Resting-state functional magnetic resonance imaging has revealed disrupted brain network connectivity in adults and teenagers with cerebral palsy. However, the specific brain networks implicated in neonatal cases rema...Resting-state functional magnetic resonance imaging has revealed disrupted brain network connectivity in adults and teenagers with cerebral palsy. However, the specific brain networks implicated in neonatal cases remain poorly understood. In this study, we recruited 14 termborn infants with mild hypoxic ischemic encephalopathy and 14 term-born infants with severe hypoxic ischemic encephalopathy from Changzhou Children's Hospital, China. Resting-state functional magnetic resonance imaging data showed efficient small-world organization in whole-brain networks in both the mild and severe hypoxic ischemic encephalopathy groups. However, compared with the mild hypoxic ischemic encephalopathy group, the severe hypoxic ischemic encephalopathy group exhibited decreased local efficiency and a low clustering coefficient. The distribution of hub regions in the functional networks had fewer nodes in the severe hypoxic ischemic encephalopathy group compared with the mild hypoxic ischemic encephalopathy group. Moreover, nodal efficiency was reduced in the left rolandic operculum, left supramarginal gyrus, bilateral superior temporal gyrus, and right middle temporal gyrus. These results suggest that the topological structure of the resting state functional network in children with severe hypoxic ischemic encephalopathy is clearly distinct from that in children with mild hypoxic ischemic encephalopathy, and may be associated with impaired language, motion, and cognition. These data indicate that it may be possible to make early predictions regarding brain development in children with severe hypoxic ischemic encephalopathy, enabling early interventions targeting brain function. This study was approved by the Regional Ethics Review Boards of the Changzhou Children's Hospital(approval No. 2013-001) on January 31, 2013. Informed consent was obtained from the family members of the children. The trial was registered with the Chinese Clinical Trial Registry(registration number: ChiCTR1800016409) and the protocol version is 1.0.展开更多
Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indice...Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease.展开更多
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev...Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.展开更多
BACKGROUND Successful aging(SA)refers to the ability to maintain high levels of physical,cognitive,psychological,and social engagement in old age,with high cognitive function being the key to achieving SA.AIM To explo...BACKGROUND Successful aging(SA)refers to the ability to maintain high levels of physical,cognitive,psychological,and social engagement in old age,with high cognitive function being the key to achieving SA.AIM To explore the potential characteristics of the brain network and functional connectivity(FC)of SA.METHODS Twenty-six SA individuals and 47 usual aging individuals were recruited from community-dwelling elderly,which were taken the magnetic resonance imaging scan and the global cognitive function assessment by Mini Mental State Examination(MMSE).The resting state-functional magnetic resonance imaging data were preprocessed by DPABISurf,and the brain functional network was conducted by DPABINet.The support vector machine model was constructed with altered functional connectivities to evaluate the identification value of SA.RESULTS The results found that the 6 inter-network FCs of 5 brain networks were significantly altered and related to MMSE performance.The FC of the right orbital part of the middle frontal gyrus and right angular gyrus was mostly increased and positively related to MMSE score,and the FC of the right supramarginal gyrus and right temporal pole:Middle temporal gyrus was the only one decreased and negatively related to MMSE score.All 17 significantly altered FCs of SA were taken into the support vector machine model,and the area under the curve was 0.895.CONCLUSION The identification of key brain networks and FC of SA could help us better understand the brain mechanism and further explore neuroimaging biomarkers of SA.展开更多
BACKGROUND Currently,adolescent depression is one of the most significant public health concerns,markedly influencing emotional,cognitive,and social maturation.Despite advancements in distinguish the neurobiological s...BACKGROUND Currently,adolescent depression is one of the most significant public health concerns,markedly influencing emotional,cognitive,and social maturation.Despite advancements in distinguish the neurobiological substrates underlying depression,the intricate patterns of disrupted brain network connectivity in adolescents warrant further exploration.AIM To elucidate the neural correlates of adolescent depression by examining brain network connectivity using resting-state functional magnetic resonance imaging(rs-fMRI).METHODS The study cohort comprised 74 depressed adolescents and 59 healthy controls aged 12 to 17 years.Participants underwent rs-fMRI to evaluate functional connectivity within and across critical brain networks,including the visual,default mode network(DMN),dorsal attention,salience,somatomotor,and frontoparietal control networks.RESULTS Analyses revealed pronounced functional disparities within key neural circuits among adolescents with depression.The results demonstrated existence of hemispheric asymmetries characterized by enhanced activity in the left visual network,which contrasted the diminished activity in the right hemisphere.The DMN facilitated increased activity within the left prefrontal cortex and reduced engagement in the right hemisphere,implicating disrupted self-referential and emotional processing mechanisms.Additionally,an overactive right dorsal attention network and a hypoactive salience network were identified,underscoring significant abnormalities in attentional and emotional regulation in adolescent depression.CONCLUSION The findings from this study underscore distinct neural connectivity disruptions in adolescent depression,underscoring the critical role of specific neurobiological markers for precise early diagnosis of adolescent depression.The observed functional asymmetries and network-specific deviations elucidate the complex neurobiological architecture of adolescent depression,supporting the development of targeted therapeutic strategies.展开更多
Background: Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain f...Background: Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain functional connectivity network of acupuncture stimulation. Objective: To offer an overview of the different influences of acupuncture on the brain functional connec- tivity network from studies using resting-state fMRI. Search strategy: The authors performed a systematic search according to PRISMA guidelines, The database PubMed was searched from January 1, 2006 to December 31, 2016 with restriction to human studies in English language. Inclusion criteria: Electronic searches were conducted in PubMed using the keywords "acupuncture" and "neuroimaging" or "resting-state fMRI" or "functional connectivity", Data extraction and analysis: Selection of included articles, data extraction and methodological quality assessments were respectively conducted by two review authors. Results: Forty-four resting-state fMRI studies were included in this systematic review according to inclu- sion criteria. Thirteen studies applied manual acupuncture vs. sham, four studies applied electro- acupuncture vs. sham, two studies also compared transcutaneous electrical acupoint stimulation vs. sham, and nine applied sham acupoint as control. Nineteen studies with a total number of 574 healthy subjects selected to perform fMRI only considered healthy adult volunteers. The brain functional connec- tivity of the patients had varying degrees of change. Compared with sham acupuncture, verum acupunc- ture could increase default mode network and sensorimotor network connectivity with pain-, affective- and memory-related brain areas. It has significantly greater connectivity of genuine acupuncture between the periaqueductal gray, anterior cingulate cortex, left posterior cingulate cortex, right anterior insula, limbic/paralimbic and precuneus compared with sham acupuncture. Some research had also shown that acupuncture could adjust the limbic-paralimbic-neocortical network, brainstem, cerebellum, subcortical and hippocampus brain areas. Conclusion: It can be presumed that the functional connectivity network is closely related to the mech- anism of acupuncture, and central integration plays a critical role in the acupuncture mechanism.展开更多
Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the...Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the independent components of activation and network connectivity between brain regions, we examined brain activity status and development trends in children aged 3 and 5 years. These data could provide a reference for brain function rehabilitation in children with illness or abnormal function. We acquired functional magnetic resonance images from 15 3-year-old children and 15 5-year-old children under natural sleep cond让ions. The participants were recruited from five kindergartens in the Nanshan District of Shenzhen City, China. The parents of the participants signed an informed consent form with the premise that they had been fully informed regarding the experimental protocol. We used masked independent component analysis and BrainNet Viewer software to explore the independent components of the brain and correlation connections between brain regions. We identified seven independent components in the two groups of children, including the executive control network, the dorsal attention network, the default mode network, the left frontoparietal network, the right frontoparietal network, the salience network, and the motor network. In the default mode network, the posterior cingulate cortex, medial frontal gyrus, and inferior parietal lobule were activated in both 3- and 5-year-old children, supporting the "three-brain region theory” of the default mode network. In the frontoparietal network, the frontal and parietal gyri were activated in the two groups of children, and functional connectivity was strengthened in 5-year-olds compared with 3-year-olds, although the nodes and network connections were not yet mature. The high-correlation network connections in the default mode networks and dorsal attention networks had been significantly strengthened in 5-year-olds vs. 3-year-olds. Further, the salience network in the 3-year-old children included an activated insula/inferior frontal gyrus-anterior cingulate cortex network circu让 and an activated thalamus-parahippocampal-posterior cingulate cortex-subcortical regions network circuit. By the age of 5 years, no des and high-correlation network connections (edges) were reduced in the salience network. Overall, activation of the dorsal attention network, default mode network, left frontoparietal network, and right frontoparietal network increased (the volume of activation increased, the signals strengthened, and the high-correlation connections increased and strengthened) in 5-year-olds compared with 3-year-olds, but activation in some brain nodes weakened or disappeared in the salience network, and the network connections (edges) were reduced. Between the ages of 3 and 5 years, we observed a tendency for function in some brain regions to be strengthened and for the generalization of activation to be reduced, indicating that specialization begins to develop at this time. The study protocol was approved by the local ethics committee of the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences in China with approval No. SIAT-IRB- 131115-H0075 on November 15, 2013.展开更多
Examining the spontaneous BOLD activity to understand the neural mechanism of Parkinson’s disease(PD)with mild cognitive impairment(MCI)is a focus in resting-state functional MRI(rs-fMRI)studies.This study aimed to i...Examining the spontaneous BOLD activity to understand the neural mechanism of Parkinson’s disease(PD)with mild cognitive impairment(MCI)is a focus in resting-state functional MRI(rs-fMRI)studies.This study aimed to investigate the alteration of brain functional connectivity in PD with MCI in a systematical way at two levels:functional connectivity analysis within resting state networks(RSNs)and functional network connectivity(FNC)analysis.Using group independent component analysis(ICA)on rs-fMRI data acquired from 30 participants(14 healthy controls and 16 PD patients with MCI),16 RSNs were identified,and functional connectivity analysis within the RSNs and FNC analysis were carried out between groups.Compared to controls,patients with PD showed decreased functional connectivity within putamen network,thalamus network,cerebellar network,attention network,and self-referential network,and increased functional connectivity within execution network.Globally disturbed,mostly increased functional connectivity of FNC was observed in PD group,and insular network and execution network were the dominant network with extensively increased functional connectivity with other RSNs.Cerebellar network showed decreased functional connectivity with caudate network,insular network,and self-referential network.In general,decreased functional connectivity within RSNs and globally disturbed,mostly increased functional connectivity of FNC may be characteristics of PD.Increased functional connectivity within execution network may be an early marker of PD.The multi-perspective study based on RSNs may be a valuable means to assess functional changes corresponding to specific RSN,contributing to the understanding of the neural mechanism of PD.展开更多
Mood disorders/psychosis have been associated with dysfunctions in the default mode network(DMN).However,the relative contributions of DMN regions to state and trait disturbances in pediatric bipolar disorder(PBD)rema...Mood disorders/psychosis have been associated with dysfunctions in the default mode network(DMN).However,the relative contributions of DMN regions to state and trait disturbances in pediatric bipolar disorder(PBD)remain unclear.The aim of this study was to investigate the possible mechanisms of PBD through brain imaging and explore the influence of psychotic symptoms on functional alterations in PBD patients.Twenty-nine psychotic and 26 non-psychotic PBD patients,as well as 19 age-and sex-matched healthy controls underwent a restingstate functional MRI scan and the data were analyzed by independent component analysis.The DMN component from the fMRI data was extracted for each participant.Spearman's rank correlation analysis was performed between aberrant connectivity and clinical measurements.The results demonstrated that psychotic PBD was characterized by aberrant DMN connectivity in the anterior cingulate cortex/medial prefrontal cortex,bilateral caudate nucleus,bilateral angular gyri,and left middle temporal gyrus,while non-psychotic PBD was not,suggesting further impairment with the development of psychosis.In summary,we demonstrated unique impairment in DMN functional connectivity in the psychotic PBD group.These specific neuroanatomical abnormalities may shed light on the underlying pathophysiology and presentation of PBD.展开更多
Functional magnetic resonance imaging studies have shown that the insular cortex has a signif- icant role in pain identification and information integration, while the default mode network is associated with cognitive...Functional magnetic resonance imaging studies have shown that the insular cortex has a signif- icant role in pain identification and information integration, while the default mode network is associated with cognitive and memory-related aspects of pain perception. However, changes in the functional connectivity between the defauk mode network and insula during pain remain unclear. This study used 3.0 T functional magnetic resonance imaging scans in 12 healthy sub- jects aged 24.8 ± 3.3 years to compare the differences in the functional activity and connectivity of the insula and default mode network between the baseline and pain condition induced by intramuscular injection of hypertonic saline. Compared with the baseline, the insula was more functionally connected with the medial prefrontal and lateral temporal cortices, whereas there was lower connectivity with the posterior cingulate cortex, precuneus and inferior parietal lobule in the pain condition. In addition, compared with baseline, the anterior cingulate cortex exhibited greater connectivity with the posterior insula, but lower connectivity with the anterior insula, during the pain condition. These data indicate that experimental low back pain led to dysfunction in the connectivity between the insula and default mode network resulting from an impairment of the regions of the brain related to cognition and emotion, suggesting the impor- tance of the interaction between these regions in pain processing.展开更多
Background:The aim of this research was to investigate the changes in the vision-related resting-state network (V-RSN) in pituitary adenoma (PA) patients after vision improvement,which was induced by operative tr...Background:The aim of this research was to investigate the changes in the vision-related resting-state network (V-RSN) in pituitary adenoma (PA) patients after vision improvement,which was induced by operative treatment.Methods:Ten PA patients with an improved visual acuity or/and visual field after transsphenoidal pituitary tumor resection were recruited and underwent a complete neuro-ophthalmologic evaluation,as well as an magnetic resonance imaging (MRI) protocol,including structural and resting-state functional MRI sequences before and after the operation.The regional homogeneity (ReHo) of the V-RSN was evaluated.Two sample t-test was performed to identify the significant differences in the V-RSN in the PA patients before and after transsphenoidal pituitary tumor resection.Results:Compared with the preoperation counterparts,the PA patients with improved vision after the operation exhibited reduced ReHo in the bilateral thalamus,globus pallidus,caudate nucleus,putamen nucleus,supplementary motor area,and left hippocampal formation,and increased ReHo in the bilateral cuneus gyrus,calcarine gyrus,right lingual gyrus,and fusiform gyrus.Conclusions:PA patients with improved vision exhibit increased neural activity within the visual cortex,but decreased neural activity in subareas of the multisensory and multimodal systems beyond the vision cortex.展开更多
