Livestock farming is a critical pillar of Tajikistan’s national economy and livelihood security.However,significant economic challenges in the country have led to the degradation of grassland ecosystems.This degradat...Livestock farming is a critical pillar of Tajikistan’s national economy and livelihood security.However,significant economic challenges in the country have led to the degradation of grassland ecosystems.This degradation has not only reduced the productivity of grassland ecosystems but also severely impacted their ecological functions.A particularly concerning consequence is the threat to biodiversity,as the survival and persistence of endemic,rare,and endangered plant species are at serious risk,thereby diminishing the value of species’genetic resources.Based on the data from multiple sources such as literature reviews,field observations,and national statistics,this study employed a systematic literature review and meta-analysis to investigate the current status,causes of degradation,and restoration measures for grassland ecosystems in Tajikistan.The results revealed that Tajikistan’s grassland ecosystems support exceptionally high plant species diversity,comprising over 4500 vascular plant species,including nearly 1500 endemic and sub-endemic taxa that constitute a unique genetic reservoir.These ecosystems are experiencing severe degradation,characterized by significantly reduced vegetation cover and declining species richness.Palatable forage species are increasingly being displaced by unpalatable,thorny,and poisonous species.The primary drivers of degradation include excessive grazing pressure,which disrupts plant reproductive cycles and regeneration capacity,habitat fragmentation due to urbanization and infrastructure development,and uncontrolled exploitation of medicinal and edible plants.Climate change,particularly rising temperatures and altered precipitation patterns,further exacerbates these anthropogenic pressures.Ecological restoration experiments suggested that both ecosystem productivity and plant species diversity are significantly enhanced by systematic reseeding trials using altitude-adapted native species.These findings underscore the necessity of establishing scientifically grounded approaches for ecological restoration.展开更多
Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision...Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision process is formulated as a Markov decision process(MDP)model to maximize the modularity.Corresponding key partitioning constraints on parallel restoration are considered.Second,based on the partitioning objective and constraints,the reward function of the partitioning MDP model is set by adopting a relative deviation normalization scheme to reduce mutual interference between the reward and penalty in the reward function.The soft bonus scaling mechanism is introduced to mitigate overestimation caused by abrupt jumps in the reward.Then,the deep Q network method is applied to solve the partitioning MDP model and generate partitioning schemes.Two experience replay buffers are employed to speed up the training process of the method.Finally,case studies on the IEEE 39-bus test system demonstrate that the proposed method can generate a high-modularity partitioning result that meets all key partitioning constraints,thereby improving the parallelism and reliability of the restoration process.Moreover,simulation results demonstrate that an appropriate discount factor is crucial for ensuring both the convergence speed and the stability of the partitioning training.展开更多
Alzheimer’s disease(AD)is the most common form of dementia,affecting over 50 million people worldwide.This figure is projected to nearly double every 20 years,reaching 82 million by 2030 and 152 million by 2050(Alzhe...Alzheimer’s disease(AD)is the most common form of dementia,affecting over 50 million people worldwide.This figure is projected to nearly double every 20 years,reaching 82 million by 2030 and 152 million by 2050(Alzheimer’s Disease International).The apolipoproteinε4(APOE4)allele is the strongest genetic risk factor for late-onset AD(after age 65 years).Apolipoprotein E,a lipid transporter,exists in three variants:ε2,ε3,andε4.APOEε2(APOE2)is protective against AD,APOEε3(APOE3)is neutral,while APOE4 significantly increases the risk.Individuals with one copy of APOE4 have a 4-fold greater risk of developing AD,and those with two copies face an 8-fold risk compared to non-carriers.Even in cognitively normal individuals,APOE4 carriers exhibit brain metabolic and vascular deficits decades before amyloid-beta(Aβ)plaques and neurofibrillary tau tangles emerge-the hallmark pathologies of AD(Reiman et al.,2001,2005;Thambisetty et al.,2010).Notably,studies have demonstrated reduced glucose uptake,or hypometabolism,in brain regions vulnerable to AD in asymptomatic middle-aged APOE4 carriers,long before clinical symptoms arise(Reiman et al.,2001,2005).展开更多
Nerve trauma commonly results in chronic neuropathic pain. This is by triggering the release of proinflammatory mediators from local and invading cells that induce inflammation and nociceptive neuron hyperexcitability...Nerve trauma commonly results in chronic neuropathic pain. This is by triggering the release of proinflammatory mediators from local and invading cells that induce inflammation and nociceptive neuron hyperexcitability. Even without apparent inflammation, injury sites are associated with increased inflammatory markers. This review focuses on how it might be possible to reduce neuropathic pain by reducing inflammation. Physiologically, pain is resolved by a combination of the out-migration of pro-inflammatory cells from the injury site, the down-regulation of the genes underlying the inflammation, up-regulating genes for anti-inflammatory mediators, and reducing nociceptive neuron hyperexcitability. While various techniques reduce chronic neuropathic pain, the best are effective on < 50% of patients, no technique reliably or permanently eliminates neuropathic pain. This is because most techniques are predominantly aimed at reducing pain, not inflammation. In addition, while single factors reduce pain, increasing evidence indicates significant and longer-lasting pain relief requires multiple factors acting simultaneously. Therefore, it is not surprising that extensive data indicate that the application of platelet-rich plasma provides more significant and longer-lasting pain suppression than other techniques, although its analgesia is neither complete nor permanent. However, several case reports indicate that platelet-rich plasma can induce permanent neuropathic pain elimination when the platelet concentration is significantly increased and is applied to longer nerve lengths. This review examines the primary triggers of the development and maintenance of neuropathic pain and techniques that reduce chronic neuropathic pain. The application of plateletrich plasma holds great promise for providing complete and permanent chronic neuropathic pain elimination.展开更多
Retinal ganglion cells are the bridging neurons between the eye and the central nervous system,transmitting visual signals to the brain.The injury and loss of retinal ganglion cells are the primary pathological change...Retinal ganglion cells are the bridging neurons between the eye and the central nervous system,transmitting visual signals to the brain.The injury and loss of retinal ganglion cells are the primary pathological changes in several retinal degenerative diseases,including glaucoma,ischemic optic neuropathy,diabetic neuropathy,and optic neuritis.In mammals,injured retinal ganglion cells lack regenerative capacity and undergo apoptotic cell death within a few days of injury.Additionally,these cells exhibit limited regenerative ability,ultimately contributing to vision impairment and potentially leading to blindness.Currently,the only effective clinical treatment for glaucoma is to prevent vision loss by lowering intraocular pressure through medications or surgery;however,this approach cannot halt the effect of retinal ganglion cell loss on visual function.This review comprehensively investigates the mechanisms underlying retinal ganglion cell degeneration in retinal degenerative diseases and further explores the current status and potential of cell replacement therapy for regenerating retinal ganglion cells.As our understanding of the complex processes involved in retinal ganglion cell degeneration deepens,we can explore new treatment strategies,such as cell transplantation,which may offer more effective ways to mitigate the effect of retinal degenerative diseases on vision.展开更多
