The excited state dynamics and critically regulated factors of reverse intersystem crossing(RISC)in through-space charge transfer(TSCT)molecules have received insufficient attention.Here,five molecules of through spac...The excited state dynamics and critically regulated factors of reverse intersystem crossing(RISC)in through-space charge transfer(TSCT)molecules have received insufficient attention.Here,five molecules of through space/bond charge transfer inducing thermally activated delayed fluorescence(TADF)are prepared,and their excited state charge transfer processes are studied by ultrafast transient absorption and theoretical calculations.DM-Z has a largerΔEST,leading to a longer lifetime of intersystem crossing(ISC),resulting in the lowest photoluminescence quantum yield(PLQY).Oppositely,ISC and RISC are demonstrated to take place with shorter lifetimes for TSCT molecules.The face-to-faceπ-πstacking interactions and electron communication enable DM-B and DM-BX to have an efficient RISC,increasing the weight coefficient of RISC from 1.7%(DM-X)to close to 50%(DM-B and DM-BX)in the solvents,which make DM-BX and DM-B to have a high PLQY.However,partial local excitation in the donor center is observed and the charge transfer is decreased for DM-G and DM-X.The triplet excited state(DM-G)or singlet excited state(DM-X)mainly undergoes inactivation through a non-radiative relaxation process,resulting in less RISC and low PLQY.This work provides theoretical hints to enhance the RISC process in the TADF materials.展开更多
Recently, an effective exciton diffusion length L exceeding 100μm has been reported for organic- inorganic halide perovskites owing to both the high mobility and ultra-long lifetime of the excitons; however, the orig...Recently, an effective exciton diffusion length L exceeding 100μm has been reported for organic- inorganic halide perovskites owing to both the high mobility and ultra-long lifetime of the excitons; however, the origin of ultra-long L is still unclear in nature. In some photoelectric materials, reverse intersystem crossing (RISC) from the triplet to the singlet state can enhance the quantum yield of pho- toluminescence greatly. In this study, our theoretical investigation indicated that the energy difference △E_st between the singlet state and the triplet state of CH_3NH_3Pbl_3 was less than 0.1 eV, which represents one crucial prerequisite for the occurrence of RISC. Meanwhile, the experimental results showed that the photoluminescence lifetime increased with the increasing temperature, a typical feature of RISC. Based on this study, we put forward the hypothesis that the ultra-long lifetime of excitons in organic-inorganic halide perovskite might be caused by the RISC process. This may provide a new insight into the important photophysical properties of such novel photovoltaic materials.展开更多
Circularly polarized luminescence(CPL)materials with delayed fluorescence have attracted much attention due to their ability to efficiently trap triplet state excitons,thereby improving the photoluminescence quantum y...Circularly polarized luminescence(CPL)materials with delayed fluorescence have attracted much attention due to their ability to efficiently trap triplet state excitons,thereby improving the photoluminescence quantum yields of CPL materials.However,much effort has been normally focused on the utilization of T1 excitons but seldom on the utilization of higher excited triplet state T_(n)(n>1)excitons.Rational manipulation of higher excited triplet state T_(n)(n>1)excitons and suppression of Kasha’s rule of CPL materials remains a major challenge.Herein,two gold complex enantiomers((R/S)-BPAuBC)based on axially chiral binaphthyls and 3,6-Di-tert-butylcarbazole groups are synthesized and systematically investigated.These materials exhibit aggregation-induced circularly polarized delayed fluorescence.Circularly polarized delayed fluorescence was found to be enabled by activating high-level reverse intersystem crossing(hRISC).The anti-Kasha phosphorescence at 77 K proves that the exciton has a large population in the high-lying triplet state T_(2),which allows the effective hRISC process to cross back to the singlet state S_(1)and emit delayed fluorescence.In addition,CPL“on-off”switching is further achieved in nanoparticles by acid-base stimulus,showing its potential as an acid-base responsive material.展开更多
