Corrosion is an essential issue limiting the application of high-strength low-carbon steel in seawater environment. The impact of retained austenite on its corrosion behavior with immersion experiments and related cor...Corrosion is an essential issue limiting the application of high-strength low-carbon steel in seawater environment. The impact of retained austenite on its corrosion behavior with immersion experiments and related corrosion sensor technology was explored. A model that clarifies the micro-galvanic effect and the heat-induced changes to the shape and composition of retained austenite was used to discuss the findings. The results indicated that retained austenite was generated following an intercritical process and demonstrated approximately 48 mV higher Volta potential than the matrix. The retained austenite content first increased and then decreased with increasing intercritical temperatures, while reaching the maximum value of 8.5% at 660℃. With the increase in retained austenite content, the corrosion rate was increased by up to 32.8% compared to “quenching + tempering” (QT) specimen. The interfaces between the retained austenite and matrix were the priority nucleation sites for corrosion. Moreover, the retained austenite reduced the corrosion resistance of the steel by increasing the micro-galvanic effect and reducing rust layer compactness.展开更多
Hydrogen-induced cracking (HIC) is one of the most complex material problems that hydrogen can diffuse into and interact with microstructure, degrading their mechanical properties. Microstructural modification is an e...Hydrogen-induced cracking (HIC) is one of the most complex material problems that hydrogen can diffuse into and interact with microstructure, degrading their mechanical properties. Microstructural modification is an effective way to enhance the resistance to HIC. The present study focused on the relationship between the retained austenite (RA) and HIC behavior in NiCrMoV/Nb multi-alloying ultra-strength steel. Results demonstrated that the maximum volume fraction of RA of 9.31% was obtained for QL30T specimen. After the deep cryogenic pretreatment, the volume fraction of RA reduced to 8.8%. RA could reduce the effective diffusion coefficient, while deep cryogenic pretreatment increased the susceptibility of the steel to HIC by a maxim of 14.8%. This was mainly due to the transformation of retained austenite into martensite, degrading the mechanical properties under hydrogen-charged condition. In addition, the deep cryogenic pretreatment had a significant effect on the crack initiation and propagation, with the intergranular (IG) fracture becoming the dominant fracture mode where an increase in the number of secondary cracks in the section. The interfaces of RA and matrix, as well as the grain boundaries, were the preferred sites for cracks initiation.展开更多
To accurately investigate the evolution characteristics and generation mechanism of retained oil,the study analyzed organic-rich lacustrine shale samples from the Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay...To accurately investigate the evolution characteristics and generation mechanism of retained oil,the study analyzed organic-rich lacustrine shale samples from the Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay Basin.This analysis involves Rock-Eval pyrolysis,pyrolysis simulation experiments,Gas Chromatograph Mass Spectrometer(GC-MS),and reactive molecular dynamics simulations(ReaxFF).The results revealed the retained oil primarily consisted of n-alkanes with carbon numbers ranging from C14 to C36.The generation of retained oil occurred through three stages.A slow growth stage of production rate was observed before reaching the peak of oil production in Stage Ⅰ.Stage Ⅱ involved a rapid increase in oil retention,with C12-C17 and C24-C32 serving as the primary components,increasing continuously during the pyrolysis process.The generation process involved the cleavage of weak bonds,including bridging bonds(hydroxyl,oxy,peroxy,imino,amino,and nitro),ether bonds,and acid amides in the first stage(Ro=0.50%-0.75%).The carbon chains in aromatic ring structures with heteroatomic functional groups breaks in the second stage(R_(o)=0.75%-1.20%).In the third stage(R_(o)=1.20%-2.50%),the ring structures underwent ring-opening reactions to synthesize iso-short-chain olefins and radicals,while further breakdown of aliphatic chains occurred.By coupling pyrolysis simu-lation experiments and molecular simulation technology,the evolution characteristics and bond breaking mechanism of retained oil in three stages were revealed,providing a reference for the for-mation and evolution mechanism of retained oil.展开更多
[ Objective ] The aim of the research was to reveal the mechanism of Yizhikang powder treatment on dairy cattle with retained placenta from the hemorheological perspective. [ Method] Dairy cattle with retained placent...[ Objective ] The aim of the research was to reveal the mechanism of Yizhikang powder treatment on dairy cattle with retained placenta from the hemorheological perspective. [ Method] Dairy cattle with retained placenta were treated with oral administration of Yizhikang powder. And their hemorheological indexes were measured and compared with the corresponding indicators of pre-administration group, healthy group, and control group (sick but untreated).[ Result] There was large decrease amplitude in the indexes (whole blood viscosity, plasma viscosity, whole blood viscosity reduction viscosity, ESR, ESR equation K value, fibrinogen content, platelet aggregation rate, RBC deformability IF value) of treated dairy cattle with retained placenta. By t test, the indexes, except hematocrit, decreased significantly after treatment (P〈0.05) and reached the status of post partum healthy cows. The hemorheological indexes didn't change significantly in the control group before and after treatment. [ Conclusion] Yizhikang powder could significantly improve blood flow state and reduced the occurrence of qi stagnation and blood stasis in perinatal period.展开更多
The equation which reflects the relationship between the retained austenite and strain has been proposed and clear TRIP can be obtained while the S value (An index of retained austenite stability) is less than 6.5 for...The equation which reflects the relationship between the retained austenite and strain has been proposed and clear TRIP can be obtained while the S value (An index of retained austenite stability) is less than 6.5 for Silicon-Manganese TRIP steel展开更多