The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurode...The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.展开更多
In recent years,forest therapy has become a popular method for improving human health.However,guided forest therapy is not always easily accessible,and forest walking is a more convenient and feasible alterna-tive.The...In recent years,forest therapy has become a popular method for improving human health.However,guided forest therapy is not always easily accessible,and forest walking is a more convenient and feasible alterna-tive.Therefore,it is important to determine whether forest walking has the same effect as guided forest therapy.To investigate this,we conducted a campus forest-based study in which 247 university students were randomly assigned to participate in either forest walking or guided forest therapy activities.The study measured physical and psychological interventions in participants,while controlling for the inten-sity of physical activity.The findings indicated that both approaches were effective in promoting stress relief and physical and mental recovery among university students.No significant difference in effectiveness was observed between the two approaches.Furthermore,we constructed a mediation model that combines the biophilia hypothesis,stress reduction theory,and attention restoration theory to investigate the psychological mechanisms underlying the restorative effects of forest activities.Our findings indi-cate that an increase in nature connectedness significantly predicts a reduction in state anxiety.This effect is medi-ated by perceived restorativeness and a combination chain of mediators from perceived restorativeness to mood.This study presents a justification for selecting forest walking as a means of stress relief when guided forest therapy is unavail-able.Additionally,it enhances our comprehension of how forests contribute to the restorative effects experienced by individuals.展开更多
Decades of species composition changes can lead to the eutrophication-driven loss of submerged macrophytes in shallow lakes.Investigating the mechanisms of these nature-and human driven changes is crucial for the rest...Decades of species composition changes can lead to the eutrophication-driven loss of submerged macrophytes in shallow lakes.Investigating the mechanisms of these nature-and human driven changes is crucial for the restoration and management of such lakes.To investigate the changes in aquatic macrophyte communities over the past two centuries,we analyzed macrofossils in sediments from a^(210)Pb-dated core obtained in Dongping Lake in the lower Huanghe(Yellow)River Basin,eastern China.Multiple factor analysis(MFA)revealed an association between macrophyte shifts and changes in various environmental stressors(invertebrates,grain size,geochemistry,and documented records),indicating that macrophyte community changes before 1960 were predominately driven by flood disturbances.Ever since,anthropogenic pollution and the construction of water conservancy projects have caused variations in hydrology and nutrients,leading to significant changes in the composition of macrophyte communities.Macrofossil data reveal a decline in diversity and pollution-intolerant species during the late 1980 s and the early 2000 s,which is indicative of eutrophication.We also found that the current environment of Dongping Lake exhibits a clear degeneration in emergent plants and a proliferation of macrophyte species associated with eutrophic conditions,which could be attributed to water level fluctuation and nutrient input due to the water supply from the eastern route of the South-to-North Water Diversion Project as well as climate warming.Our results provide valuable insights for assessing ecosystem health and the restoration and management of Dongping Lake and similar lakes in the Huanghe River region and elsewhere.展开更多
Enhancing soil organic matter characteristics,ameliorating physical structure,mitigating heavy metal toxicity,and hastening mineral weathering processes are crucial approaches to accomplish the transition of tailings ...Enhancing soil organic matter characteristics,ameliorating physical structure,mitigating heavy metal toxicity,and hastening mineral weathering processes are crucial approaches to accomplish the transition of tailings substrate to a soil-like substrate.The incorporation of biomass co-pyrolysis and plant colonization has been established to be a significant factor in soil substrate formation and soil pollutant remediation.Despite this,there is presently an absence of research efforts aimed at synergistically utilizing these two technologies to expedite the process of mining tailings soil substrate formation.The current study aimed to investigate the underlying mechanism of geochemical changes and rapid mineral weathering during the process of transforming tailings substrate into a soil-like substrate,under the combined effects of biomass co-smoldering pyrolysis and plant colonization.The findings of this study suggest that the incorporation of smoldering pyrolysis and plant colonization induces a high-temperature effect and biological effects,which enhance the physical and chemical properties of tailings,while simultaneously accelerating the rate of mineral weathering.Notable improvements include the amelioration of extreme pH levels,nutrient enrichment,the formation of aggregates,and an increase in enzyme activity,all of which collectively demonstrate the successful attainment of tailings substrate reconstruction.Evidence of the acceleratedweathering was verified by phase and surfacemorphology analysis using X-ray diffraction and scanning electron microscopy.Discovered corrosion and fragmentation on the surface ofminerals.The weathering resulted in corrosion and fragmentation of the surface of the treated mineral.This study confirms that co-smoldering pyrolysis of biomass,combined with plant colonization,can effectively promote the transformation of tailings into soil-like substrates.This method has can effectively address the key challenges that have previously hindered sustainable development of the mining industry and provides a novel approach for ecological restoration of tailings deposits.展开更多
Facial recognition systems have become increasingly significant in public security efforts. They play a crucial role in apprehending criminals and locating missing children and elderly individuals. Nevertheless, in pr...Facial recognition systems have become increasingly significant in public security efforts. They play a crucial role in apprehending criminals and locating missing children and elderly individuals. Nevertheless, in practical applications, around 30% to 50% of images are obstructed to varied extents, for as by the presence of masks, glasses, or hats. Repairing the masked facial images will enhance face recognition accuracy by 10% to 20%. Simultaneously, market research indicates a rising demand for efficient facial recognition technology within the security and surveillance sectors, with projections suggesting that the global facial recognition market would exceed US$3 billion by 2025. Therefore, finding a prompt and efficient solution to fix the masked face and enhance its accuracy has become a pressing issue that has to be resolved. Currently, the generative adversarial network has shown excellent performance in the field of image restoration, with high precision and good quality of restoration results, but it consumes a lot of computing resources. Based on this, this paper proposes a model architecture that uses the U-Net network to replace the generator in the generative adversarial network, and replaces all traditional convolutional layers with Depthwise Separable Convolutional (DWSC) to make the entire network lightweight. Ultimately, We utilise the Peak Signal-to-Noise Ratio (PSNR) value to assess the efficacy of the developed model. We select samples with occlusion levels ranging from 10%–15% and 20%–30%, yielding PSNR values of 35.51 and 30.33, respectively. In contrast, the PSNR values of the three predominant algorithms in image restoration—PM, ShiftNet, and PICNet—are all below 30, demonstrating the superiority of the model presented in this paper. However, the model presented in this work possesses certain drawbacks. This work employs solely black rectangles to replicate real-life occlusions. Future study should utilise tangible objects, like as sunglasses and masks, to directly imitate occlusions, so enhancing the accuracy of the restoration effect. The model presented in this study can be further expanded from image restoration to video restoration to investigate the potential for dynamic occlusion repair.展开更多