Organic scintillators that efficiently generate bright triplet excitons are of critical importance for highperformance X-ray-excited luminescence in radiation detection.However,the nature of triplet-singlet spinforbid...Organic scintillators that efficiently generate bright triplet excitons are of critical importance for highperformance X-ray-excited luminescence in radiation detection.However,the nature of triplet-singlet spinforbidden transitions in these materials often result in long-lived phosphorescence,which is undesirable for ultrafast X-ray detection and imaging.Here we demonstrate that the effect of hybridized local and charge-transfer(HLCT)excited states enables organic scintillators to exhibit highly efficient and fast radioluminescence(RL)in response to X-ray irradiation.Our experimental and theoretical investigation shows that the oxidized 1,8-naphthalimide-phenothiazine dyad(OMNI-PTZ 2)with HLCT-excited states has an enhanced overlap integral of the highest occupied molecular orbital(HOMO)and lowest unoccupied molecular orbital(LUMO)on MNIπ-orbitals,and moderate donor–acceptor electron interactions.As a result,the RL of these crystals exhibits a 61-fold increase and its monoexponential decay lifetime is three orders of magnitude faster compared to its corresponding thermally activated delayed fluorescence(TADF)molecule MNI-PTZ 1.We further demonstrate the practical utility of the OMNI-PTZ 2(G)in high-performance X-ray detection and imaging,achieving an X-ray dose sensitivity of 97 nGy s−1 and an exceptional spatial resolution of 20 lp/mm.Our study provides a promising molecular design principle for utilizing triplet excitons to develop high-efficiency and fast X-ray scintillators for the development of next-generation flexible and stretchable X-ray imaging detectors.展开更多
2,7-Di(9,9-dimethyl-9H-fluoren-l-yl)-9H-thioxanthen-9-one (DMBFTX) with thermally activated delayed fluorescence (TADF) was well designed and synthesized. The phosphorescent organic lightemitting device (PHOLED...2,7-Di(9,9-dimethyl-9H-fluoren-l-yl)-9H-thioxanthen-9-one (DMBFTX) with thermally activated delayed fluorescence (TADF) was well designed and synthesized. The phosphorescent organic lightemitting device (PHOLED) based on this novel TADF host material displays a stable red phosphorescence region, a peak external quantum efficiency (EQE) value of 12.9% and a low EQE roll-off of 38.8%at a luminance of 10000 cd/m2, which is benefited from the reverse intersystem crossing (RISC) of TADF host and less populated triplet exitons. Notably, the red device based on the TADF host DMBFrX exhibits superior electroluminescence performance and reduced efficiency roll-offcompared with the one hosted by commercially available host 1,3-bis(9-carbazolyl)benzene (mCP), illustrating the high potential of employing the TADF host material with small energy gap to reduce efficiency roll-off in PHOLED.展开更多
Full utilization of the excited species at both singlet states(1R*)and triplet states(3R*)is crucial to improving electrochemiluminescence(ECL)efficiency but is challenging for organic luminescent materials.Here,an ag...Full utilization of the excited species at both singlet states(1R*)and triplet states(3R*)is crucial to improving electrochemiluminescence(ECL)efficiency but is challenging for organic luminescent materials.Here,an aggregation-induced delayed ECL(AIDECL)active organic dot(OD)containing a benzophenone acceptor and dimethylacridine donor is reported,which shows high ECL efficiency via reverse intersystem crossing(RISC)of non-emissive 3R*to emissive 1R*,overcoming the spin-forbidden radiative decay from 3R*.By introducing dual donor-acceptor pairs into luminophores,it is found that nonradiative pathway could be further suppressed via enhanced intermolecular weak interactions,and multiple spin-up conversion channels could be activated.As a consequence,the obtained OD enjoys a 6.8-fold higher ECL efficiency relative to the control AIDECL-active OD.Single-crystal studies and theoretical calculations reveal that the enhanced AIDECL behaviors come from the acceleration of both radiative transition and RISC.This work represents a major step towards purely organic,high-efficiency ECL dyes and a direction for the design of next-generation ECL dyes at the molecular level.展开更多