Research on brain function after brachial plexus injury focuses on local cortical functional reorganization,and few studies have focused on brain networks after brachial plexus injury.Changes in brain networks may hel...Research on brain function after brachial plexus injury focuses on local cortical functional reorganization,and few studies have focused on brain networks after brachial plexus injury.Changes in brain networks may help understanding of brain plasticity at the global level.We hypothesized that topology of the global cerebral resting-state functional network changes after unilateral brachial plexus injury.Thus,in this cross-sectional study,we recruited eight male patients with unilateral brachial plexus injury(right handedness,mean age of 27.9±5.4years old)and eight male healthy controls(right handedness,mean age of 28.6±3.2).After acquiring and preprocessing resting-state magnetic resonance imaging data,the cerebrum was divided into 90 regions and Pearson’s correlation coefficient calculated between regions.These correlation matrices were then converted into a binary matrix with affixed sparsity values of 0.1–0.46.Under sparsity conditions,both groups satisfied this small-world property.The clustering coefficient was markedly lower,while average shortest path remarkably higher in patients compared with healthy controls.These findings confirm that cerebral functional networks in patients still show smallworld characteristics,which are highly effective in information transmission in the brain,as well as normal controls.Alternatively,varied small-worldness suggests that capacity of information transmission and integration in different brain regions in brachial plexus injury patients is damaged.展开更多
The regional specifi city of hippocampal abnormalities in late-life depression(LLD) has been demonstrated in previous studies. In this study,we sought to examine the functional connectivity(FC) patterns of hippoca...The regional specifi city of hippocampal abnormalities in late-life depression(LLD) has been demonstrated in previous studies. In this study,we sought to examine the functional connectivity(FC) patterns of hippocampal subregions in remitted late-onset depression(r LOD),a special subtype of LLD. Fourteen r LOD patients and 18 healthy controls underwent clinical and cognitive evaluations as well as resting-state functional magnetic resonance imaging scans at baseline and at ~21 months of follow-up. Each hippocampus was divided into three parts,the cornu ammonis(CA),the dentate gyrus,and the subicular complex,and then six seed-based hippocampal subregional networks were established.Longitudinal changes of the six networks over time were directly compared between the rL OD and control groups. From baseline to follow-up,the r LOD group showed a greater decline in connectivity of the left CA to the bilateral posterior cingulate cortex/precuneus(PCC/PCUN),but showed increased connectivity of the right hippocampal subregional networks with the frontal cortex(bilateral medial prefrontal cortex/anterior cingulate cortex and supplementary motor area). Further correlative analyses revealed thatthe longitudinal changes in FC between the left CA and PCC/PCUN were positively correlated with longitudinal changes in the Symbol Digit Modalities Test(r = 0.624,P = 0.017) and the Digit Span Test(r = 0.545,P = 0.044) scores in the r LOD group. These results may provide insights into the neurobiological mechanism underlying the cognitive dysfunction in r LOD patients.展开更多
AIM:To analyze changes in amplitude of low-frequency fluctuations(ALFFs)and default mode network(DMN)connectivity in the brain,using resting-state functional magnetic resonance imaging(rs-fMRI),in high myopia(HM)patie...AIM:To analyze changes in amplitude of low-frequency fluctuations(ALFFs)and default mode network(DMN)connectivity in the brain,using resting-state functional magnetic resonance imaging(rs-fMRI),in high myopia(HM)patients.METHODS:Eleven patients with HM(HM group)and 15 age-and sex-matched non-HM controls(non-HM group)were recruited.ALFFs were calculated and compared between HM group and non-HM group.Independent component analysis(ICA)was conducted to identify DMN,and comparisons between DMNs of two groups were performed.Region-of-interest(ROI)-based analysis was performed to explore functional connectivity(FC)between DMN regions.RESULTS:Significantly increased ALFFs in left inferior temporal gyrus(ITG),bilateral rectus gyrus(REC),bilateral middle temporal gyrus(MTG),left superior temporal gyrus(STG),and left angular gyrus(ANG)were detected in HM group compared with non-HM group(all P<0.01).HM group showed increased FC in the posterior cingulate gyrus(PCC)/precuneus(preCUN)and decreased FC in the left medial prefrontal cortex(mPFG)within DMN compared with nonHM group(all P<0.01).Compared with non-HM group,HM group showed higher FC between mPFG and bilateral middle frontal gyrus(MFG),ANG,and MTG(all P<0.01).In addition,HM patients showed higher FC between PCC/(preCUN)and the right cerebellum,superior frontal gyrus(SFG),left pre CUN,superior frontal gyrus(SFG),and medial orbital of the superior frontal gyrus(ORB supmed;all P<0.01).CONCLUSION:HM patients show different ALFFs and DMNs compared with non-HM subjects,which may imply the cognitive alterations related to HM.展开更多
AIM:To investigate changes in local brain activity after laser assisted in situ keratomileusis(LASIK)in myopia patients,and further explore whether post-LASIK(POL)patients and healthy controls(HCs)can be distinguished...AIM:To investigate changes in local brain activity after laser assisted in situ keratomileusis(LASIK)in myopia patients,and further explore whether post-LASIK(POL)patients and healthy controls(HCs)can be distinguished by differences in dynamic amplitude of low-frequency fluctuations(dALFF)in specific brain regions.METHODS:The resting-state functional magnetic resonance imaging(rs-fMRI)data were collected from 15 myopic patients who underwent LASIK and 15 matched healthy controls.This method was selected to calculate the corresponding dALFF values of each participant,to compare dALFF between the groups and to determine whether dALFF distinguishes reliably between myopic patients after LASIK and HCs using the linear support vector machine(SVM)permutation test(5000 repetitions).RESULTS:dALFF was lower in POL than in HCs at the right precentral gyrus and right insula.Classification accuracy of the SVM was 89.1%(P<0.001).CONCLUSION:The activity of spontaneous neurons in the right precentral gyrus and right insula of myopic patients change significantly after LASIK.SVM can correctly classify POL patients and HCs based on dALFF differences.展开更多
BACKGROUND Very late-onset schizophrenia-like psychosis(VLOSLP)is a subtype of schizophrenia spectrum disorders in which individuals experience psychotic symptoms for the first time after the age of 60.The incidence o...BACKGROUND Very late-onset schizophrenia-like psychosis(VLOSLP)is a subtype of schizophrenia spectrum disorders in which individuals experience psychotic symptoms for the first time after the age of 60.The incidence of VLOSLP shows a linear relationship with increasing age.However,no studies have reported alterations in spontaneous brain activity among VLOSLP patients and their correlation with cognitive function and clinical symptoms.AIM To explore VLOSLP brain activity and correlations with cognitive function and clinical symptoms using resting-state functional magnetic resonance imaging.METHODS This study included 33 VLOSLP patients and 34 healthy controls.The cognitive assessment utilized the Mini Mental State Examination,Montreal Cognitive Assessment,and the Repeatable Battery for the Assessment of Neuropsychological Status(RBANS).Clinical characteristic acquisition was performed via the Positive and Negative Syndrome Scale(PANSS).All participants were scanned via resting-state functional magnetic resonance imaging,and the data were processed using amplitude of low-frequency fluctuations(ALFF),fractional ALFF(fALFF),regional homogeneity,and voxelmirrored homotopic connectivity(VMHC).RESULTS The VLOSLP group presented decreased ALFF values in the left cuneus,right precuneus,right precentral gyrus,and left paracentral lobule;increased fALFF values in the left caudate nucleus;decreased fALFF values in the right calcarine fissure and surrounding cortex(CAL)and right precuneus;increased regional homogeneity values in the right putamen;and decreased VMHC values in the bilateral CAL,bilateral superior temporal gyrus,and bilateral cuneus.In the VLOSLP group,ALFF values in the right precuneus were negatively correlated with Mini Mental State Examination score and PANSS positive subscale score,and VMHC values in the bilateral CAL were negatively correlated with the RBANS total score,RBANS delayed memory score,and PANSS positive subscale score.CONCLUSION The changes of brain activity in VLOSLP are concentrated in the right precuneus and bilateral CAL regions,which may be associated with cognitive impairment and clinically positive symptoms.展开更多