River ethics,a significant advancement inspired by Chinese President XI Jinping's ecological civilization thought,embodies the philosophical essence of river governance and represents a legacy of innovation by gen...River ethics,a significant advancement inspired by Chinese President XI Jinping's ecological civilization thought,embodies the philosophical essence of river governance and represents a legacy of innovation by generations of water resources professionals.Rooted in river ecology,it offers a framework for advancing modern water governance systems and capabilities.This paper examines eight dimensions of river ethics to provide actionable recommendations:enhancing knowledge systems on water,rivers,and lakes;addressing critical challenges in water governance to strengthen the foundational role of water authorities in ensuring water security,resource management,ecological sustainability and environmental protection;optimizing water project planning to mitigate ecological impacts;ensuring high standards in the lifecycle management of water projects;refining water diversion strategies for precise scheduling;utilizing ecosystem complexity for river and lake restoration;implementing tiered management of water-related disasters;and driving reforms to modernize water governance systems and mechanisms.展开更多
The metabolite lactate (L-lactate) can be generated and released by diverse brain cells,including neurons,astrocytes,and oligodendrocytes (Kann,2023;Rae et al.,2024).Lactate production usually requires the degradation...The metabolite lactate (L-lactate) can be generated and released by diverse brain cells,including neurons,astrocytes,and oligodendrocytes (Kann,2023;Rae et al.,2024).Lactate production usually requires the degradation of glucose (D-glucose)-and glycogen in astrocytes-to pyruvate by glycolysis and subsequent conversion of pyruvate to lactate by the enzyme lactate dehydrogenase(Figure 1A;Dienel,2019;Rae et al.,2024).展开更多
Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhance...Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhanced networkmanagement capabilities than those of traditional networks.However,because SDN is designed to ensure high-level service availability,it faces additional challenges.One of themost critical challenges is ensuring efficient detection and recovery from link failures in the data plane.Such failures can significantly impact network performance and lead to service outages,making resiliency a key concern for the effective adoption of SDN.Since the recovery process is intrinsically dependent on timely failure detection,this research surveys and analyzes the current literature on both failure detection and recovery approaches in SDN.The survey provides a critical comparison of existing failure detection techniques,highlighting their advantages and disadvantages.Additionally,it examines the current failure recovery methods,categorized as either restoration-based or protection-based,and offers a comprehensive comparison of their strengths and limitations.Lastly,future research challenges and directions are discussed to address the shortcomings of existing failure recovery methods.展开更多
With the rapid economic development and continuous expansion of human activities,forest degradation—characterized by reduced forest stock within the forest including declining carbon storage—poses significant threat...With the rapid economic development and continuous expansion of human activities,forest degradation—characterized by reduced forest stock within the forest including declining carbon storage—poses significant threats to ecosystem stability.Understanding the current status of forest degradation and assessing potential carbon stocks in China are of strategic importance for making forest restoration efforts and enhancing carbon sequestration capacity.In this study,we used the national forest inventory data from 2009 to 2018 to develop a set of standard measures for assessing degraded forests across China,based on five key indicators:forest accumulation growth rate(FAGR),forest recruitment rate(FRR),tree species reduction rate(TSRR),forest canopy cover reduction rate(FCCRR),and forest disaster level(FDL).Additionally,we estimated standing carbon stock,potential carbon stock,and theoretical space to grow by developing a stand growth model,which accounts for stand density across different site classes,to evaluate the restoration potential of degraded forests.The results indicate that degraded forest area in China is 36.15 million hectares,accounting for 20.10% of a total forest area.Standing carbon stock and potential carbon stock of degraded forests in China are 23.93 million tons and 61.90 million tons,respectively.Overall,degraded forest varies significantly across different regions.The results highlight the important trade-offs among environmental factors,policy decisions,and forest conditions,providing a robust foundation for developing measures to enhance forest quality.展开更多
Link failure is a critical issue in large networks and must be effectively addressed.In software-defined networks(SDN),link failure recovery schemes can be categorized into proactive and reactive approaches.Reactive s...Link failure is a critical issue in large networks and must be effectively addressed.In software-defined networks(SDN),link failure recovery schemes can be categorized into proactive and reactive approaches.Reactive schemes have longer recovery times while proactive schemes provide faster recovery but overwhelm the memory of switches by flow entries.As SDN adoption grows,ensuring efficient recovery from link failures in the data plane becomes crucial.In particular,data center networks(DCNs)demand rapid recovery times and efficient resource utilization to meet carrier-grade requirements.This paper proposes an efficient Decentralized Failure Recovery(DFR)model for SDNs,meeting recovery time requirements and optimizing switch memory resource consumption.The DFR model enables switches to autonomously reroute traffic upon link failures without involving the controller,achieving fast recovery times while minimizing memory usage.DFR employs the Fast Failover Group in the OpenFlow standard for local recovery without requiring controller communication and utilizes the k-shortest path algorithm to proactively install backup paths,allowing immediate local recovery without controller intervention and enhancing overall network stability and scalability.DFR employs flow entry aggregation techniques to reduce switch memory usage.Instead of matching flow entries to the destination host’s MAC address,DFR matches packets to the destination switch’s MAC address.This reduces the switches’Ternary Content-Addressable Memory(TCAM)consumption.Additionally,DFR modifies Address Resolution Protocol(ARP)replies to provide source hosts with the destination switch’s MAC address,facilitating flow entry aggregation without affecting normal network operations.The performance of DFR is evaluated through the network emulator Mininet 2.3.1 and Ryu 3.1 as SDN controller.For different number of active flows,number of hosts per edge switch,and different network sizes,the proposed model outperformed various failure recovery models:restoration-based,protection by flow entries,protection by group entries and protection by Vlan-tagging model in terms of recovery time,switch memory consumption and controller overhead which represented the number of flow entry updates to recover from the failure.Experimental results demonstrate that DFR achieves recovery times under 20 milliseconds,satisfying carrier-grade requirements for rapid failure recovery.Additionally,DFR reduces switch memory usage by up to 95%compared to traditional protection methods and minimizes controller load by eliminating the need for controller intervention during failure recovery.Theresults underscore the efficiency and scalability of the DFR model,making it a practical solution for enhancing network resilience in SDN environments.展开更多
