期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Exceptional reversed yield strength asymmetry in a rare-earth free Mg alloy containing quasicrystal precipitates 被引量:2
1
作者 Qiang Yang Shuhui Lv +2 位作者 Zixiang Yan Zefeng Xie Xin Qiu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期687-699,共13页
This work reports an exceptional reversed yield strength asymmetry at room temperature for a rare-earth free magnesium alloy containing a mass of fine dispersed quasicrystal(I-phase)precipitates.Although exhibiting tr... This work reports an exceptional reversed yield strength asymmetry at room temperature for a rare-earth free magnesium alloy containing a mass of fine dispersed quasicrystal(I-phase)precipitates.Although exhibiting traditional basal texture,it owns an exceptional CYS/TYS as high as~1.17.Electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM)examinations indicate pyramidal and prismatic dislocations plus tensile twinning being activated after immediate yielding in compression while basal and non-basal dislocations in tension.I-phase particles transferred the concentrated stress by self-twinning to provide the driving force for tensile twin initiating in neighboring grains,thereby significantly increasing the critical resolved shear stress of tensile twinning to possibly the level of pyramidal slip,finally leading to the dominance of pyramidal slip plus tensile twinning in texture grains.This results in a higher contribution on yield strength by~55 MPa in compression than in tension,which reasonably agrees with the experimental yield strength difference(~38 MPa).It can be concluded that I-phase particles influence deformation modes in tension and in compression,finally result in reversed yield strength asymmetry. 展开更多
关键词 Magnesium alloy reversed yield strength asymmetry Transmission electron microscopy(TEM) TWINNING Dislocations
在线阅读 下载PDF
Theoretical and experimental study of the thermal strength of anticorrosive lined steel pipes 被引量:4
2
作者 Zeng Dezhi Deng Kuanhai +3 位作者 Lin Yuanhua Shi Taihe Shi Daiyan Zhou Lizhi 《Petroleum Science》 SCIE CAS CSCD 2014年第3期417-423,共7页
Bimetallic lined steel pipe (LSP) is a new anti-corrosion technology. It is widely used to transport oil, gas, water and corrosive liquid chemicals. At present, the hydroforming pressure for LSP has been investigate... Bimetallic lined steel pipe (LSP) is a new anti-corrosion technology. It is widely used to transport oil, gas, water and corrosive liquid chemicals. At present, the hydroforming pressure for LSP has been investigated theoretically and experimentally by most researchers. However, there are a few reports on the thermal strength of bimetallic LSP. Actually, the bimetallic LSP will be subjected to remarkable thermal load in the process of three layer polyethylene (3PE) external coating. Reverse yielding failure may occur on the inner pipe of the bimetallic LSP when it suffers from remarkable thermal load and residual contact pressure simultaneously. The aim of this paper is to study the thermal load and strength of the bimetallic LSP. A mechanical model, which can estimate the thermal strength of the bimetallic LSP, was established based on the elastic theory and the manufacture of the bimetallic LSP. Based on the model, the correlation between the thermal strength of the bimetallic LSP and residual contact pressure and wall thickness of the inner pipe was obtained. Reverse yielding experiments were performed on the LSP (NT80SS-316L) under different thermal loads. Experiment results are consistent with calculated results from the theoretical model. The experimental and simulation results may provide powerful guidance for the bimetallic LSP production and use. 展开更多
关键词 Thermal strength reverse yielding mechanical model lined steel pipe residual contact pressure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部