Neuroscience studies have demonstrated that functional differences in human brains between males and females might result in their cognitive and psychological distinctions. To investigate sex differences in resting-st...Neuroscience studies have demonstrated that functional differences in human brains between males and females might result in their cognitive and psychological distinctions. To investigate sex differences in resting-state functional networks for children, the functional brain networks of two groups including boys and girls were reconstructed by functional connectivity with significant between-group differences respectively based on two brain atlases, and then the reconstructed functional networks were compared from the viewpoint of small-world properties. The functional brain networks of the two groups both displayed topological properties of the small-world network based on different brain atlases but exhibited some sex differences in certain measures. Specifically, for the automated anatomical labeling atlas, compared with girls, boys showed stronger small-world properties and higher ability of local information processing in brain networks;for the Harvard Oxford Atlas, the shortest path length of boys increased, indicating poorer performance in both global information transmission and resistance to the random attack.展开更多
Previous studies examining coherence and connectivity deviations in schizophrenia patients relied on standard coherence measures between recording sites (at the sensor level). A coherence source imaging (CSI) methodol...Previous studies examining coherence and connectivity deviations in schizophrenia patients relied on standard coherence measures between recording sites (at the sensor level). A coherence source imaging (CSI) methodology where coherence is assessed within imaged brain structures (at the source level) was developed recently by our group and applied successfully for detecting coherent areas in the cortical networks of patients with epilepsy. We applied this Magnetoencephalography (MEG)-CSI technique to measure normal and pathological patterns of brain oscillations (biomarkers) in normal subjects and patients diagnosed with schizophrenia. Twelve patients diagnosed with schizophrenia and twelve healthy control subjects were studied. A ten-minute resting state MEG brain scan was performed with eyes open. MEG-CSI analysis was performed to identify the cortical areas that interacted strongly within the 3 - 50 Hz frequency range. Statistically significant increased regions of coherence were detected in schizophrenia patients compared to controls in the right inferior frontal gyrus (BA 47—pars orbitalis), left superior frontal gyrus (BA9— dorsolateral prefrontal cortex), right middle frontal gyrus (BA 10—anterior prefrontal cortex & BA 46—dorsolateral prefrontal cortex), and right cingulate gyrus (BA 24—ventral anterior cingulate cortex). These areas are involved in language, memory, decision making, empathy, executive and, higher cognitive functioning. We conclude that MEG-CSI can detect imaging biomarkers from resting state brain activity in schizophrenia patients that deviates from normal control subjects in several behaviorally salient brain regions. Analysis with MEG-CSI can provide biomarkers of abnormalities in the resting-state. The findings and procedures described can be used to probe the pathophysiology of schizophrenia and possibly detect subtypes.展开更多
Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of...Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of user preferences.To address this,we propose a Conditional Generative Adversarial Network(CGAN)that generates diverse and highly relevant itineraries.Our approach begins by constructing a conditional vector that encapsulates a user’s profile.This vector uniquely fuses embeddings from a Heterogeneous Information Network(HIN)to model complex user-place-route relationships,a Recurrent Neural Network(RNN)to capture sequential path dynamics,and Neural Collaborative Filtering(NCF)to incorporate collaborative signals from the wider user base.This comprehensive condition,further enhanced with features representing user interaction confidence and uncertainty,steers a CGAN stabilized by spectral normalization to generate high-fidelity latent route representations,effectively mitigating the data sparsity problem.Recommendations are then formulated using an Anchor-and-Expand algorithm,which selects relevant starting Points of Interest(POI)based on user history,then expands routes through latent similarity matching and geographic coherence optimization,culminating in Traveling Salesman Problem(TSP)-based route optimization for practical travel distances.Experiments on a real-world check-in dataset validate our model’s unique generative capability,achieving F1 scores ranging from 0.163 to 0.305,and near-zero pairs−F1 scores between 0.002 and 0.022.These results confirm the model’s success in generating novel travel routes by recommending new locations and sequences rather than replicating users’past itineraries.This work provides a robust solution for personalized travel planning,capable of generating novel and compelling routes for both new and existing users by learning from collective travel intelligence.展开更多
The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-gener...The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-generation(5G)networks transformed mobile broadband and machine-type communications at massive scales,their properties of scaling,interference management,and latency remain a limitation in dense high mobility settings.To overcome these limitations,artificial intelligence(AI)and unmanned aerial vehicles(UAVs)have emerged as potential solutions to develop versatile,dynamic,and energy-efficient communication systems.The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning(CoRL)to manage an autonomous network.The UAVs collaborate by sharing local observations and real-time state exchanges to optimize user connectivity,movement directions,allocate power,and resource distribution.Unlike conventional centralized or autonomous methods,CoRL involves joint state sharing and conflict-sensitive reward shaping,which ensures fair coverage,less interference,and enhanced adaptability in a dynamic urban environment.Simulations conducted in smart city scenarios with 10 UAVs and 50 ground users demonstrate that the proposed CoRL-based UAV system increases user coverage by up to 10%,achieves convergence 40%faster,and reduces latency and energy consumption by 30%compared with centralized and decentralized baselines.Furthermore,the distributed nature of the algorithm ensures scalability and flexibility,making it well-suited for future large-scale 6G deployments.The results highlighted that AI-enabled UAV systems enhance connectivity,support ultra-reliable low-latency communications(URLLC),and improve 6G network efficiency.Future work will extend the framework with adaptive modulation,beamforming-aware positioning,and real-world testbed deployment.展开更多
基金supported by the Jiangsu Maternal and Child Health Research Project of China,No.F201612(to HXL)Changzhou Science and Technology Support Plan of China,No.CE20165027(to HXL)+1 种基金Changzhou City Planning Commission Major Science and Technology Projects of China,No.ZD201515(to HXL)Changzhou High Level Training Fund for Health Professionals of China,No.2016CZBJ028(to HXL)
文摘Resting-state functional magnetic resonance imaging has revealed disrupted brain network connectivity in adults and teenagers with cerebral palsy. However, the specific brain networks implicated in neonatal cases remain poorly understood. In this study, we recruited 14 termborn infants with mild hypoxic ischemic encephalopathy and 14 term-born infants with severe hypoxic ischemic encephalopathy from Changzhou Children's Hospital, China. Resting-state functional magnetic resonance imaging data showed efficient small-world organization in whole-brain networks in both the mild and severe hypoxic ischemic encephalopathy groups. However, compared with the mild hypoxic ischemic encephalopathy group, the severe hypoxic ischemic encephalopathy group exhibited decreased local efficiency and a low clustering coefficient. The distribution of hub regions in the functional networks had fewer nodes in the severe hypoxic ischemic encephalopathy group compared with the mild hypoxic ischemic encephalopathy group. Moreover, nodal efficiency was reduced in the left rolandic operculum, left supramarginal gyrus, bilateral superior temporal gyrus, and right middle temporal gyrus. These results suggest that the topological structure of the resting state functional network in children with severe hypoxic ischemic encephalopathy is clearly distinct from that in children with mild hypoxic ischemic encephalopathy, and may be associated with impaired language, motion, and cognition. These data indicate that it may be possible to make early predictions regarding brain development in children with severe hypoxic ischemic encephalopathy, enabling early interventions targeting brain function. This study was approved by the Regional Ethics Review Boards of the Changzhou Children's Hospital(approval No. 2013-001) on January 31, 2013. Informed consent was obtained from the family members of the children. The trial was registered with the Chinese Clinical Trial Registry(registration number: ChiCTR1800016409) and the protocol version is 1.0.