This study focuses on urgent research on restoring and enhancing carbon storage capacity in the Beibu Gulf Urban Agglomer-ation of China,a key area in the‘Belt and Road’Initiative,which aligns with carbon peaking an...This study focuses on urgent research on restoring and enhancing carbon storage capacity in the Beibu Gulf Urban Agglomer-ation of China,a key area in the‘Belt and Road’Initiative,which aligns with carbon peaking and neutrality goals.This research ana-lyzes the spatial characteristics of carbon metabolism from 2000 to 2020 and uses models to identify stable carbon sink areas,positive carbon flow corridors,and carbon sequestration nodes.The goal is to construct a carbon metabolism spatial security pattern(CMSSP)and propose territorial ecological restoration strategies under different development demand scenarios.The results show the following:1)in 2020,the study area’s carbon sink decreased by 8.29×10^(4) t C/yr compared with that in 2010 and by 10.83×10^(4) t C/yr compared with that in 2000.High-carbon sinks were found mainly in mountainous areas,whereas low-carbon sinks are concentrated in urban con-struction land,rural residential areas,and land margins.2)From 2000 to 2020,the spatial security pattern of carbon metabolism tended to be‘high in the middle of the east and west and low in the gulf.’In 2000,2010,and 2020,16 stable carbon sinks were identified.The carbon energy flow density in Guangxi was greater than that in Guangdong and Hainan,with positive carbon flow corridors located primarily in Guangxi and Guangdong.The number of carbon sequestration nodes remained stable at approximately 15,mainly in Guangxi and Hainan.3)Scenario simulations revealed that under the Nature-based mild restoration scenario,the carbon sink rate will reach 611.85×10^(4) t C/yr by 2030 and increase to 612.45×10^(4) t C/yr by 2060,with stable carbon sinks increasing to 18.In the restora-tion scenario based on Anti-globalization,the carbon sink will decrease from 610.24×10^(4) t C/yr in 2030 to 605.19×10^(4) t C/yr in 2060,with the disappearance of some positive carbon flow corridors and stable carbon sinks.Under the Human-based sustainable restoration scenario,the carbon sink area will decrease from 607.00×10^(4) t C/yr in 2030 to 596.39×10^(4) t C/yr in 2060,with carbon sink areas frag-menting and positive carbon flow corridors becoming less dense.4)On the basis of the current and predicted CMSSPs,this study ex-plores spatial ecological restoration strategies for high-carbon storage areas in bay urban agglomerations at four levels:the land control region,urban agglomeration structure system,carbon sink structure and bay structure control region.展开更多
Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychoso...Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychosocial implications for affected people, their families, and their communities;the financial costs can be challenging for their families and health institutions. Treatments aimed at restoring the spinal cord after spinal cord injury, which have been tested in animal models or clinical trials, generally seek to counteract one or more of the secondary mechanisms of injury to limit the extent of the initial damage. Most published works on structural/functional restoration in acute and chronic spinal cord injury stages use a single type of treatment: a drug or trophic factor, transplant of a cell type, and implantation of a biomaterial. Despite the significant benefits reported in animal models, when translating these successful therapeutic strategies to humans, the result in clinical trials has been considered of little relevance because the improvement, when present, is usually insufficient. Until now, most studies designed to promote neuroprotection or regeneration at different stages after spinal cord injury have used single treatments. Considering the occurrence of various secondary mechanisms of injury in the acute and sub-acute phases of spinal cord injury, it is reasonable to speculate that more than one therapeutic agent could be required to promote structural and functional restoration of the damaged spinal cord. Treatments that combine several therapeutic agents, targeting different mechanisms of injury, which, when used as a single therapy, have shown some benefits, allow us to assume that they will have synergistic beneficial effects. Thus, this narrative review article aims to summarize current trends in the use of strategies that combine therapeutic agents administered simultaneously or sequentially, seeking structural and functional restoration of the injured spinal cord.展开更多
To scientifically evaluate the restoration performance of ancient city walls,Terahertz time-domain spectroscopy(THz-TDS)and infrared thermal imaging technology were applied to assess the Desheng Fortress(Ming Dynasty)...To scientifically evaluate the restoration performance of ancient city walls,Terahertz time-domain spectroscopy(THz-TDS)and infrared thermal imaging technology were applied to assess the Desheng Fortress(Ming Dynasty).Three representative sections were examined:adobe brick masonry repaired(Area 1),well-preserved original(Area 2),and layer-by-layer ramming repaired(Area 3).THz spectral data revealed significant differences between Area 1(time delay:3.72 ps;refractive index:2.224)and Area 2(time delay:3.02 ps;refractive index:2.107),while Area 3(time delay:3.12 ps;refractive index:2.098)demonstrated nearly identical THz spectral data to Area 2.Infrared thermal imaging also showed that the Area 3 restored by layer-by-layer ramming exhibited greater uniformity with fewer instances of cracks,capillary phenomena,or biological diseases.The proposed point-surface integrated evaluation methodology synergistically combines infrared thermography mapping of heritage surfaces with THz spectral datasets acquired through in-situ micro-sampling,enabling quantitative restoration assessment and providing a novel approach for scientifically validating traditional conservation techniques.展开更多
Lhasa’s large-scale afforestation in high-altitude areas has worked wonders.THIS year’s March 21 marks the 13th International Day of Forests.Afforestation is an effective way to deal with climate change;it helps res...Lhasa’s large-scale afforestation in high-altitude areas has worked wonders.THIS year’s March 21 marks the 13th International Day of Forests.Afforestation is an effective way to deal with climate change;it helps restore the balance of the ecosystem while also providing support for the economic development of local communities.As the first ecological restoration project of large-scale mountain afforestation in Xizang Autonomous Region.展开更多
Brain-computer interfaces(BCIs)have the potential to restore communication for people who have lost the ability to speak owing to a neurological disease or injury.BCIs have been used to translate the neural correlates...Brain-computer interfaces(BCIs)have the potential to restore communication for people who have lost the ability to speak owing to a neurological disease or injury.BCIs have been used to translate the neural correlates of attempted speech into text1-3.However,text communication fails to capture the nuances of human speech,such as prosody and immediately hearing one's own voice.展开更多
基金supported by the National Key Research and Development Program of China(2025YFE0103800,2023YFE0102600,2024YFE0214200).