Exciton(or spin)statistics is a physical principle based on the statistics of spin multiplicity.In electroluminescence,injected electrons and holes have randomized spin states,and usually form singlet or triplet excit...Exciton(or spin)statistics is a physical principle based on the statistics of spin multiplicity.In electroluminescence,injected electrons and holes have randomized spin states,and usually form singlet or triplet excitons in the ratio of 1:3.Exciton statistics determines that the upper limit of internal quantum efficiency is 25%in fluorescent devices,since only singlet exciton can decay radiatively.However,both experimental and theoretical evidence indicate that the actual efficiency can exceed the exciton statistics limit of 25%by utilizing materials with special electronic structure and optimized device structures.These results bring light to break through the exciton statistics limit and develop new-generation fluorescent materials with low cost and high efficiency.Recently,the exciton statistics,which has attracted great attention in the past decade,is being rejuvenated due to the discovery of some fluorescent materials with abnormally high efficiencies.In view of their significance in theoretical research of organic semiconductors and developing new-generation OLED materials,such materials are widely investigated in both academic institutions and industry.Several key issues still require further clarification for this kind of materials,such as the molecular design concepts.Herein,we review the progress of the materials with efficiency exceeding the exciton statistics limit,and the routes to improve exciton utilization efficiency.In the end,we present an innovative pathway to fully harvest the excitons in fluorescent devices,namely,"hot exciton"model and relevant fluorescence material with hybridized local and charge-transfer(HLCT)excited state.展开更多
The donor-n-conjugated-acceptor (D-n-A) structure is an important design for the luminescent materials be- cause of its diversity in the selections of donor, n-bridge and acceptor groups. Herein, we demonstrate two ...The donor-n-conjugated-acceptor (D-n-A) structure is an important design for the luminescent materials be- cause of its diversity in the selections of donor, n-bridge and acceptor groups. Herein, we demonstrate two examples of D-^-A structures capable to finely modulate the excited state properties and arrangement of energy levels, TPA-AN-BP and CZP-AN-BP, which possess the same acceptor and n-bridge but different donor. The investigation of their photophysical properties and DFT calculation revealed that the D-n-A structure with proper donor, n-bridge and acceptor can result in separation of frontier molecular orbitals on the corresponding donor and acceptor with an obvious overlap on the n-bridge, resulting in a hybridized local and charge-transfer (HLCT) excited state with high photoluminescent (PL) efficiencies. Meanwhile, their singlet and triplet states are arranged on corresponding moie- ties with large energy gap between T2 and T1, and a small energy gap between S1 and T2, which favor the reverse intersystem crossing (RISC) from high-lying triplet levels to singlet levels. As a result, the sky-blue emission non-doped OLED based on the TPA-AN-BP reached maximum external quantum efficiency (EQE) of 4.39% and a high exciton utilization efficiency (EUE) of 77%. This study demonstrates a new strategy to construct highly effi- cient OLED materials.展开更多
Efficient and stable blue luminescent organic materials are highly demanded in the field of organic light-emitting diodes(OLEDs)but still remain challenging.In this work,two new sky-blue luminescent molecules comprise...Efficient and stable blue luminescent organic materials are highly demanded in the field of organic light-emitting diodes(OLEDs)but still remain challenging.In this work,two new sky-blue luminescent molecules comprised of electron acceptor of benzophenone and electron donors of spiro[acridine-9,9'-fluorene]and carbazole are designed and synthesized,and their thermal stability,electrochemical behaviors,photophysical properties,carrier transport ability and electroluminescence performance are investigated.展开更多
基金supported by the National Natural Science Foundation of China(No.22273057)the Universities Joint Laboratory of Guangdong,Hong Kong and Macao(No.2021LSYS009)+2 种基金the Natural Science Foundation of Guangdong Province(Nos.2022A1515011661,2023A1515012631)the Chemistry and Chemical Engineering Guangdong Laboratory(No.1922003)Guangdong Major Project of Basic and Applied Basic Research(No.2019B030302009)。