基金supported by the National Natural Science Foundation of China,No.82071909(to GF)the Natural Science Foundation of Liaoning Province,No.2023-MS-07(to HL)。
文摘Freezing of gait is a significant and debilitating motor symptom often observed in individuals with Parkinson's disease.Resting-state functional magnetic resonance imaging,along with its multi-level feature indices,has provided a fresh perspective and valuable insight into the study of freezing of gait in Parkinson's disease.It has been revealed that Parkinson's disease is accompanied by widespread irregularities in inherent brain network activity.However,the effective integration of the multi-level indices of resting-state functional magnetic resonance imaging into clinical settings for the diagnosis of freezing of gait in Parkinson's disease remains a challenge.Although previous studies have demonstrated that radiomics can extract optimal features as biomarkers to identify or predict diseases,a knowledge gap still exists in the field of freezing of gait in Parkinson's disease.This cross-sectional study aimed to evaluate the ability of radiomics features based on multi-level indices of resting-state functional magnetic resonance imaging,along with clinical features,to distinguish between Parkinson's disease patients with and without freezing of gait.We recruited 28 patients with Parkinson's disease who had freezing of gait(15 men and 13 women,average age 63 years)and 30 patients with Parkinson's disease who had no freezing of gait(16 men and 14 women,average age 64 years).Magnetic resonance imaging scans were obtained using a 3.0T scanner to extract the mean amplitude of low-frequency fluctuations,mean regional homogeneity,and degree centrality.Neurological and clinical characteristics were also evaluated.We used the least absolute shrinkage and selection operator algorithm to extract features and established feedforward neural network models based solely on resting-state functional magnetic resonance imaging indicators.We then performed predictive analysis of three distinct groups based on resting-state functional magnetic resonance imaging indicators indicators combined with clinical features.Subsequently,we conducted 100 additional five-fold cross-validations to determine the most effective model for each classification task and evaluated the performance of the model using the area under the receiver operating characteristic curve.The results showed that when differentiating patients with Parkinson's disease who had freezing of gait from those who did not have freezing of gait,or from healthy controls,the models using only the mean regional homogeneity values achieved the highest area under the receiver operating characteristic curve values of 0.750(with an accuracy of 70.9%)and 0.759(with an accuracy of 65.3%),respectively.When classifying patients with Parkinson's disease who had freezing of gait from those who had no freezing of gait,the model using the mean amplitude of low-frequency fluctuation values combined with two clinical features achieved the highest area under the receiver operating characteristic curve of 0.847(with an accuracy of 74.3%).The most significant features for patients with Parkinson's disease who had freezing of gait were amplitude of low-frequency fluctuation alterations in the left parahippocampal gyrus and two clinical characteristics:Montreal Cognitive Assessment and Hamilton Depression Scale scores.Our findings suggest that radiomics features derived from resting-state functional magnetic resonance imaging indices and clinical information can serve as valuable indices for the identification of freezing of gait in Parkinson's disease.
基金supported by the National Natural Science Foundation of China,Nos.81871836(to MZ),82172554(to XH),and 81802249(to XH),81902301(to JW)the National Key R&D Program of China,Nos.2018YFC2001600(to JX)and 2018YFC2001604(to JX)+3 种基金Shanghai Rising Star Program,No.19QA1409000(to MZ)Shanghai Municipal Commission of Health and Family Planning,No.2018YQ02(to MZ)Shanghai Youth Top Talent Development PlanShanghai“Rising Stars of Medical Talent”Youth Development Program,No.RY411.19.01.10(to XH)。
文摘Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.
基金Supported by the Wuxi Municipal Health Commission Major Project,No.Z202107。
文摘BACKGROUND Successful aging(SA)refers to the ability to maintain high levels of physical,cognitive,psychological,and social engagement in old age,with high cognitive function being the key to achieving SA.AIM To explore the potential characteristics of the brain network and functional connectivity(FC)of SA.METHODS Twenty-six SA individuals and 47 usual aging individuals were recruited from community-dwelling elderly,which were taken the magnetic resonance imaging scan and the global cognitive function assessment by Mini Mental State Examination(MMSE).The resting state-functional magnetic resonance imaging data were preprocessed by DPABISurf,and the brain functional network was conducted by DPABINet.The support vector machine model was constructed with altered functional connectivities to evaluate the identification value of SA.RESULTS The results found that the 6 inter-network FCs of 5 brain networks were significantly altered and related to MMSE performance.The FC of the right orbital part of the middle frontal gyrus and right angular gyrus was mostly increased and positively related to MMSE score,and the FC of the right supramarginal gyrus and right temporal pole:Middle temporal gyrus was the only one decreased and negatively related to MMSE score.All 17 significantly altered FCs of SA were taken into the support vector machine model,and the area under the curve was 0.895.CONCLUSION The identification of key brain networks and FC of SA could help us better understand the brain mechanism and further explore neuroimaging biomarkers of SA.
基金Supported by the Medical Research Project of the Chongqing Municipal Health Commission,No.2024WSJK110.
文摘BACKGROUND Currently,adolescent depression is one of the most significant public health concerns,markedly influencing emotional,cognitive,and social maturation.Despite advancements in distinguish the neurobiological substrates underlying depression,the intricate patterns of disrupted brain network connectivity in adolescents warrant further exploration.AIM To elucidate the neural correlates of adolescent depression by examining brain network connectivity using resting-state functional magnetic resonance imaging(rs-fMRI).METHODS The study cohort comprised 74 depressed adolescents and 59 healthy controls aged 12 to 17 years.Participants underwent rs-fMRI to evaluate functional connectivity within and across critical brain networks,including the visual,default mode network(DMN),dorsal attention,salience,somatomotor,and frontoparietal control networks.RESULTS Analyses revealed pronounced functional disparities within key neural circuits among adolescents with depression.The results demonstrated existence of hemispheric asymmetries characterized by enhanced activity in the left visual network,which contrasted the diminished activity in the right hemisphere.The DMN facilitated increased activity within the left prefrontal cortex and reduced engagement in the right hemisphere,implicating disrupted self-referential and emotional processing mechanisms.Additionally,an overactive right dorsal attention network and a hypoactive salience network were identified,underscoring significant abnormalities in attentional and emotional regulation in adolescent depression.CONCLUSION The findings from this study underscore distinct neural connectivity disruptions in adolescent depression,underscoring the critical role of specific neurobiological markers for precise early diagnosis of adolescent depression.The observed functional asymmetries and network-specific deviations elucidate the complex neurobiological architecture of adolescent depression,supporting the development of targeted therapeutic strategies.