文摘Livestock farming is a critical pillar of Tajikistan’s national economy and livelihood security.However,significant economic challenges in the country have led to the degradation of grassland ecosystems.This degradation has not only reduced the productivity of grassland ecosystems but also severely impacted their ecological functions.A particularly concerning consequence is the threat to biodiversity,as the survival and persistence of endemic,rare,and endangered plant species are at serious risk,thereby diminishing the value of species’genetic resources.Based on the data from multiple sources such as literature reviews,field observations,and national statistics,this study employed a systematic literature review and meta-analysis to investigate the current status,causes of degradation,and restoration measures for grassland ecosystems in Tajikistan.The results revealed that Tajikistan’s grassland ecosystems support exceptionally high plant species diversity,comprising over 4500 vascular plant species,including nearly 1500 endemic and sub-endemic taxa that constitute a unique genetic reservoir.These ecosystems are experiencing severe degradation,characterized by significantly reduced vegetation cover and declining species richness.Palatable forage species are increasingly being displaced by unpalatable,thorny,and poisonous species.The primary drivers of degradation include excessive grazing pressure,which disrupts plant reproductive cycles and regeneration capacity,habitat fragmentation due to urbanization and infrastructure development,and uncontrolled exploitation of medicinal and edible plants.Climate change,particularly rising temperatures and altered precipitation patterns,further exacerbates these anthropogenic pressures.Ecological restoration experiments suggested that both ecosystem productivity and plant species diversity are significantly enhanced by systematic reseeding trials using altitude-adapted native species.These findings underscore the necessity of establishing scientifically grounded approaches for ecological restoration.
基金funded by the Beijing Engineering Research Center of Electric Rail Transportation.
文摘Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision process is formulated as a Markov decision process(MDP)model to maximize the modularity.Corresponding key partitioning constraints on parallel restoration are considered.Second,based on the partitioning objective and constraints,the reward function of the partitioning MDP model is set by adopting a relative deviation normalization scheme to reduce mutual interference between the reward and penalty in the reward function.The soft bonus scaling mechanism is introduced to mitigate overestimation caused by abrupt jumps in the reward.Then,the deep Q network method is applied to solve the partitioning MDP model and generate partitioning schemes.Two experience replay buffers are employed to speed up the training process of the method.Finally,case studies on the IEEE 39-bus test system demonstrate that the proposed method can generate a high-modularity partitioning result that meets all key partitioning constraints,thereby improving the parallelism and reliability of the restoration process.Moreover,simulation results demonstrate that an appropriate discount factor is crucial for ensuring both the convergence speed and the stability of the partitioning training.
基金supported by National Institute on Aging(NIH-NIA)R01AG054459(to ALL).
文摘Alzheimer’s disease(AD)is the most common form of dementia,affecting over 50 million people worldwide.This figure is projected to nearly double every 20 years,reaching 82 million by 2030 and 152 million by 2050(Alzheimer’s Disease International).The apolipoproteinε4(APOE4)allele is the strongest genetic risk factor for late-onset AD(after age 65 years).Apolipoprotein E,a lipid transporter,exists in three variants:ε2,ε3,andε4.APOEε2(APOE2)is protective against AD,APOEε3(APOE3)is neutral,while APOE4 significantly increases the risk.Individuals with one copy of APOE4 have a 4-fold greater risk of developing AD,and those with two copies face an 8-fold risk compared to non-carriers.Even in cognitively normal individuals,APOE4 carriers exhibit brain metabolic and vascular deficits decades before amyloid-beta(Aβ)plaques and neurofibrillary tau tangles emerge-the hallmark pathologies of AD(Reiman et al.,2001,2005;Thambisetty et al.,2010).Notably,studies have demonstrated reduced glucose uptake,or hypometabolism,in brain regions vulnerable to AD in asymptomatic middle-aged APOE4 carriers,long before clinical symptoms arise(Reiman et al.,2001,2005).
文摘Nerve trauma commonly results in chronic neuropathic pain. This is by triggering the release of proinflammatory mediators from local and invading cells that induce inflammation and nociceptive neuron hyperexcitability. Even without apparent inflammation, injury sites are associated with increased inflammatory markers. This review focuses on how it might be possible to reduce neuropathic pain by reducing inflammation. Physiologically, pain is resolved by a combination of the out-migration of pro-inflammatory cells from the injury site, the down-regulation of the genes underlying the inflammation, up-regulating genes for anti-inflammatory mediators, and reducing nociceptive neuron hyperexcitability. While various techniques reduce chronic neuropathic pain, the best are effective on < 50% of patients, no technique reliably or permanently eliminates neuropathic pain. This is because most techniques are predominantly aimed at reducing pain, not inflammation. In addition, while single factors reduce pain, increasing evidence indicates significant and longer-lasting pain relief requires multiple factors acting simultaneously. Therefore, it is not surprising that extensive data indicate that the application of platelet-rich plasma provides more significant and longer-lasting pain suppression than other techniques, although its analgesia is neither complete nor permanent. However, several case reports indicate that platelet-rich plasma can induce permanent neuropathic pain elimination when the platelet concentration is significantly increased and is applied to longer nerve lengths. This review examines the primary triggers of the development and maintenance of neuropathic pain and techniques that reduce chronic neuropathic pain. The application of plateletrich plasma holds great promise for providing complete and permanent chronic neuropathic pain elimination.