文摘The excited state dynamics and critically regulated factors of reverse intersystem crossing(RISC)in through-space charge transfer(TSCT)molecules have received insufficient attention.Here,five molecules of through space/bond charge transfer inducing thermally activated delayed fluorescence(TADF)are prepared,and their excited state charge transfer processes are studied by ultrafast transient absorption and theoretical calculations.DM-Z has a largerΔEST,leading to a longer lifetime of intersystem crossing(ISC),resulting in the lowest photoluminescence quantum yield(PLQY).Oppositely,ISC and RISC are demonstrated to take place with shorter lifetimes for TSCT molecules.The face-to-faceπ-πstacking interactions and electron communication enable DM-B and DM-BX to have an efficient RISC,increasing the weight coefficient of RISC from 1.7%(DM-X)to close to 50%(DM-B and DM-BX)in the solvents,which make DM-BX and DM-B to have a high PLQY.However,partial local excitation in the donor center is observed and the charge transfer is decreased for DM-G and DM-X.The triplet excited state(DM-G)or singlet excited state(DM-X)mainly undergoes inactivation through a non-radiative relaxation process,resulting in less RISC and low PLQY.This work provides theoretical hints to enhance the RISC process in the TADF materials.
基金The financial supports of the National Natural Science Foundation of China (grant nos. 21373042, 21677029 and 51402036)the Fundamental Research Funds for the Central Universities (grant no. DUT15YQ109)
文摘Recently, an effective exciton diffusion length L exceeding 100μm has been reported for organic- inorganic halide perovskites owing to both the high mobility and ultra-long lifetime of the excitons; however, the origin of ultra-long L is still unclear in nature. In some photoelectric materials, reverse intersystem crossing (RISC) from the triplet to the singlet state can enhance the quantum yield of pho- toluminescence greatly. In this study, our theoretical investigation indicated that the energy difference △E_st between the singlet state and the triplet state of CH_3NH_3Pbl_3 was less than 0.1 eV, which represents one crucial prerequisite for the occurrence of RISC. Meanwhile, the experimental results showed that the photoluminescence lifetime increased with the increasing temperature, a typical feature of RISC. Based on this study, we put forward the hypothesis that the ultra-long lifetime of excitons in organic-inorganic halide perovskite might be caused by the RISC process. This may provide a new insight into the important photophysical properties of such novel photovoltaic materials.
基金support from the National Natural Science Foundation of China(52003298)the Natural Science Foundation of Jiangsu Province(BK20200578)+4 种基金funding from the Beijing University of Technology(049000513202 and 049000514123564)support of the Research Grants Council of Hong Kong(C6014-20W)the Innovation and Technology Commission(ITC-CNERC14SC01)Shenzhen Key Laboratory of Functional Aggregate Materials(ZDSYS20211021111400001)the Science Technology Innovation Commission of Shenzhen Municipality(KQTD20210811090142053 and JCYJ2022081810-3007014).
文摘Circularly polarized luminescence(CPL)materials with delayed fluorescence have attracted much attention due to their ability to efficiently trap triplet state excitons,thereby improving the photoluminescence quantum yields of CPL materials.However,much effort has been normally focused on the utilization of T1 excitons but seldom on the utilization of higher excited triplet state T_(n)(n>1)excitons.Rational manipulation of higher excited triplet state T_(n)(n>1)excitons and suppression of Kasha’s rule of CPL materials remains a major challenge.Herein,two gold complex enantiomers((R/S)-BPAuBC)based on axially chiral binaphthyls and 3,6-Di-tert-butylcarbazole groups are synthesized and systematically investigated.These materials exhibit aggregation-induced circularly polarized delayed fluorescence.Circularly polarized delayed fluorescence was found to be enabled by activating high-level reverse intersystem crossing(hRISC).The anti-Kasha phosphorescence at 77 K proves that the exciton has a large population in the high-lying triplet state T_(2),which allows the effective hRISC process to cross back to the singlet state S_(1)and emit delayed fluorescence.In addition,CPL“on-off”switching is further achieved in nanoparticles by acid-base stimulus,showing its potential as an acid-base responsive material.
