiple frequency fluctuation component, seemingly the so-called 'grand cascades', was also clearly observed on the ECE signal at ρ = 0.46. During the phase, a transient internal transport barrier (ITB) in ion temperature and toroidal rotation was observed and the ITB foot was just close to the position of qmin. A modulation of RSAE frequency by ELM event was observed and this modulation could be attributed to rotation decrease or qmin increase due to ELM. Further study of these modes in EAST can provide valuable constraints for the q profile measurement and will be important for the long pulse operation.