The systematic chemical compositions including common C, Si, Mn, Al, and micro-alloying elements of Ti and Nb were designed for high volume fraction of retained austenite as much as possible. The thermo-cycle experime...The systematic chemical compositions including common C, Si, Mn, Al, and micro-alloying elements of Ti and Nb were designed for high volume fraction of retained austenite as much as possible. The thermo-cycle experiments were conducted by using Gleeble 2000 thermo-dynamic test machine for finding the appropriate composition. The experimental results showed that chemical composition had a significant effect on retained austenite, and the appropriate compositions were determined for commercial production of TRIP steels.展开更多
Both microstrueture and mechanical properties of low alloy steels treated by quenching and partitioning (Q&P) process were examined. The mixed microstructure of martensite and large-fractioned retained austenite (...Both microstrueture and mechanical properties of low alloy steels treated by quenching and partitioning (Q&P) process were examined. The mixed microstructure of martensite and large-fractioned retained austenite (about 27.3%) was characterized and analyzed, excellent combinations of total elongation of 19% and tensile strength of 1 835 MPa were obtained, and three-stage work hardening behavior was demonstrated during tensile test. The en hanced mechanical properties and work hardening behavior were explained based on the transformation induced plas ticity effect of large fractioned austenite.展开更多
The presence of retained austenite gives rise to deterioration of the wear resistance and fracture strength of Cr-Mo steels in many cases. Thus, the effects of heat treatments including direct quenching, martempering,...The presence of retained austenite gives rise to deterioration of the wear resistance and fracture strength of Cr-Mo steels in many cases. Thus, the effects of heat treatments including direct quenching, martempering, and austempering on the retained austenite existing in the microstrueture of these steels were investigated. Specimens were austenized at 950 ℃ followed by direct quenching using compressed and still air. The specimens were also isothermally quenched in salt bath at 200 and 300 ℃ for 2, 8, 30, and 120min. Microstructures of the specimens were studied using optical microscope (traditional black and white etching as well as color etching), scanning electron microscope (SEM), microhardness tester, and X-ray diffraction (XRD). The results showed that the lowest amount of retained austenite in the microstructure was obtained in the specimens quenched isothermally at 300 ℃ for 120 min.展开更多
Effects of silicon (Si) content on the stability of retained austenite and temper embrittlement of ultrahigh strength steels were investigated using X-ray diffraction (XRD),transmission electron microscopy (TEM)...Effects of silicon (Si) content on the stability of retained austenite and temper embrittlement of ultrahigh strength steels were investigated using X-ray diffraction (XRD),transmission electron microscopy (TEM),and other experimental methods.The results show that Si can suppress temper embrittlement,improve temper resistance,and hinder the decomposition of retained austenite.Reversed austenite appears gradually with the increase of Si content during tempering.Si has a significant effect on enhancing carbon (C) partitioning and improving the stability of retained austenite.Si and C atoms are mutually exclusive in lath bainite,while they attract each other in austenite.ε-carbides are found in 1.8wt% Si steel tempered at 250℃,and they get coarsened obviously when tempered at 400℃,leading to temper embrittlement.Not ε-carbides but acicular or lath carbides lead to temper embrittlement in 0.4wt% Si steel,which can be inferred as cementites and composite compounds.Temper embrittlement is closely related to the decomposition of retained austenite and the formation of reversed austenite.展开更多
In this work, the effect of prior cold deformation on the stability of retained austenite in GCr15 bearing steel was investigated after quenching and tempering treatment. The thermal stability was evaluated by calcula...In this work, the effect of prior cold deformation on the stability of retained austenite in GCr15 bearing steel was investigated after quenching and tempering treatment. The thermal stability was evaluated by calculating thermal activation energy for decomposition of retained austenite using differential scanning calorimeter. The mechanical stability was investigated according to the strain-induced martensitic transformation behavior of retained austenite under the standard compression testing. It is found that the prior cold deformation not only accelerates the carbide dissolution during the austenitization process but also contributes to the carbon partitioning in the tempering stage due to the higher density of phase boundaries, which results in the improvement of the thermal stability of retained austenite. Due to the enhanced carbide dissolution, the higher carbon content in the prior austenite will intensify the isotropic strain of martensitic transformation. As a consequence, the film-like retained austenite is likely to form under a higher hydrostatic pressure and thus shows a higher mechanical stability. Additionally, it is noteworthy that the benefits of the prior cold deformation to the stability of retained austenite would be saturated when the cold deformation degree is larger than 40%.展开更多