基金supported by the National Natural Science Foundation of China(No.81473784)University Science Research Project of Anhui Province of China(No.KJ2017A298)+1 种基金the Key Project of the Youth Elite Support Plan in Universities of Anhui Province of China(No.gxyq ZD2016134)Construction Project of Scientific Research Innovation Platform of Anhui Province of China(No.2015TD033)
文摘Background: Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain functional connectivity network of acupuncture stimulation. Objective: To offer an overview of the different influences of acupuncture on the brain functional connec- tivity network from studies using resting-state fMRI. Search strategy: The authors performed a systematic search according to PRISMA guidelines, The database PubMed was searched from January 1, 2006 to December 31, 2016 with restriction to human studies in English language. Inclusion criteria: Electronic searches were conducted in PubMed using the keywords "acupuncture" and "neuroimaging" or "resting-state fMRI" or "functional connectivity", Data extraction and analysis: Selection of included articles, data extraction and methodological quality assessments were respectively conducted by two review authors. Results: Forty-four resting-state fMRI studies were included in this systematic review according to inclu- sion criteria. Thirteen studies applied manual acupuncture vs. sham, four studies applied electro- acupuncture vs. sham, two studies also compared transcutaneous electrical acupoint stimulation vs. sham, and nine applied sham acupoint as control. Nineteen studies with a total number of 574 healthy subjects selected to perform fMRI only considered healthy adult volunteers. The brain functional connec- tivity of the patients had varying degrees of change. Compared with sham acupuncture, verum acupunc- ture could increase default mode network and sensorimotor network connectivity with pain-, affective- and memory-related brain areas. It has significantly greater connectivity of genuine acupuncture between the periaqueductal gray, anterior cingulate cortex, left posterior cingulate cortex, right anterior insula, limbic/paralimbic and precuneus compared with sham acupuncture. Some research had also shown that acupuncture could adjust the limbic-paralimbic-neocortical network, brainstem, cerebellum, subcortical and hippocampus brain areas. Conclusion: It can be presumed that the functional connectivity network is closely related to the mech- anism of acupuncture, and central integration plays a critical role in the acupuncture mechanism.
基金supported by the Natural Science Foundation of Guangdong Province,No.2016A030313180(to FCJ)
文摘Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the independent components of activation and network connectivity between brain regions, we examined brain activity status and development trends in children aged 3 and 5 years. These data could provide a reference for brain function rehabilitation in children with illness or abnormal function. We acquired functional magnetic resonance images from 15 3-year-old children and 15 5-year-old children under natural sleep cond让ions. The participants were recruited from five kindergartens in the Nanshan District of Shenzhen City, China. The parents of the participants signed an informed consent form with the premise that they had been fully informed regarding the experimental protocol. We used masked independent component analysis and BrainNet Viewer software to explore the independent components of the brain and correlation connections between brain regions. We identified seven independent components in the two groups of children, including the executive control network, the dorsal attention network, the default mode network, the left frontoparietal network, the right frontoparietal network, the salience network, and the motor network. In the default mode network, the posterior cingulate cortex, medial frontal gyrus, and inferior parietal lobule were activated in both 3- and 5-year-old children, supporting the "three-brain region theory” of the default mode network. In the frontoparietal network, the frontal and parietal gyri were activated in the two groups of children, and functional connectivity was strengthened in 5-year-olds compared with 3-year-olds, although the nodes and network connections were not yet mature. The high-correlation network connections in the default mode networks and dorsal attention networks had been significantly strengthened in 5-year-olds vs. 3-year-olds. Further, the salience network in the 3-year-old children included an activated insula/inferior frontal gyrus-anterior cingulate cortex network circu让 and an activated thalamus-parahippocampal-posterior cingulate cortex-subcortical regions network circuit. By the age of 5 years, no des and high-correlation network connections (edges) were reduced in the salience network. Overall, activation of the dorsal attention network, default mode network, left frontoparietal network, and right frontoparietal network increased (the volume of activation increased, the signals strengthened, and the high-correlation connections increased and strengthened) in 5-year-olds compared with 3-year-olds, but activation in some brain nodes weakened or disappeared in the salience network, and the network connections (edges) were reduced. Between the ages of 3 and 5 years, we observed a tendency for function in some brain regions to be strengthened and for the generalization of activation to be reduced, indicating that specialization begins to develop at this time. The study protocol was approved by the local ethics committee of the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences in China with approval No. SIAT-IRB- 131115-H0075 on November 15, 2013.
基金This project was supported by grants from National Natural Science Foundation of China(No.81701655 and No.81600317)Platform Research Foundation of Union Hospital,Tongji Medical College,Huazhong university of Science and Technology(No.02.03.2017-14).
文摘Examining the spontaneous BOLD activity to understand the neural mechanism of Parkinson’s disease(PD)with mild cognitive impairment(MCI)is a focus in resting-state functional MRI(rs-fMRI)studies.This study aimed to investigate the alteration of brain functional connectivity in PD with MCI in a systematical way at two levels:functional connectivity analysis within resting state networks(RSNs)and functional network connectivity(FNC)analysis.Using group independent component analysis(ICA)on rs-fMRI data acquired from 30 participants(14 healthy controls and 16 PD patients with MCI),16 RSNs were identified,and functional connectivity analysis within the RSNs and FNC analysis were carried out between groups.Compared to controls,patients with PD showed decreased functional connectivity within putamen network,thalamus network,cerebellar network,attention network,and self-referential network,and increased functional connectivity within execution network.Globally disturbed,mostly increased functional connectivity of FNC was observed in PD group,and insular network and execution network were the dominant network with extensively increased functional connectivity with other RSNs.Cerebellar network showed decreased functional connectivity with caudate network,insular network,and self-referential network.In general,decreased functional connectivity within RSNs and globally disturbed,mostly increased functional connectivity of FNC may be characteristics of PD.Increased functional connectivity within execution network may be an early marker of PD.The multi-perspective study based on RSNs may be a valuable means to assess functional changes corresponding to specific RSN,contributing to the understanding of the neural mechanism of PD.
基金supported by National Natural Science Foundation of China (81171291, 81371531, 81571344, 81871344)the Natural Science Foundation of Jiangsu Province, China (BK20161109)+2 种基金the Key Program for Guangming Lu (BWS11J063, and 10z026)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (18KJB190003)the Postdoctoral Science Foundation of China (2014M552700)
文摘Mood disorders/psychosis have been associated with dysfunctions in the default mode network(DMN).However,the relative contributions of DMN regions to state and trait disturbances in pediatric bipolar disorder(PBD)remain unclear.The aim of this study was to investigate the possible mechanisms of PBD through brain imaging and explore the influence of psychotic symptoms on functional alterations in PBD patients.Twenty-nine psychotic and 26 non-psychotic PBD patients,as well as 19 age-and sex-matched healthy controls underwent a restingstate functional MRI scan and the data were analyzed by independent component analysis.The DMN component from the fMRI data was extracted for each participant.Spearman's rank correlation analysis was performed between aberrant connectivity and clinical measurements.The results demonstrated that psychotic PBD was characterized by aberrant DMN connectivity in the anterior cingulate cortex/medial prefrontal cortex,bilateral caudate nucleus,bilateral angular gyri,and left middle temporal gyrus,while non-psychotic PBD was not,suggesting further impairment with the development of psychosis.In summary,we demonstrated unique impairment in DMN functional connectivity in the psychotic PBD group.These specific neuroanatomical abnormalities may shed light on the underlying pathophysiology and presentation of PBD.
基金supported by the Science and Technology Foundation of Guangdong Province of China,No.2012B031800305
文摘Functional magnetic resonance imaging studies have shown that the insular cortex has a signif- icant role in pain identification and information integration, while the default mode network is associated with cognitive and memory-related aspects of pain perception. However, changes in the functional connectivity between the defauk mode network and insula during pain remain unclear. This study used 3.0 T functional magnetic resonance imaging scans in 12 healthy sub- jects aged 24.8 ± 3.3 years to compare the differences in the functional activity and connectivity of the insula and default mode network between the baseline and pain condition induced by intramuscular injection of hypertonic saline. Compared with the baseline, the insula was more functionally connected with the medial prefrontal and lateral temporal cortices, whereas there was lower connectivity with the posterior cingulate cortex, precuneus and inferior parietal lobule in the pain condition. In addition, compared with baseline, the anterior cingulate cortex exhibited greater connectivity with the posterior insula, but lower connectivity with the anterior insula, during the pain condition. These data indicate that experimental low back pain led to dysfunction in the connectivity between the insula and default mode network resulting from an impairment of the regions of the brain related to cognition and emotion, suggesting the impor- tance of the interaction between these regions in pain processing.
