Dehydration melting of metasupracrustal rocks at mid-to deep-crustal levels can generate water undersaturated granitic melt.In this study,we evaluate the potential of~1.89–1.88 Ga metasupracrustal rocks of the Precam...Dehydration melting of metasupracrustal rocks at mid-to deep-crustal levels can generate water undersaturated granitic melt.In this study,we evaluate the potential of~1.89–1.88 Ga metasupracrustal rocks of the Precambrian of southern Finland as source rocks for the 1.86–1.79 Ga late-orogenic leucogranites in the region,using the Rhyolite-MELTS approach.Melt close in composition to leucogranite is produced over a range of realistic pressures(5 to 8 kbar)and temperatures(800 to 850℃),at 20%–30%of partial melting,allowing separation of melt from unmelted residue.The solid residue is a dry,enderbitic to charnoenderbitic ganulite depleted in incompatible components,and will only yield further melt above 1000–1050℃,when rapidly increasing fractions of increasingly calcic(granodioritic to tonalitic)melts are formed.The solid residue after melt extraction is incapable of producing syenogranitic magmas similar to the Mid-Proterozoic,A-type rapakivi granites on further heating.The granitic fraction of the syenogranitic rapakivi complexes must thus have been formed by a different chain of processes,involving mantle-derived mafic melts and melts from crustal rock types not conditioned by the preceding late-orogenic Svecofennian anatexis.展开更多
Mansehra Granite(MG)is massive and sheared which contains light-gray to jet-black schistosed and light-gray micaceous quartzite restites.The later possess relatively higher quartz as compared with mica contents wherea...Mansehra Granite(MG)is massive and sheared which contains light-gray to jet-black schistosed and light-gray micaceous quartzite restites.The later possess relatively higher quartz as compared with mica contents whereas the former has predominant quartz and feldspar.Enclosure of apatite and zircon in micas and absence of sillimanite in schistosed and non-foliated facies suggest that these rocks are restite in nature.展开更多
文摘Dehydration melting of metasupracrustal rocks at mid-to deep-crustal levels can generate water undersaturated granitic melt.In this study,we evaluate the potential of~1.89–1.88 Ga metasupracrustal rocks of the Precambrian of southern Finland as source rocks for the 1.86–1.79 Ga late-orogenic leucogranites in the region,using the Rhyolite-MELTS approach.Melt close in composition to leucogranite is produced over a range of realistic pressures(5 to 8 kbar)and temperatures(800 to 850℃),at 20%–30%of partial melting,allowing separation of melt from unmelted residue.The solid residue is a dry,enderbitic to charnoenderbitic ganulite depleted in incompatible components,and will only yield further melt above 1000–1050℃,when rapidly increasing fractions of increasingly calcic(granodioritic to tonalitic)melts are formed.The solid residue after melt extraction is incapable of producing syenogranitic magmas similar to the Mid-Proterozoic,A-type rapakivi granites on further heating.The granitic fraction of the syenogranitic rapakivi complexes must thus have been formed by a different chain of processes,involving mantle-derived mafic melts and melts from crustal rock types not conditioned by the preceding late-orogenic Svecofennian anatexis.
基金provided to Tehseen Zafar and greatly supported by grants of Institute of Geology,University of the Punjab Lahore,Pakistan.
文摘Mansehra Granite(MG)is massive and sheared which contains light-gray to jet-black schistosed and light-gray micaceous quartzite restites.The later possess relatively higher quartz as compared with mica contents whereas the former has predominant quartz and feldspar.Enclosure of apatite and zircon in micas and absence of sillimanite in schistosed and non-foliated facies suggest that these rocks are restite in nature.