We present a study concerning Fe-0. 176C-1.31Si-1.58Mn-0.26Al-0.3Cr (wt%) steel subjected to a quenching and partitioning (Q&P) process. The results of scanning electron microscopy, transmission electron microsco...We present a study concerning Fe-0. 176C-1.31Si-1.58Mn-0.26Al-0.3Cr (wt%) steel subjected to a quenching and partitioning (Q&P) process. The results of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and tensile tests demon- strate that the microstructures primarily consist of lath martensite, retained austenite, lower bainite (LB), and a small amount of tempered martensite; moreover, few twin austenite grains were observed. In the microstrucmre, three types of retained austenite with different sizes and morphologies were observed: blocky retained austenite (-300 nm in width), film-like retained austenite (80-120 nm in width), and ul- tra-fine film-like retained austenite (30-40 nm in width). Because of the effect of the retained austenite/martensite/LB triplex microstructure, the specimens prepared using different quenching temperatures exhibit high ultimate tensile strength and yield strength. Furthermore, the strength effect of LB can partially counteract the decreasing strength effect of martensite. The formation of LB substantially reduces the amount of retained austenite. Analyses of the retained austenite and the amount of blocky retained austenite indicated that the carbon content is critical to the total elongation of Q&P steel.展开更多
Thermal decomposition of retained austenite in TRIP steel was investigated by means of differential scanning calorimetry(DSC).The decomposition curve was abnormal,and the decomposition temperature and the activation...Thermal decomposition of retained austenite in TRIP steel was investigated by means of differential scanning calorimetry(DSC).The decomposition curve was abnormal,and the decomposition temperature and the activation energy were measured by the Kissinger method,which were all higher than those in quenched steel.The thermal decomposition data of samples soaked in liquid nitrogen after TRIP treatment were all similar to those without additional low temperature treatment.It indicated that there is a high thermal stability in retained austenite of the TRIP steel at low temperature,which was also proved by XRD analysis.展开更多
A retained bile duct stone after operation for cholelithiasis still occurs and causes symptoms such as biliary colic and obstructive jaundice.An endoscopic retrograde cholangiopancreatography with endoscopic sphincter...A retained bile duct stone after operation for cholelithiasis still occurs and causes symptoms such as biliary colic and obstructive jaundice.An endoscopic retrograde cholangiopancreatography with endoscopic sphincterotomy(EST),followed by stone extraction,are usually an effective treatment for this condition.However,these procedures are associated with severe complications including pancreatitis,bleeding,and duodenal perforation.Nitrates such as glyceryl trinitrate(GTN) and isosorbide dinitrate(ISDN) are known to relax the sphincter of Oddi.In 6 cases in which a retained stone was detected following cholecystectomy,topical nitrate drip infusion via cystic duct tube(C-tube) was carried out.Retained stones of 2-3 mm diameter and no dilated common bile duct in 3 patients were removed by drip infusion of 50 mg GTN or 10 mg ISDN,which was the regular dose of intravenous injection.Three other cases failed,and EST in 2 cases and endoscopic biliary balloon dilatation in 1 case were performed.One patient developed an adverse event of nausea.Severe complications were not observed.We consider the topical nitrate drip infusion via C-tube to be old but safe,easy,and inexpensive procedure for retained bile duct stone following cholecystectomy,inasmuch as removal rate was about 50% in our cases.展开更多
The effects of finishing rolling temperature and coiling temperature on retained austen-ite were studied for hot-rolled transformation induced plasticity (TRIP) steels with different carbon content. The experimental r...The effects of finishing rolling temperature and coiling temperature on retained austen-ite were studied for hot-rolled transformation induced plasticity (TRIP) steels with different carbon content. The experimental results showed that an appropriate volume fraction of retained austenite from 6% to 11% could be obtained according to the different carbon content less than 0.20% by controlled finishing rolling and coiling for the hot-rolled TRIP steels. It can be concluded that carbon content has a significant effect on the fraction of retained austenite and coiling processing plays stronger role on retaining austenite than fishing rolling processing.展开更多
A modified tempering treatment has been designed in order to avoid the direct transformation of retained austenite(Ar)during tempering of a low-alloy Cr-Mo-V steel.Instead of the direct transformation of Ar into ferri...A modified tempering treatment has been designed in order to avoid the direct transformation of retained austenite(Ar)during tempering of a low-alloy Cr-Mo-V steel.Instead of the direct transformation of Ar into ferrite and M23C6 carbides during conventional tempering at 700℃,transformation into aggregate of ferrite and cementite has been forced by a pre-tempering at 455℃ before conventional tempering.Experiments have been performed on specimens quenched with cooling rates 1.5,3 and 12℃/s,providing different types of Ar within the as-quenched microstructures.The results show that the tempering modification does not improve the Charpy impact toughness at the highest quenching rate of 12℃/s,where the specimens cannot incur cleavage cracking induced from fine and discontinuous M23C6 carbides along lath interfaces.For the lowest quenching rate 1.5℃/s,the Charpy impact toughness can be improved,and the failure is dominated by carbide aggregates,which originate from the decomposed products of blocky Ar.This is because the tempering modification effectively suppresses the formation of coarse M23C6 carbides at interfaces between the carbide aggregate and bainitic matrix,thereby resulting in a relatively homogeneous distribution of M23C6 carbides inside carbide aggregates.Therefore,the tempering modification is recommended for large-scale forgings,in which relatively high quenching rates are difficult to achieve.展开更多