基金supported by the National Key R&D Program of China(grant no.2020YFA0709900)the National Natural Science Foundation of China(grant nos.21971041,22201042,22027805,62134003,and 22104016)+2 种基金the Natural Science Foundation of Fujian Province(grant nos.2020J01447,2022J06008,and 2022J0121)the Research Foundation of Education Bureau of Fujian Province(grant no.JAT210001)the Fuzhou University Testing Fund of Precious Apparatus(grant no.2022T001).
文摘Organic scintillators that efficiently generate bright triplet excitons are of critical importance for highperformance X-ray-excited luminescence in radiation detection.However,the nature of triplet-singlet spinforbidden transitions in these materials often result in long-lived phosphorescence,which is undesirable for ultrafast X-ray detection and imaging.Here we demonstrate that the effect of hybridized local and charge-transfer(HLCT)excited states enables organic scintillators to exhibit highly efficient and fast radioluminescence(RL)in response to X-ray irradiation.Our experimental and theoretical investigation shows that the oxidized 1,8-naphthalimide-phenothiazine dyad(OMNI-PTZ 2)with HLCT-excited states has an enhanced overlap integral of the highest occupied molecular orbital(HOMO)and lowest unoccupied molecular orbital(LUMO)on MNIπ-orbitals,and moderate donor–acceptor electron interactions.As a result,the RL of these crystals exhibits a 61-fold increase and its monoexponential decay lifetime is three orders of magnitude faster compared to its corresponding thermally activated delayed fluorescence(TADF)molecule MNI-PTZ 1.We further demonstrate the practical utility of the OMNI-PTZ 2(G)in high-performance X-ray detection and imaging,achieving an X-ray dose sensitivity of 97 nGy s−1 and an exceptional spatial resolution of 20 lp/mm.Our study provides a promising molecular design principle for utilizing triplet excitons to develop high-efficiency and fast X-ray scintillators for the development of next-generation flexible and stretchable X-ray imaging detectors.
基金supported by National Natural Science Foundation of China(No. 61605158)the Science and TechnologyDepartment of Shaanxi Province(No. 2016JQ2028)the Education Department of Shaanxi Province(No. 16JK1790)
文摘2,7-Di(9,9-dimethyl-9H-fluoren-l-yl)-9H-thioxanthen-9-one (DMBFTX) with thermally activated delayed fluorescence (TADF) was well designed and synthesized. The phosphorescent organic lightemitting device (PHOLED) based on this novel TADF host material displays a stable red phosphorescence region, a peak external quantum efficiency (EQE) value of 12.9% and a low EQE roll-off of 38.8%at a luminance of 10000 cd/m2, which is benefited from the reverse intersystem crossing (RISC) of TADF host and less populated triplet exitons. Notably, the red device based on the TADF host DMBFrX exhibits superior electroluminescence performance and reduced efficiency roll-offcompared with the one hosted by commercially available host 1,3-bis(9-carbazolyl)benzene (mCP), illustrating the high potential of employing the TADF host material with small energy gap to reduce efficiency roll-off in PHOLED.