基金supported by the National Key Research and Development Program of China,No.2019YFA0111200the National Natural Science Foundation of China,Nos.U23A20436,82371047+3 种基金Key Research Project in Shanxi Province,No.202302130501008Shanxi Provincial Science Fund for Distinguished Young Scholars,No.202103021221008Key Research and Development Program in Shanxi Province,No.202204051001023Shanxi Medical University Doctor’s Startup Fund Project,No.SD22028(all to YG)。
文摘Retinal ganglion cells are the bridging neurons between the eye and the central nervous system,transmitting visual signals to the brain.The injury and loss of retinal ganglion cells are the primary pathological changes in several retinal degenerative diseases,including glaucoma,ischemic optic neuropathy,diabetic neuropathy,and optic neuritis.In mammals,injured retinal ganglion cells lack regenerative capacity and undergo apoptotic cell death within a few days of injury.Additionally,these cells exhibit limited regenerative ability,ultimately contributing to vision impairment and potentially leading to blindness.Currently,the only effective clinical treatment for glaucoma is to prevent vision loss by lowering intraocular pressure through medications or surgery;however,this approach cannot halt the effect of retinal ganglion cell loss on visual function.This review comprehensively investigates the mechanisms underlying retinal ganglion cell degeneration in retinal degenerative diseases and further explores the current status and potential of cell replacement therapy for regenerating retinal ganglion cells.As our understanding of the complex processes involved in retinal ganglion cell degeneration deepens,we can explore new treatment strategies,such as cell transplantation,which may offer more effective ways to mitigate the effect of retinal degenerative diseases on vision.
文摘The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.
基金supported by Forestry discipline innovation team of Fujian Agriculture and Forestry University(72202200205)Laboratory of Virtual Teaching and Research on Forest Therapy Specialty of Taiwan Strait of Fujian Agriculture and Forestry University(111TD2104).
文摘In recent years,forest therapy has become a popular method for improving human health.However,guided forest therapy is not always easily accessible,and forest walking is a more convenient and feasible alterna-tive.Therefore,it is important to determine whether forest walking has the same effect as guided forest therapy.To investigate this,we conducted a campus forest-based study in which 247 university students were randomly assigned to participate in either forest walking or guided forest therapy activities.The study measured physical and psychological interventions in participants,while controlling for the inten-sity of physical activity.The findings indicated that both approaches were effective in promoting stress relief and physical and mental recovery among university students.No significant difference in effectiveness was observed between the two approaches.Furthermore,we constructed a mediation model that combines the biophilia hypothesis,stress reduction theory,and attention restoration theory to investigate the psychological mechanisms underlying the restorative effects of forest activities.Our findings indi-cate that an increase in nature connectedness significantly predicts a reduction in state anxiety.This effect is medi-ated by perceived restorativeness and a combination chain of mediators from perceived restorativeness to mood.This study presents a justification for selecting forest walking as a means of stress relief when guided forest therapy is unavail-able.Additionally,it enhances our comprehension of how forests contribute to the restorative effects experienced by individuals.
基金Supported by the National Natural Science Foundation of China(Nos.42007397,41871073)the Natural Science Foundation of Shandong Province(No.ZR2020QD002)。
文摘Decades of species composition changes can lead to the eutrophication-driven loss of submerged macrophytes in shallow lakes.Investigating the mechanisms of these nature-and human driven changes is crucial for the restoration and management of such lakes.To investigate the changes in aquatic macrophyte communities over the past two centuries,we analyzed macrofossils in sediments from a^(210)Pb-dated core obtained in Dongping Lake in the lower Huanghe(Yellow)River Basin,eastern China.Multiple factor analysis(MFA)revealed an association between macrophyte shifts and changes in various environmental stressors(invertebrates,grain size,geochemistry,and documented records),indicating that macrophyte community changes before 1960 were predominately driven by flood disturbances.Ever since,anthropogenic pollution and the construction of water conservancy projects have caused variations in hydrology and nutrients,leading to significant changes in the composition of macrophyte communities.Macrofossil data reveal a decline in diversity and pollution-intolerant species during the late 1980 s and the early 2000 s,which is indicative of eutrophication.We also found that the current environment of Dongping Lake exhibits a clear degeneration in emergent plants and a proliferation of macrophyte species associated with eutrophic conditions,which could be attributed to water level fluctuation and nutrient input due to the water supply from the eastern route of the South-to-North Water Diversion Project as well as climate warming.Our results provide valuable insights for assessing ecosystem health and the restoration and management of Dongping Lake and similar lakes in the Huanghe River region and elsewhere.
基金supported by the National Natural Science Foundation of China(No.52060011).
文摘Enhancing soil organic matter characteristics,ameliorating physical structure,mitigating heavy metal toxicity,and hastening mineral weathering processes are crucial approaches to accomplish the transition of tailings substrate to a soil-like substrate.The incorporation of biomass co-pyrolysis and plant colonization has been established to be a significant factor in soil substrate formation and soil pollutant remediation.Despite this,there is presently an absence of research efforts aimed at synergistically utilizing these two technologies to expedite the process of mining tailings soil substrate formation.The current study aimed to investigate the underlying mechanism of geochemical changes and rapid mineral weathering during the process of transforming tailings substrate into a soil-like substrate,under the combined effects of biomass co-smoldering pyrolysis and plant colonization.The findings of this study suggest that the incorporation of smoldering pyrolysis and plant colonization induces a high-temperature effect and biological effects,which enhance the physical and chemical properties of tailings,while simultaneously accelerating the rate of mineral weathering.Notable improvements include the amelioration of extreme pH levels,nutrient enrichment,the formation of aggregates,and an increase in enzyme activity,all of which collectively demonstrate the successful attainment of tailings substrate reconstruction.Evidence of the acceleratedweathering was verified by phase and surfacemorphology analysis using X-ray diffraction and scanning electron microscopy.Discovered corrosion and fragmentation on the surface ofminerals.The weathering resulted in corrosion and fragmentation of the surface of the treated mineral.This study confirms that co-smoldering pyrolysis of biomass,combined with plant colonization,can effectively promote the transformation of tailings into soil-like substrates.This method has can effectively address the key challenges that have previously hindered sustainable development of the mining industry and provides a novel approach for ecological restoration of tailings deposits.
基金supported by the Double First-Class Innovation Research Project for People’s Public Security University of China(No.2023SYL07).