Tensile and bending properties are two critical attributes of press hardened steels(PHSs)for automotive body structural components.However,the research on these properties of PHSs with retained austenite(RA),which is ...Tensile and bending properties are two critical attributes of press hardened steels(PHSs)for automotive body structural components.However,the research on these properties of PHSs with retained austenite(RA),which is introduced to improve the mechanical properties,has not been well reported.In this study,the effect of RA on the quasi-static uniaxial tensile and three-point bending behaviors has been systematically investigated for a newly developed Cr and Si alloyed PHS.RA with various degrees of mechanical stabilities was obtained by tuning the auto-tempering of martensite through the control of the die contact pressure during the press hardening process.Mechanically stable RA provides the optimal combination of tensile and bending performance,while the PHS with RA of poor mechanical stability has a deteriorated bending toughness as manifested by a reduction of bending angle from approximately 61.6°to56.8°.However,itstensileproperties,incontrast,arethebestintermsof theproductofulti-mate tensile strength and total elongation(15.9 GPa%).This is mainly attributed to the unstable RA on the outermost surface of the bending sample.The unstable RA can easily transform into brittle martensite under local plane strain and strain gradient conditions in the bending test compared with uniaxial stress in the tensile test,promoting crack initiation and propagation.Furthermore,the effect of martensitic auto-tempering or contact pressure on the quantity and stability of RA are also discussed.This study would provide a useful reference to guide hot stamping process optimization for the newly developed Cr and Si-containing press-hardened steel.展开更多
Roller pass is one of the key factors affecting the product quality in the retained mandrel rolling process. The metal flow condition of rolling deformation area was researched using the FEA (finite element analysis...Roller pass is one of the key factors affecting the product quality in the retained mandrel rolling process. The metal flow condition of rolling deformation area was researched using the FEA (finite element analysis) software Marc. The influences of the pass bottom radius, the sidewall radius, the sidewall angle, the roller shoulder fillet radius, as well as the roller gap on the rolling process under the conditions of different friction were discussed. Based on these results, the changes of the workpiece exit width, the mandrel axial force, the rolling force, and the rolling torque associated with various parameters were determined, which would provide the basis for designing the pass and determining the rolling condition reasonably.展开更多
Five advanced high-strength transformation-induced plasticity(TRIP) steels with different chemical compositions were studied to correlate the retained austenite and nonmetallic inclusion content with their physical pr...Five advanced high-strength transformation-induced plasticity(TRIP) steels with different chemical compositions were studied to correlate the retained austenite and nonmetallic inclusion content with their physical properties and the characteristics of the resistance spot welding nuggets. Electrical and thermal properties and equilibrium phases of TRIP steels were predicted using the JMatPro? software. Retained austenite and nonmetallic inclusions were quantified by X-ray diffraction and saturation magnetization techniques. The nonmetallic inclusions were characterized by scanning electron microscopy. The results show that the contents of Si, C, Al, and Mn in TRIP steels increase both the retained austenite and the nonmetallic inclusion contents. We found that nonmetallic inclusions affect the thermal and electrical properties of the TRIP steels and that the differences between these properties tend to result in different cooling rates during the welding process. The results are discussed in terms of the electrical and thermal properties determined from the chemical composition and their impact on the resistance spot welding nuggets.展开更多
Compared with marine facies shale strata,lacustrine shale strata are more complicated in geological conditions,and thus more difficult to explore and develop.To realize economic exploration and development of lacustri...Compared with marine facies shale strata,lacustrine shale strata are more complicated in geological conditions,and thus more difficult to explore and develop.To realize economic exploration and development of lacustrine shale oil,the geological regularities of accumulation and high yield of retained movable petroleum in shale should be understood first.In this work,taking the shale strata of Kong 2 Member and Sha 3 Member in the Paleogene of Huanghua depression in the Bohai Bay Basin as examples,based on the previous joint analysis results of over ten thousand core samples and the latest oil testing,production test and geochemical data of more than 30 horizontal wells,accumulation conditions and models of retained movable petroleum in lacustrine shale were studied comprehensively.The study shows that at moderate organic matter abundance(with TOC from 2%to 4%),shale strata have the best match between oil content and brittleness,and thus are rich in oil and good in fracability.Moderate ancient lake basin size and moderate sediment supply intensity are the internal factors leading to best coupling of organic matter abundance and brittle mineral content in the shale formation.Moderate thermal evolution maturity of Ro of 0.7%–1.0%(at burial depth of 3200 to 4300 m)is the interval where oil generation from thermal evolution and oil adsorption by kerogen in shale layers match best,and retained movable petroleum is high in proportion.Moderate diagenetic evolution stage(3200 to 4300 m in the middle diagenetic stage A)is conducive to the formation of a large number of dissolved pores and organic matter pores,which provide storage space for shale oil enrichment.Moderate development degree of natural fractures(without damaging the shale oil roof and floor sealing conditions)is conducive to the storage,seepage and preservation of shale oil.The research results have overthrown the general understanding that high organic matter abundance,high maturity,and high development degree of natural fractures are conducive to shale oil enrichment,and have guided the comprehensive evaluation of shale oil and gas sweet spots and well deployment in the second member of the Kongdian Formation in the Cangdong sag and the Shahejie Formation in the Qikou sag.Industrial development of the shale oil in Kong 2 Member of the Cangdong sag has made major breakthrough,and important signs of shale oil have been found in Sha 3 Member of the Qikou sag,demonstrating huge exploration potential of lacustrine shale oil.展开更多