基金National Natural Science Foundation of China,Grant/Award Numbers:22034003,22204075,22275085Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20220769+1 种基金Excellent Research Program of Nanjing University,Grant/Award Number:ZYJH004State Key Laboratory of Analytical Chemistry for Life Science,Grant/Award Number:5431ZZXM2203。
文摘Full utilization of the excited species at both singlet states(1R*)and triplet states(3R*)is crucial to improving electrochemiluminescence(ECL)efficiency but is challenging for organic luminescent materials.Here,an aggregation-induced delayed ECL(AIDECL)active organic dot(OD)containing a benzophenone acceptor and dimethylacridine donor is reported,which shows high ECL efficiency via reverse intersystem crossing(RISC)of non-emissive 3R*to emissive 1R*,overcoming the spin-forbidden radiative decay from 3R*.By introducing dual donor-acceptor pairs into luminophores,it is found that nonradiative pathway could be further suppressed via enhanced intermolecular weak interactions,and multiple spin-up conversion channels could be activated.As a consequence,the obtained OD enjoys a 6.8-fold higher ECL efficiency relative to the control AIDECL-active OD.Single-crystal studies and theoretical calculations reveal that the enhanced AIDECL behaviors come from the acceleration of both radiative transition and RISC.This work represents a major step towards purely organic,high-efficiency ECL dyes and a direction for the design of next-generation ECL dyes at the molecular level.
基金financially supported by the National Science Foundation of China(51073069,51273078)the National Basic Research Program of China(2013CB834801)
文摘Exciton(or spin)statistics is a physical principle based on the statistics of spin multiplicity.In electroluminescence,injected electrons and holes have randomized spin states,and usually form singlet or triplet excitons in the ratio of 1:3.Exciton statistics determines that the upper limit of internal quantum efficiency is 25%in fluorescent devices,since only singlet exciton can decay radiatively.However,both experimental and theoretical evidence indicate that the actual efficiency can exceed the exciton statistics limit of 25%by utilizing materials with special electronic structure and optimized device structures.These results bring light to break through the exciton statistics limit and develop new-generation fluorescent materials with low cost and high efficiency.Recently,the exciton statistics,which has attracted great attention in the past decade,is being rejuvenated due to the discovery of some fluorescent materials with abnormally high efficiencies.In view of their significance in theoretical research of organic semiconductors and developing new-generation OLED materials,such materials are widely investigated in both academic institutions and industry.Several key issues still require further clarification for this kind of materials,such as the molecular design concepts.Herein,we review the progress of the materials with efficiency exceeding the exciton statistics limit,and the routes to improve exciton utilization efficiency.In the end,we present an innovative pathway to fully harvest the excitons in fluorescent devices,namely,"hot exciton"model and relevant fluorescence material with hybridized local and charge-transfer(HLCT)excited state.
文摘The donor-n-conjugated-acceptor (D-n-A) structure is an important design for the luminescent materials be- cause of its diversity in the selections of donor, n-bridge and acceptor groups. Herein, we demonstrate two examples of D-^-A structures capable to finely modulate the excited state properties and arrangement of energy levels, TPA-AN-BP and CZP-AN-BP, which possess the same acceptor and n-bridge but different donor. The investigation of their photophysical properties and DFT calculation revealed that the D-n-A structure with proper donor, n-bridge and acceptor can result in separation of frontier molecular orbitals on the corresponding donor and acceptor with an obvious overlap on the n-bridge, resulting in a hybridized local and charge-transfer (HLCT) excited state with high photoluminescent (PL) efficiencies. Meanwhile, their singlet and triplet states are arranged on corresponding moie- ties with large energy gap between T2 and T1, and a small energy gap between S1 and T2, which favor the reverse intersystem crossing (RISC) from high-lying triplet levels to singlet levels. As a result, the sky-blue emission non-doped OLED based on the TPA-AN-BP reached maximum external quantum efficiency (EQE) of 4.39% and a high exciton utilization efficiency (EUE) of 77%. This study demonstrates a new strategy to construct highly effi- cient OLED materials.
基金This work was financially supported by the National Natural Science Foundation of China(21788102)the Natural Science Foundation of Guangdong Province(2022A1515010315 and 2019B030301003).
文摘Efficient and stable blue luminescent organic materials are highly demanded in the field of organic light-emitting diodes(OLEDs)but still remain challenging.In this work,two new sky-blue luminescent molecules comprised of electron acceptor of benzophenone and electron donors of spiro[acridine-9,9'-fluorene]and carbazole are designed and synthesized,and their thermal stability,electrochemical behaviors,photophysical properties,carrier transport ability and electroluminescence performance are investigated.