文摘Facial recognition systems have become increasingly significant in public security efforts. They play a crucial role in apprehending criminals and locating missing children and elderly individuals. Nevertheless, in practical applications, around 30% to 50% of images are obstructed to varied extents, for as by the presence of masks, glasses, or hats. Repairing the masked facial images will enhance face recognition accuracy by 10% to 20%. Simultaneously, market research indicates a rising demand for efficient facial recognition technology within the security and surveillance sectors, with projections suggesting that the global facial recognition market would exceed US$3 billion by 2025. Therefore, finding a prompt and efficient solution to fix the masked face and enhance its accuracy has become a pressing issue that has to be resolved. Currently, the generative adversarial network has shown excellent performance in the field of image restoration, with high precision and good quality of restoration results, but it consumes a lot of computing resources. Based on this, this paper proposes a model architecture that uses the U-Net network to replace the generator in the generative adversarial network, and replaces all traditional convolutional layers with Depthwise Separable Convolutional (DWSC) to make the entire network lightweight. Ultimately, We utilise the Peak Signal-to-Noise Ratio (PSNR) value to assess the efficacy of the developed model. We select samples with occlusion levels ranging from 10%–15% and 20%–30%, yielding PSNR values of 35.51 and 30.33, respectively. In contrast, the PSNR values of the three predominant algorithms in image restoration—PM, ShiftNet, and PICNet—are all below 30, demonstrating the superiority of the model presented in this paper. However, the model presented in this work possesses certain drawbacks. This work employs solely black rectangles to replicate real-life occlusions. Future study should utilise tangible objects, like as sunglasses and masks, to directly imitate occlusions, so enhancing the accuracy of the restoration effect. The model presented in this study can be further expanded from image restoration to video restoration to investigate the potential for dynamic occlusion repair.
基金Three Gorges Follow-up Work Fund,Grant/Award Number:WE0161A042024National Key Research Program of China,Grant/Award Number:2024YFC3210900。
文摘River ethics,a significant advancement inspired by Chinese President XI Jinping's ecological civilization thought,embodies the philosophical essence of river governance and represents a legacy of innovation by generations of water resources professionals.Rooted in river ecology,it offers a framework for advancing modern water governance systems and capabilities.This paper examines eight dimensions of river ethics to provide actionable recommendations:enhancing knowledge systems on water,rivers,and lakes;addressing critical challenges in water governance to strengthen the foundational role of water authorities in ensuring water security,resource management,ecological sustainability and environmental protection;optimizing water project planning to mitigate ecological impacts;ensuring high standards in the lifecycle management of water projects;refining water diversion strategies for precise scheduling;utilizing ecosystem complexity for river and lake restoration;implementing tiered management of water-related disasters;and driving reforms to modernize water governance systems and mechanisms.
文摘The metabolite lactate (L-lactate) can be generated and released by diverse brain cells,including neurons,astrocytes,and oligodendrocytes (Kann,2023;Rae et al.,2024).Lactate production usually requires the degradation of glucose (D-glucose)-and glycogen in astrocytes-to pyruvate by glycolysis and subsequent conversion of pyruvate to lactate by the enzyme lactate dehydrogenase(Figure 1A;Dienel,2019;Rae et al.,2024).
文摘Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhanced networkmanagement capabilities than those of traditional networks.However,because SDN is designed to ensure high-level service availability,it faces additional challenges.One of themost critical challenges is ensuring efficient detection and recovery from link failures in the data plane.Such failures can significantly impact network performance and lead to service outages,making resiliency a key concern for the effective adoption of SDN.Since the recovery process is intrinsically dependent on timely failure detection,this research surveys and analyzes the current literature on both failure detection and recovery approaches in SDN.The survey provides a critical comparison of existing failure detection techniques,highlighting their advantages and disadvantages.Additionally,it examines the current failure recovery methods,categorized as either restoration-based or protection-based,and offers a comprehensive comparison of their strengths and limitations.Lastly,future research challenges and directions are discussed to address the shortcomings of existing failure recovery methods.
基金supported by National Key Research and Development Program of China(No.2021YFD2200405(S.R.L.))Natural Science Foundation of China(Grant No.31971653).
文摘With the rapid economic development and continuous expansion of human activities,forest degradation—characterized by reduced forest stock within the forest including declining carbon storage—poses significant threats to ecosystem stability.Understanding the current status of forest degradation and assessing potential carbon stocks in China are of strategic importance for making forest restoration efforts and enhancing carbon sequestration capacity.In this study,we used the national forest inventory data from 2009 to 2018 to develop a set of standard measures for assessing degraded forests across China,based on five key indicators:forest accumulation growth rate(FAGR),forest recruitment rate(FRR),tree species reduction rate(TSRR),forest canopy cover reduction rate(FCCRR),and forest disaster level(FDL).Additionally,we estimated standing carbon stock,potential carbon stock,and theoretical space to grow by developing a stand growth model,which accounts for stand density across different site classes,to evaluate the restoration potential of degraded forests.The results indicate that degraded forest area in China is 36.15 million hectares,accounting for 20.10% of a total forest area.Standing carbon stock and potential carbon stock of degraded forests in China are 23.93 million tons and 61.90 million tons,respectively.Overall,degraded forest varies significantly across different regions.The results highlight the important trade-offs among environmental factors,policy decisions,and forest conditions,providing a robust foundation for developing measures to enhance forest quality.
文摘Link failure is a critical issue in large networks and must be effectively addressed.In software-defined networks(SDN),link failure recovery schemes can be categorized into proactive and reactive approaches.Reactive schemes have longer recovery times while proactive schemes provide faster recovery but overwhelm the memory of switches by flow entries.As SDN adoption grows,ensuring efficient recovery from link failures in the data plane becomes crucial.In particular,data center networks(DCNs)demand rapid recovery times and efficient resource utilization to meet carrier-grade requirements.This paper proposes an efficient Decentralized Failure Recovery(DFR)model for SDNs,meeting recovery time requirements and optimizing switch memory resource consumption.The DFR model enables switches to autonomously reroute traffic upon link failures without involving the controller,achieving fast recovery times while minimizing memory usage.DFR employs the Fast Failover Group in the OpenFlow standard for local recovery without requiring controller communication and utilizes the k-shortest path algorithm to proactively install backup paths,allowing immediate local recovery without controller intervention and enhancing overall network stability and scalability.DFR employs flow entry aggregation techniques to reduce switch memory usage.Instead of matching flow entries to the destination host’s MAC address,DFR matches packets to the destination switch’s MAC address.This reduces the switches’Ternary Content-Addressable Memory(TCAM)consumption.Additionally,DFR modifies Address Resolution Protocol(ARP)replies to provide source hosts with the destination switch’s MAC address,facilitating flow entry aggregation without affecting normal network operations.The performance of DFR is evaluated through the network emulator Mininet 2.3.1 and Ryu 3.1 as SDN controller.For different number of active flows,number of hosts per edge switch,and different network sizes,the proposed model outperformed various failure recovery models:restoration-based,protection by flow entries,protection by group entries and protection by Vlan-tagging model in terms of recovery time,switch memory consumption and controller overhead which represented the number of flow entry updates to recover from the failure.Experimental results demonstrate that DFR achieves recovery times under 20 milliseconds,satisfying carrier-grade requirements for rapid failure recovery.Additionally,DFR reduces switch memory usage by up to 95%compared to traditional protection methods and minimizes controller load by eliminating the need for controller intervention during failure recovery.Theresults underscore the efficiency and scalability of the DFR model,making it a practical solution for enhancing network resilience in SDN environments.