Through the comparison of microstructure for polygonal ferrite (PF) matrix transformation induced plasticity (TRIP) seamless steel tube at different positions before and after tensile rupture, the transformation b...Through the comparison of microstructure for polygonal ferrite (PF) matrix transformation induced plasticity (TRIP) seamless steel tube at different positions before and after tensile rupture, the transformation behavior of retained austenite (RA) was studied. The results showed that there were no yield points in tensile process and the splendid elongation and tensile strength were contributed by the uniform ferrite/bainite grains and the transformation of RA. The stability of RA was to some extent in inverse proportion with the ability of transformation induced plas ticity. The coarse retained austenite located in ferrite and ferrite/bainite laths were all transformed into martensite during the tensile process.展开更多
文摘Corrosion is an essential issue limiting the application of high-strength low-carbon steel in seawater environment. The impact of retained austenite on its corrosion behavior with immersion experiments and related corrosion sensor technology was explored. A model that clarifies the micro-galvanic effect and the heat-induced changes to the shape and composition of retained austenite was used to discuss the findings. The results indicated that retained austenite was generated following an intercritical process and demonstrated approximately 48 mV higher Volta potential than the matrix. The retained austenite content first increased and then decreased with increasing intercritical temperatures, while reaching the maximum value of 8.5% at 660℃. With the increase in retained austenite content, the corrosion rate was increased by up to 32.8% compared to “quenching + tempering” (QT) specimen. The interfaces between the retained austenite and matrix were the priority nucleation sites for corrosion. Moreover, the retained austenite reduced the corrosion resistance of the steel by increasing the micro-galvanic effect and reducing rust layer compactness.
文摘Hydrogen-induced cracking (HIC) is one of the most complex material problems that hydrogen can diffuse into and interact with microstructure, degrading their mechanical properties. Microstructural modification is an effective way to enhance the resistance to HIC. The present study focused on the relationship between the retained austenite (RA) and HIC behavior in NiCrMoV/Nb multi-alloying ultra-strength steel. Results demonstrated that the maximum volume fraction of RA of 9.31% was obtained for QL30T specimen. After the deep cryogenic pretreatment, the volume fraction of RA reduced to 8.8%. RA could reduce the effective diffusion coefficient, while deep cryogenic pretreatment increased the susceptibility of the steel to HIC by a maxim of 14.8%. This was mainly due to the transformation of retained austenite into martensite, degrading the mechanical properties under hydrogen-charged condition. In addition, the deep cryogenic pretreatment had a significant effect on the crack initiation and propagation, with the intergranular (IG) fracture becoming the dominant fracture mode where an increase in the number of secondary cracks in the section. The interfaces of RA and matrix, as well as the grain boundaries, were the preferred sites for cracks initiation.
基金financially supported by the National Natural Science Foundation of China (Grant No. 42072150)
文摘To accurately investigate the evolution characteristics and generation mechanism of retained oil,the study analyzed organic-rich lacustrine shale samples from the Paleogene Kongdian Formation in Cangdong Sag,Bohai Bay Basin.This analysis involves Rock-Eval pyrolysis,pyrolysis simulation experiments,Gas Chromatograph Mass Spectrometer(GC-MS),and reactive molecular dynamics simulations(ReaxFF).The results revealed the retained oil primarily consisted of n-alkanes with carbon numbers ranging from C14 to C36.The generation of retained oil occurred through three stages.A slow growth stage of production rate was observed before reaching the peak of oil production in Stage Ⅰ.Stage Ⅱ involved a rapid increase in oil retention,with C12-C17 and C24-C32 serving as the primary components,increasing continuously during the pyrolysis process.The generation process involved the cleavage of weak bonds,including bridging bonds(hydroxyl,oxy,peroxy,imino,amino,and nitro),ether bonds,and acid amides in the first stage(Ro=0.50%-0.75%).The carbon chains in aromatic ring structures with heteroatomic functional groups breaks in the second stage(R_(o)=0.75%-1.20%).In the third stage(R_(o)=1.20%-2.50%),the ring structures underwent ring-opening reactions to synthesize iso-short-chain olefins and radicals,while further breakdown of aliphatic chains occurred.By coupling pyrolysis simu-lation experiments and molecular simulation technology,the evolution characteristics and bond breaking mechanism of retained oil in three stages were revealed,providing a reference for the for-mation and evolution mechanism of retained oil.
基金Supported by Science and Technology Key Projects of Xinjiang Pro-duction and Construction Corps (2006GG22)~~
文摘[ Objective ] The aim of the research was to reveal the mechanism of Yizhikang powder treatment on dairy cattle with retained placenta from the hemorheological perspective. [ Method] Dairy cattle with retained placenta were treated with oral administration of Yizhikang powder. And their hemorheological indexes were measured and compared with the corresponding indicators of pre-administration group, healthy group, and control group (sick but untreated).[ Result] There was large decrease amplitude in the indexes (whole blood viscosity, plasma viscosity, whole blood viscosity reduction viscosity, ESR, ESR equation K value, fibrinogen content, platelet aggregation rate, RBC deformability IF value) of treated dairy cattle with retained placenta. By t test, the indexes, except hematocrit, decreased significantly after treatment (P〈0.05) and reached the status of post partum healthy cows. The hemorheological indexes didn't change significantly in the control group before and after treatment. [ Conclusion] Yizhikang powder could significantly improve blood flow state and reduced the occurrence of qi stagnation and blood stasis in perinatal period.