文摘Background:The aim of this research was to investigate the changes in the vision-related resting-state network (V-RSN) in pituitary adenoma (PA) patients after vision improvement,which was induced by operative treatment.Methods:Ten PA patients with an improved visual acuity or/and visual field after transsphenoidal pituitary tumor resection were recruited and underwent a complete neuro-ophthalmologic evaluation,as well as an magnetic resonance imaging (MRI) protocol,including structural and resting-state functional MRI sequences before and after the operation.The regional homogeneity (ReHo) of the V-RSN was evaluated.Two sample t-test was performed to identify the significant differences in the V-RSN in the PA patients before and after transsphenoidal pituitary tumor resection.Results:Compared with the preoperation counterparts,the PA patients with improved vision after the operation exhibited reduced ReHo in the bilateral thalamus,globus pallidus,caudate nucleus,putamen nucleus,supplementary motor area,and left hippocampal formation,and increased ReHo in the bilateral cuneus gyrus,calcarine gyrus,right lingual gyrus,and fusiform gyrus.Conclusions:PA patients with improved vision exhibit increased neural activity within the visual cortex,but decreased neural activity in subareas of the multisensory and multimodal systems beyond the vision cortex.
文摘Research on brain function after brachial plexus injury focuses on local cortical functional reorganization,and few studies have focused on brain networks after brachial plexus injury.Changes in brain networks may help understanding of brain plasticity at the global level.We hypothesized that topology of the global cerebral resting-state functional network changes after unilateral brachial plexus injury.Thus,in this cross-sectional study,we recruited eight male patients with unilateral brachial plexus injury(right handedness,mean age of 27.9±5.4years old)and eight male healthy controls(right handedness,mean age of 28.6±3.2).After acquiring and preprocessing resting-state magnetic resonance imaging data,the cerebrum was divided into 90 regions and Pearson’s correlation coefficient calculated between regions.These correlation matrices were then converted into a binary matrix with affixed sparsity values of 0.1–0.46.Under sparsity conditions,both groups satisfied this small-world property.The clustering coefficient was markedly lower,while average shortest path remarkably higher in patients compared with healthy controls.These findings confirm that cerebral functional networks in patients still show smallworld characteristics,which are highly effective in information transmission in the brain,as well as normal controls.Alternatively,varied small-worldness suggests that capacity of information transmission and integration in different brain regions in brachial plexus injury patients is damaged.
基金supported by the National Natural Science Foundation of China (30825014,81061120529,30970814,81371488,91132727 and 30830046)the Key Program for Clinical Medicine and Science and Technology,Jiangsu Provincial Clinical Medical Research Center,China (BL2013025)
文摘The regional specifi city of hippocampal abnormalities in late-life depression(LLD) has been demonstrated in previous studies. In this study,we sought to examine the functional connectivity(FC) patterns of hippocampal subregions in remitted late-onset depression(r LOD),a special subtype of LLD. Fourteen r LOD patients and 18 healthy controls underwent clinical and cognitive evaluations as well as resting-state functional magnetic resonance imaging scans at baseline and at ~21 months of follow-up. Each hippocampus was divided into three parts,the cornu ammonis(CA),the dentate gyrus,and the subicular complex,and then six seed-based hippocampal subregional networks were established.Longitudinal changes of the six networks over time were directly compared between the rL OD and control groups. From baseline to follow-up,the r LOD group showed a greater decline in connectivity of the left CA to the bilateral posterior cingulate cortex/precuneus(PCC/PCUN),but showed increased connectivity of the right hippocampal subregional networks with the frontal cortex(bilateral medial prefrontal cortex/anterior cingulate cortex and supplementary motor area). Further correlative analyses revealed thatthe longitudinal changes in FC between the left CA and PCC/PCUN were positively correlated with longitudinal changes in the Symbol Digit Modalities Test(r = 0.624,P = 0.017) and the Digit Span Test(r = 0.545,P = 0.044) scores in the r LOD group. These results may provide insights into the neurobiological mechanism underlying the cognitive dysfunction in r LOD patients.
基金Supported by the National Natural Science Foundation of China(No.81870685)Beijing Natural Science Foundation(No.7172173)Key Laboratory of Myopia,Ministry of Health(Fudan University)(No.EENTM-15-01)。
文摘AIM:To analyze changes in amplitude of low-frequency fluctuations(ALFFs)and default mode network(DMN)connectivity in the brain,using resting-state functional magnetic resonance imaging(rs-fMRI),in high myopia(HM)patients.METHODS:Eleven patients with HM(HM group)and 15 age-and sex-matched non-HM controls(non-HM group)were recruited.ALFFs were calculated and compared between HM group and non-HM group.Independent component analysis(ICA)was conducted to identify DMN,and comparisons between DMNs of two groups were performed.Region-of-interest(ROI)-based analysis was performed to explore functional connectivity(FC)between DMN regions.RESULTS:Significantly increased ALFFs in left inferior temporal gyrus(ITG),bilateral rectus gyrus(REC),bilateral middle temporal gyrus(MTG),left superior temporal gyrus(STG),and left angular gyrus(ANG)were detected in HM group compared with non-HM group(all P<0.01).HM group showed increased FC in the posterior cingulate gyrus(PCC)/precuneus(preCUN)and decreased FC in the left medial prefrontal cortex(mPFG)within DMN compared with nonHM group(all P<0.01).Compared with non-HM group,HM group showed higher FC between mPFG and bilateral middle frontal gyrus(MFG),ANG,and MTG(all P<0.01).In addition,HM patients showed higher FC between PCC/(preCUN)and the right cerebellum,superior frontal gyrus(SFG),left pre CUN,superior frontal gyrus(SFG),and medial orbital of the superior frontal gyrus(ORB supmed;all P<0.01).CONCLUSION:HM patients show different ALFFs and DMNs compared with non-HM subjects,which may imply the cognitive alterations related to HM.
基金Supported by National Natural Science Foundation of China(No.82160195No.82460203)Key R&D Program of Jiangxi Province(No.20223BBH80014).
文摘AIM:To investigate changes in local brain activity after laser assisted in situ keratomileusis(LASIK)in myopia patients,and further explore whether post-LASIK(POL)patients and healthy controls(HCs)can be distinguished by differences in dynamic amplitude of low-frequency fluctuations(dALFF)in specific brain regions.METHODS:The resting-state functional magnetic resonance imaging(rs-fMRI)data were collected from 15 myopic patients who underwent LASIK and 15 matched healthy controls.This method was selected to calculate the corresponding dALFF values of each participant,to compare dALFF between the groups and to determine whether dALFF distinguishes reliably between myopic patients after LASIK and HCs using the linear support vector machine(SVM)permutation test(5000 repetitions).RESULTS:dALFF was lower in POL than in HCs at the right precentral gyrus and right insula.Classification accuracy of the SVM was 89.1%(P<0.001).CONCLUSION:The activity of spontaneous neurons in the right precentral gyrus and right insula of myopic patients change significantly after LASIK.SVM can correctly classify POL patients and HCs based on dALFF differences.
基金Supported by Wuxi Municipal Health Commission Major Project,No.202107and Wuxi Taihu Talent Project,No.WXTTP 2021.