基金Under the auspices of the National Natural Science Foundation of China(No.52268008)。
文摘This study focuses on urgent research on restoring and enhancing carbon storage capacity in the Beibu Gulf Urban Agglomer-ation of China,a key area in the‘Belt and Road’Initiative,which aligns with carbon peaking and neutrality goals.This research ana-lyzes the spatial characteristics of carbon metabolism from 2000 to 2020 and uses models to identify stable carbon sink areas,positive carbon flow corridors,and carbon sequestration nodes.The goal is to construct a carbon metabolism spatial security pattern(CMSSP)and propose territorial ecological restoration strategies under different development demand scenarios.The results show the following:1)in 2020,the study area’s carbon sink decreased by 8.29×10^(4) t C/yr compared with that in 2010 and by 10.83×10^(4) t C/yr compared with that in 2000.High-carbon sinks were found mainly in mountainous areas,whereas low-carbon sinks are concentrated in urban con-struction land,rural residential areas,and land margins.2)From 2000 to 2020,the spatial security pattern of carbon metabolism tended to be‘high in the middle of the east and west and low in the gulf.’In 2000,2010,and 2020,16 stable carbon sinks were identified.The carbon energy flow density in Guangxi was greater than that in Guangdong and Hainan,with positive carbon flow corridors located primarily in Guangxi and Guangdong.The number of carbon sequestration nodes remained stable at approximately 15,mainly in Guangxi and Hainan.3)Scenario simulations revealed that under the Nature-based mild restoration scenario,the carbon sink rate will reach 611.85×10^(4) t C/yr by 2030 and increase to 612.45×10^(4) t C/yr by 2060,with stable carbon sinks increasing to 18.In the restora-tion scenario based on Anti-globalization,the carbon sink will decrease from 610.24×10^(4) t C/yr in 2030 to 605.19×10^(4) t C/yr in 2060,with the disappearance of some positive carbon flow corridors and stable carbon sinks.Under the Human-based sustainable restoration scenario,the carbon sink area will decrease from 607.00×10^(4) t C/yr in 2030 to 596.39×10^(4) t C/yr in 2060,with carbon sink areas frag-menting and positive carbon flow corridors becoming less dense.4)On the basis of the current and predicted CMSSPs,this study ex-plores spatial ecological restoration strategies for high-carbon storage areas in bay urban agglomerations at four levels:the land control region,urban agglomeration structure system,carbon sink structure and bay structure control region.
文摘Spinal cord injury results in paralysis, sensory disturbances, sphincter dysfunction, and multiple systemic secondary conditions, most arising from autonomic dysregulation. All this produces profound negative psychosocial implications for affected people, their families, and their communities;the financial costs can be challenging for their families and health institutions. Treatments aimed at restoring the spinal cord after spinal cord injury, which have been tested in animal models or clinical trials, generally seek to counteract one or more of the secondary mechanisms of injury to limit the extent of the initial damage. Most published works on structural/functional restoration in acute and chronic spinal cord injury stages use a single type of treatment: a drug or trophic factor, transplant of a cell type, and implantation of a biomaterial. Despite the significant benefits reported in animal models, when translating these successful therapeutic strategies to humans, the result in clinical trials has been considered of little relevance because the improvement, when present, is usually insufficient. Until now, most studies designed to promote neuroprotection or regeneration at different stages after spinal cord injury have used single treatments. Considering the occurrence of various secondary mechanisms of injury in the acute and sub-acute phases of spinal cord injury, it is reasonable to speculate that more than one therapeutic agent could be required to promote structural and functional restoration of the damaged spinal cord. Treatments that combine several therapeutic agents, targeting different mechanisms of injury, which, when used as a single therapy, have shown some benefits, allow us to assume that they will have synergistic beneficial effects. Thus, this narrative review article aims to summarize current trends in the use of strategies that combine therapeutic agents administered simultaneously or sequentially, seeking structural and functional restoration of the injured spinal cord.
文摘To scientifically evaluate the restoration performance of ancient city walls,Terahertz time-domain spectroscopy(THz-TDS)and infrared thermal imaging technology were applied to assess the Desheng Fortress(Ming Dynasty).Three representative sections were examined:adobe brick masonry repaired(Area 1),well-preserved original(Area 2),and layer-by-layer ramming repaired(Area 3).THz spectral data revealed significant differences between Area 1(time delay:3.72 ps;refractive index:2.224)and Area 2(time delay:3.02 ps;refractive index:2.107),while Area 3(time delay:3.12 ps;refractive index:2.098)demonstrated nearly identical THz spectral data to Area 2.Infrared thermal imaging also showed that the Area 3 restored by layer-by-layer ramming exhibited greater uniformity with fewer instances of cracks,capillary phenomena,or biological diseases.The proposed point-surface integrated evaluation methodology synergistically combines infrared thermography mapping of heritage surfaces with THz spectral datasets acquired through in-situ micro-sampling,enabling quantitative restoration assessment and providing a novel approach for scientifically validating traditional conservation techniques.
文摘Lhasa’s large-scale afforestation in high-altitude areas has worked wonders.THIS year’s March 21 marks the 13th International Day of Forests.Afforestation is an effective way to deal with climate change;it helps restore the balance of the ecosystem while also providing support for the economic development of local communities.As the first ecological restoration project of large-scale mountain afforestation in Xizang Autonomous Region.
文摘Brain-computer interfaces(BCIs)have the potential to restore communication for people who have lost the ability to speak owing to a neurological disease or injury.BCIs have been used to translate the neural correlates of attempted speech into text1-3.However,text communication fails to capture the nuances of human speech,such as prosody and immediately hearing one's own voice.