文摘The equation which reflects the relationship between the retained austenite and strain has been proposed and clear TRIP can be obtained while the S value (An index of retained austenite stability) is less than 6.5 for Silicon-Manganese TRIP steel
文摘The systematic chemical compositions including common C, Si, Mn, Al, and micro-alloying elements of Ti and Nb were designed for high volume fraction of retained austenite as much as possible. The thermo-cycle experiments were conducted by using Gleeble 2000 thermo-dynamic test machine for finding the appropriate composition. The experimental results showed that chemical composition had a significant effect on retained austenite, and the appropriate compositions were determined for commercial production of TRIP steels.
基金Item Sponsored by Youth Science Funds of China(51101036)National Basic Research Program of China(2010CB630803)National Key Technology Support Program of China(2013BAE07B05)
文摘Both microstrueture and mechanical properties of low alloy steels treated by quenching and partitioning (Q&P) process were examined. The mixed microstructure of martensite and large-fractioned retained austenite (about 27.3%) was characterized and analyzed, excellent combinations of total elongation of 19% and tensile strength of 1 835 MPa were obtained, and three-stage work hardening behavior was demonstrated during tensile test. The en hanced mechanical properties and work hardening behavior were explained based on the transformation induced plas ticity effect of large fractioned austenite.
文摘The presence of retained austenite gives rise to deterioration of the wear resistance and fracture strength of Cr-Mo steels in many cases. Thus, the effects of heat treatments including direct quenching, martempering, and austempering on the retained austenite existing in the microstrueture of these steels were investigated. Specimens were austenized at 950 ℃ followed by direct quenching using compressed and still air. The specimens were also isothermally quenched in salt bath at 200 and 300 ℃ for 2, 8, 30, and 120min. Microstructures of the specimens were studied using optical microscope (traditional black and white etching as well as color etching), scanning electron microscope (SEM), microhardness tester, and X-ray diffraction (XRD). The results showed that the lowest amount of retained austenite in the microstructure was obtained in the specimens quenched isothermally at 300 ℃ for 120 min.
基金supported by the Project of Scientific and Technical Supporting Program of China during the 11th Five-Year Plan(No.2006BAE03A06)
文摘Effects of silicon (Si) content on the stability of retained austenite and temper embrittlement of ultrahigh strength steels were investigated using X-ray diffraction (XRD),transmission electron microscopy (TEM),and other experimental methods.The results show that Si can suppress temper embrittlement,improve temper resistance,and hinder the decomposition of retained austenite.Reversed austenite appears gradually with the increase of Si content during tempering.Si has a significant effect on enhancing carbon (C) partitioning and improving the stability of retained austenite.Si and C atoms are mutually exclusive in lath bainite,while they attract each other in austenite.ε-carbides are found in 1.8wt% Si steel tempered at 250℃,and they get coarsened obviously when tempered at 400℃,leading to temper embrittlement.Not ε-carbides but acicular or lath carbides lead to temper embrittlement in 0.4wt% Si steel,which can be inferred as cementites and composite compounds.Temper embrittlement is closely related to the decomposition of retained austenite and the formation of reversed austenite.
基金supported by the National Natural Science Foundation of China (Nos. 51575414 and 51605354)the 111 Project (B17034), the China Postdoctoral Science Foundation (No. 2017M612524)the State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (P2019-017)
文摘In this work, the effect of prior cold deformation on the stability of retained austenite in GCr15 bearing steel was investigated after quenching and tempering treatment. The thermal stability was evaluated by calculating thermal activation energy for decomposition of retained austenite using differential scanning calorimeter. The mechanical stability was investigated according to the strain-induced martensitic transformation behavior of retained austenite under the standard compression testing. It is found that the prior cold deformation not only accelerates the carbide dissolution during the austenitization process but also contributes to the carbon partitioning in the tempering stage due to the higher density of phase boundaries, which results in the improvement of the thermal stability of retained austenite. Due to the enhanced carbide dissolution, the higher carbon content in the prior austenite will intensify the isotropic strain of martensitic transformation. As a consequence, the film-like retained austenite is likely to form under a higher hydrostatic pressure and thus shows a higher mechanical stability. Additionally, it is noteworthy that the benefits of the prior cold deformation to the stability of retained austenite would be saturated when the cold deformation degree is larger than 40%.
基金funded by the China Scholarship Council (No. 201406460053)
文摘We present a study concerning Fe-0. 176C-1.31Si-1.58Mn-0.26Al-0.3Cr (wt%) steel subjected to a quenching and partitioning (Q&P) process. The results of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and tensile tests demon- strate that the microstructures primarily consist of lath martensite, retained austenite, lower bainite (LB), and a small amount of tempered martensite; moreover, few twin austenite grains were observed. In the microstrucmre, three types of retained austenite with different sizes and morphologies were observed: blocky retained austenite (-300 nm in width), film-like retained austenite (80-120 nm in width), and ul- tra-fine film-like retained austenite (30-40 nm in width). Because of the effect of the retained austenite/martensite/LB triplex microstructure, the specimens prepared using different quenching temperatures exhibit high ultimate tensile strength and yield strength. Furthermore, the strength effect of LB can partially counteract the decreasing strength effect of martensite. The formation of LB substantially reduces the amount of retained austenite. Analyses of the retained austenite and the amount of blocky retained austenite indicated that the carbon content is critical to the total elongation of Q&P steel.