文摘BACKGROUND Very late-onset schizophrenia-like psychosis(VLOSLP)is a subtype of schizophrenia spectrum disorders in which individuals experience psychotic symptoms for the first time after the age of 60.The incidence of VLOSLP shows a linear relationship with increasing age.However,no studies have reported alterations in spontaneous brain activity among VLOSLP patients and their correlation with cognitive function and clinical symptoms.AIM To explore VLOSLP brain activity and correlations with cognitive function and clinical symptoms using resting-state functional magnetic resonance imaging.METHODS This study included 33 VLOSLP patients and 34 healthy controls.The cognitive assessment utilized the Mini Mental State Examination,Montreal Cognitive Assessment,and the Repeatable Battery for the Assessment of Neuropsychological Status(RBANS).Clinical characteristic acquisition was performed via the Positive and Negative Syndrome Scale(PANSS).All participants were scanned via resting-state functional magnetic resonance imaging,and the data were processed using amplitude of low-frequency fluctuations(ALFF),fractional ALFF(fALFF),regional homogeneity,and voxelmirrored homotopic connectivity(VMHC).RESULTS The VLOSLP group presented decreased ALFF values in the left cuneus,right precuneus,right precentral gyrus,and left paracentral lobule;increased fALFF values in the left caudate nucleus;decreased fALFF values in the right calcarine fissure and surrounding cortex(CAL)and right precuneus;increased regional homogeneity values in the right putamen;and decreased VMHC values in the bilateral CAL,bilateral superior temporal gyrus,and bilateral cuneus.In the VLOSLP group,ALFF values in the right precuneus were negatively correlated with Mini Mental State Examination score and PANSS positive subscale score,and VMHC values in the bilateral CAL were negatively correlated with the RBANS total score,RBANS delayed memory score,and PANSS positive subscale score.CONCLUSION The changes of brain activity in VLOSLP are concentrated in the right precuneus and bilateral CAL regions,which may be associated with cognitive impairment and clinically positive symptoms.
文摘Neuroscience studies have demonstrated that functional differences in human brains between males and females might result in their cognitive and psychological distinctions. To investigate sex differences in resting-state functional networks for children, the functional brain networks of two groups including boys and girls were reconstructed by functional connectivity with significant between-group differences respectively based on two brain atlases, and then the reconstructed functional networks were compared from the viewpoint of small-world properties. The functional brain networks of the two groups both displayed topological properties of the small-world network based on different brain atlases but exhibited some sex differences in certain measures. Specifically, for the automated anatomical labeling atlas, compared with girls, boys showed stronger small-world properties and higher ability of local information processing in brain networks;for the Harvard Oxford Atlas, the shortest path length of boys increased, indicating poorer performance in both global information transmission and resistance to the random attack.
文摘Previous studies examining coherence and connectivity deviations in schizophrenia patients relied on standard coherence measures between recording sites (at the sensor level). A coherence source imaging (CSI) methodology where coherence is assessed within imaged brain structures (at the source level) was developed recently by our group and applied successfully for detecting coherent areas in the cortical networks of patients with epilepsy. We applied this Magnetoencephalography (MEG)-CSI technique to measure normal and pathological patterns of brain oscillations (biomarkers) in normal subjects and patients diagnosed with schizophrenia. Twelve patients diagnosed with schizophrenia and twelve healthy control subjects were studied. A ten-minute resting state MEG brain scan was performed with eyes open. MEG-CSI analysis was performed to identify the cortical areas that interacted strongly within the 3 - 50 Hz frequency range. Statistically significant increased regions of coherence were detected in schizophrenia patients compared to controls in the right inferior frontal gyrus (BA 47—pars orbitalis), left superior frontal gyrus (BA9— dorsolateral prefrontal cortex), right middle frontal gyrus (BA 10—anterior prefrontal cortex & BA 46—dorsolateral prefrontal cortex), and right cingulate gyrus (BA 24—ventral anterior cingulate cortex). These areas are involved in language, memory, decision making, empathy, executive and, higher cognitive functioning. We conclude that MEG-CSI can detect imaging biomarkers from resting state brain activity in schizophrenia patients that deviates from normal control subjects in several behaviorally salient brain regions. Analysis with MEG-CSI can provide biomarkers of abnormalities in the resting-state. The findings and procedures described can be used to probe the pathophysiology of schizophrenia and possibly detect subtypes.
基金supported by the Chung-Ang University Research Grants in 2023.Alsothe work is supported by the ELLIIT Excellence Center at Linköping–Lund in Information Technology in Sweden.
文摘Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of user preferences.To address this,we propose a Conditional Generative Adversarial Network(CGAN)that generates diverse and highly relevant itineraries.Our approach begins by constructing a conditional vector that encapsulates a user’s profile.This vector uniquely fuses embeddings from a Heterogeneous Information Network(HIN)to model complex user-place-route relationships,a Recurrent Neural Network(RNN)to capture sequential path dynamics,and Neural Collaborative Filtering(NCF)to incorporate collaborative signals from the wider user base.This comprehensive condition,further enhanced with features representing user interaction confidence and uncertainty,steers a CGAN stabilized by spectral normalization to generate high-fidelity latent route representations,effectively mitigating the data sparsity problem.Recommendations are then formulated using an Anchor-and-Expand algorithm,which selects relevant starting Points of Interest(POI)based on user history,then expands routes through latent similarity matching and geographic coherence optimization,culminating in Traveling Salesman Problem(TSP)-based route optimization for practical travel distances.Experiments on a real-world check-in dataset validate our model’s unique generative capability,achieving F1 scores ranging from 0.163 to 0.305,and near-zero pairs−F1 scores between 0.002 and 0.022.These results confirm the model’s success in generating novel travel routes by recommending new locations and sequences rather than replicating users’past itineraries.This work provides a robust solution for personalized travel planning,capable of generating novel and compelling routes for both new and existing users by learning from collective travel intelligence.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(RS-2025-00559546)supported by the IITP(Institute of Information&Coummunications Technology Planning&Evaluation)-ITRC(Information Technology Research Center)grant funded by the Korea government(Ministry of Science and ICT)(IITP-2025-RS-2023-00259004).
文摘The advent of sixth-generation(6G)networks introduces unprecedented challenges in achieving seamless connectivity,ultra-low latency,and efficient resource management in highly dynamic environments.Although fifth-generation(5G)networks transformed mobile broadband and machine-type communications at massive scales,their properties of scaling,interference management,and latency remain a limitation in dense high mobility settings.To overcome these limitations,artificial intelligence(AI)and unmanned aerial vehicles(UAVs)have emerged as potential solutions to develop versatile,dynamic,and energy-efficient communication systems.The study proposes an AI-based UAV architecture that utilizes cooperative reinforcement learning(CoRL)to manage an autonomous network.The UAVs collaborate by sharing local observations and real-time state exchanges to optimize user connectivity,movement directions,allocate power,and resource distribution.Unlike conventional centralized or autonomous methods,CoRL involves joint state sharing and conflict-sensitive reward shaping,which ensures fair coverage,less interference,and enhanced adaptability in a dynamic urban environment.Simulations conducted in smart city scenarios with 10 UAVs and 50 ground users demonstrate that the proposed CoRL-based UAV system increases user coverage by up to 10%,achieves convergence 40%faster,and reduces latency and energy consumption by 30%compared with centralized and decentralized baselines.Furthermore,the distributed nature of the algorithm ensures scalability and flexibility,making it well-suited for future large-scale 6G deployments.The results highlighted that AI-enabled UAV systems enhance connectivity,support ultra-reliable low-latency communications(URLLC),and improve 6G network efficiency.Future work will extend the framework with adaptive modulation,beamforming-aware positioning,and real-world testbed deployment.