基金Item Sponsored by National Natural Science Foundation of China(50171038)Belgium-China Bilateral Project BIL04/13
文摘Thermal decomposition of retained austenite in TRIP steel was investigated by means of differential scanning calorimetry(DSC).The decomposition curve was abnormal,and the decomposition temperature and the activation energy were measured by the Kissinger method,which were all higher than those in quenched steel.The thermal decomposition data of samples soaked in liquid nitrogen after TRIP treatment were all similar to those without additional low temperature treatment.It indicated that there is a high thermal stability in retained austenite of the TRIP steel at low temperature,which was also proved by XRD analysis.
文摘A retained bile duct stone after operation for cholelithiasis still occurs and causes symptoms such as biliary colic and obstructive jaundice.An endoscopic retrograde cholangiopancreatography with endoscopic sphincterotomy(EST),followed by stone extraction,are usually an effective treatment for this condition.However,these procedures are associated with severe complications including pancreatitis,bleeding,and duodenal perforation.Nitrates such as glyceryl trinitrate(GTN) and isosorbide dinitrate(ISDN) are known to relax the sphincter of Oddi.In 6 cases in which a retained stone was detected following cholecystectomy,topical nitrate drip infusion via cystic duct tube(C-tube) was carried out.Retained stones of 2-3 mm diameter and no dilated common bile duct in 3 patients were removed by drip infusion of 50 mg GTN or 10 mg ISDN,which was the regular dose of intravenous injection.Three other cases failed,and EST in 2 cases and endoscopic biliary balloon dilatation in 1 case were performed.One patient developed an adverse event of nausea.Severe complications were not observed.We consider the topical nitrate drip infusion via C-tube to be old but safe,easy,and inexpensive procedure for retained bile duct stone following cholecystectomy,inasmuch as removal rate was about 50% in our cases.
文摘The effects of finishing rolling temperature and coiling temperature on retained austen-ite were studied for hot-rolled transformation induced plasticity (TRIP) steels with different carbon content. The experimental results showed that an appropriate volume fraction of retained austenite from 6% to 11% could be obtained according to the different carbon content less than 0.20% by controlled finishing rolling and coiling for the hot-rolled TRIP steels. It can be concluded that carbon content has a significant effect on the fraction of retained austenite and coiling processing plays stronger role on retaining austenite than fishing rolling processing.
基金financially supported by the Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences(Grant No.L2019F48)。
文摘A modified tempering treatment has been designed in order to avoid the direct transformation of retained austenite(Ar)during tempering of a low-alloy Cr-Mo-V steel.Instead of the direct transformation of Ar into ferrite and M23C6 carbides during conventional tempering at 700℃,transformation into aggregate of ferrite and cementite has been forced by a pre-tempering at 455℃ before conventional tempering.Experiments have been performed on specimens quenched with cooling rates 1.5,3 and 12℃/s,providing different types of Ar within the as-quenched microstructures.The results show that the tempering modification does not improve the Charpy impact toughness at the highest quenching rate of 12℃/s,where the specimens cannot incur cleavage cracking induced from fine and discontinuous M23C6 carbides along lath interfaces.For the lowest quenching rate 1.5℃/s,the Charpy impact toughness can be improved,and the failure is dominated by carbide aggregates,which originate from the decomposed products of blocky Ar.This is because the tempering modification effectively suppresses the formation of coarse M23C6 carbides at interfaces between the carbide aggregate and bainitic matrix,thereby resulting in a relatively homogeneous distribution of M23C6 carbides inside carbide aggregates.Therefore,the tempering modification is recommended for large-scale forgings,in which relatively high quenching rates are difficult to achieve.
基金The work was financially supported by the National Natural Science Foundation of China(Nos.52111530093,52011530032,and 52071066).
文摘Tensile and bending properties are two critical attributes of press hardened steels(PHSs)for automotive body structural components.However,the research on these properties of PHSs with retained austenite(RA),which is introduced to improve the mechanical properties,has not been well reported.In this study,the effect of RA on the quasi-static uniaxial tensile and three-point bending behaviors has been systematically investigated for a newly developed Cr and Si alloyed PHS.RA with various degrees of mechanical stabilities was obtained by tuning the auto-tempering of martensite through the control of the die contact pressure during the press hardening process.Mechanically stable RA provides the optimal combination of tensile and bending performance,while the PHS with RA of poor mechanical stability has a deteriorated bending toughness as manifested by a reduction of bending angle from approximately 61.6°to56.8°.However,itstensileproperties,incontrast,arethebestintermsof theproductofulti-mate tensile strength and total elongation(15.9 GPa%).This is mainly attributed to the unstable RA on the outermost surface of the bending sample.The unstable RA can easily transform into brittle martensite under local plane strain and strain gradient conditions in the bending test compared with uniaxial stress in the tensile test,promoting crack initiation and propagation.Furthermore,the effect of martensitic auto-tempering or contact pressure on the quantity and stability of RA are also discussed.This study would provide a useful reference to guide hot stamping process optimization for the newly developed Cr and Si-containing press-hardened steel.
基金Item Sponsored by National Natural Science Foundation of China (50675187)Natural Science Foundation for Youths of Hebei Province of China (E2010001161)
文摘Roller pass is one of the key factors affecting the product quality in the retained mandrel rolling process. The metal flow condition of rolling deformation area was researched using the FEA (finite element analysis) software Marc. The influences of the pass bottom radius, the sidewall radius, the sidewall angle, the roller shoulder fillet radius, as well as the roller gap on the rolling process under the conditions of different friction were discussed. Based on these results, the changes of the workpiece exit width, the mandrel axial force, the rolling force, and the rolling torque associated with various parameters were determined, which would provide the basis for designing the pass and determining the rolling condition reasonably.
基金the Coordinación de la Investigación Científica(CIC)of the Universidad Michoacana de San Nicolás de Hidalgo(UMSNH-México)for the support during this project(CIC-UMSNH-1.8)sponsored by the National Council on Science and Technology(Consejo Nacional de Ciencia y Tecnología-México)and would like to thank for the support during this project N.B.254928
文摘Five advanced high-strength transformation-induced plasticity(TRIP) steels with different chemical compositions were studied to correlate the retained austenite and nonmetallic inclusion content with their physical properties and the characteristics of the resistance spot welding nuggets. Electrical and thermal properties and equilibrium phases of TRIP steels were predicted using the JMatPro? software. Retained austenite and nonmetallic inclusions were quantified by X-ray diffraction and saturation magnetization techniques. The nonmetallic inclusions were characterized by scanning electron microscopy. The results show that the contents of Si, C, Al, and Mn in TRIP steels increase both the retained austenite and the nonmetallic inclusion contents. We found that nonmetallic inclusions affect the thermal and electrical properties of the TRIP steels and that the differences between these properties tend to result in different cooling rates during the welding process. The results are discussed in terms of the electrical and thermal properties determined from the chemical composition and their impact on the resistance spot welding nuggets.
基金Supported by the PetroChina Science and Technology Major Project(2019E-2601,2018E-11)
文摘Compared with marine facies shale strata,lacustrine shale strata are more complicated in geological conditions,and thus more difficult to explore and develop.To realize economic exploration and development of lacustrine shale oil,the geological regularities of accumulation and high yield of retained movable petroleum in shale should be understood first.In this work,taking the shale strata of Kong 2 Member and Sha 3 Member in the Paleogene of Huanghua depression in the Bohai Bay Basin as examples,based on the previous joint analysis results of over ten thousand core samples and the latest oil testing,production test and geochemical data of more than 30 horizontal wells,accumulation conditions and models of retained movable petroleum in lacustrine shale were studied comprehensively.The study shows that at moderate organic matter abundance(with TOC from 2%to 4%),shale strata have the best match between oil content and brittleness,and thus are rich in oil and good in fracability.Moderate ancient lake basin size and moderate sediment supply intensity are the internal factors leading to best coupling of organic matter abundance and brittle mineral content in the shale formation.Moderate thermal evolution maturity of Ro of 0.7%–1.0%(at burial depth of 3200 to 4300 m)is the interval where oil generation from thermal evolution and oil adsorption by kerogen in shale layers match best,and retained movable petroleum is high in proportion.Moderate diagenetic evolution stage(3200 to 4300 m in the middle diagenetic stage A)is conducive to the formation of a large number of dissolved pores and organic matter pores,which provide storage space for shale oil enrichment.Moderate development degree of natural fractures(without damaging the shale oil roof and floor sealing conditions)is conducive to the storage,seepage and preservation of shale oil.The research results have overthrown the general understanding that high organic matter abundance,high maturity,and high development degree of natural fractures are conducive to shale oil enrichment,and have guided the comprehensive evaluation of shale oil and gas sweet spots and well deployment in the second member of the Kongdian Formation in the Cangdong sag and the Shahejie Formation in the Qikou sag.Industrial development of the shale oil in Kong 2 Member of the Cangdong sag has made major breakthrough,and important signs of shale oil have been found in Sha 3 Member of the Qikou sag,demonstrating huge exploration potential of lacustrine shale oil.
基金Item Sponsored by Key Project of National Eleventh-Five Year Research Program of China(2006BAE03A08)Fundamental Research Funds for Central Universities of China(N100607002)
文摘Through the comparison of microstructure for polygonal ferrite (PF) matrix transformation induced plasticity (TRIP) seamless steel tube at different positions before and after tensile rupture, the transformation behavior of retained austenite (RA) was studied. The results showed that there were no yield points in tensile process and the splendid elongation and tensile strength were contributed by the uniform ferrite/bainite grains and the transformation of RA. The stability of RA was to some extent in inverse proportion with the ability of transformation induced plas ticity. The coarse retained austenite located in ferrite and ferrite/bainite laths were all transformed into martensite during the tensile process.