期刊文献+
共找到189,153篇文章
< 1 2 250 >
每页显示 20 50 100
A GSH-responsive NIR-BODIPY fluorophore with large Stokes-shift for tumor specific fluorescence imaging and surgical guidance
1
作者 Shupeng Han Caiting Deng +7 位作者 Meichen Zheng Linwei Yang Hancun Kong Yongchao He Yinuo Zheng Guowei Deng Yu Ren Feifei An 《Chinese Chemical Letters》 2025年第7期444-449,共6页
The tumor microenvironment(TME)-activatable probes have proven effective in enhancing the signalto-background ratio(SBR)for precise fluorescence imaging in tumor diagnosis.However,many fluorophores have suboptimal emi... The tumor microenvironment(TME)-activatable probes have proven effective in enhancing the signalto-background ratio(SBR)for precise fluorescence imaging in tumor diagnosis.However,many fluorophores have suboptimal emission spectra and a short Stokes shift,which may lead to overlap with bioautofluorescence,excitation,and emission spectra,limiting their use in intraoperative guidance.Herein,aγ-glutathione(GSH)responsive near-infrared(NIR)BODIPY probe,named“Pro-Dye”was synthesized with a large Stokes shift of 91 nm.The Pro-Dye can be rapidly and specifically activated by high concentrations of GSH both in solution and inside cancer cells,while remaining inactive in normal cells(Human umbilical vein endothelial cells,HUVECs).The Pro-Dye was further encapsulated by 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(polyethylene glycol)-5000(DSPE-PEG5000)to form Pro-Dye nanoparticles(NPs),making it water-dispersible for in vivo application.In vivo fluorescence imaging demonstrated that Pro-Dye NPs can accumulate at the tumor and exhibit an improved SBR compared to the“alwayson”probe(Dye NPs).Moreover,the tumor can be precisely resected under the real-time guidance of fluorescence imaging of Pro-Dye NPs,showing a well-defined tumor margin. 展开更多
关键词 Tumor diagnosis Intraoperative guidance Large Stokes-shift Near-infrared GSH responsive
原文传递
Strength through unity:Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer
2
作者 Ze Wang Hao Liang +7 位作者 Annan Liu Xingchen Li Lin Guan Lei Li Liang He Andrew K.Whittaker Bai Yang Quan Lin 《Chinese Chemical Letters》 2025年第2期261-268,共8页
Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials prov... Prostate cancer(PCa)is characterized by high incidence and propensity for easy metastasis,presenting significant challenges in clinical diagnosis and treatment.Tumor microenvironment(TME)-responsive nanomaterials provide a promising prospect for imaging-guided precision therapy.Considering that tumor-derived alkaline phosphatase(ALP)is over-expressed in metastatic PCa,it makes a great chance to develop a theranostics system with ALP responsive in the TME.Herein,an ALP-responsive aggregationinduced emission luminogens(AIEgens)nanoprobe AMNF self-assembly was designed for enhancing the diagnosis and treatment of metastatic PCa.The nanoprobe exhibited self-aggregation in the presence of ALP resulted in aggregation-induced fluorescence,and enhanced accumulation and prolonged retention period at the tumor site.In terms of detection,the fluorescence(FL)/computed tomography(CT)/magnetic resonance(MR)multi-mode imaging effect of nanoprobe was significantly improved post-aggregation,enabling precise diagnosis through the amalgamation of multiple imaging modes.Enhanced CT/MR imaging can achieve assist preoperative tumor diagnosis,and enhanced FL imaging technology can achieve“intraoperative visual navigation”,showing its potential application value in clinical tumor detection and surgical guidance.In terms of treatment,AMNF showed strong absorption in the near infrared region after aggregation,which improved the photothermal treatment effect.Overall,our work developed an effective aggregation-enhanced theranostic strategy for ALP-related cancers. 展开更多
关键词 AIE Prostate cancer ALP responsive Enhanced multi-mode imaging Enhanced photothermal therapy
原文传递
Viscosity-responsive signal amplification dual-modal probe triggered by cysteine/homocysteine for monitoring diabetic liver damages and repair processes
3
作者 Sixin Ai Wenxiu Li +2 位作者 Huayong Zhu Yang Wan Weiying Lin 《Chinese Chemical Letters》 2025年第3期328-334,共7页
Diabetic liver injury is a widespread complication of diabetes and carries a high risk to liver function.Therefore,early diagnosis of diabetic liver injury is of great significance for providing quality of life for di... Diabetic liver injury is a widespread complication of diabetes and carries a high risk to liver function.Therefore,early diagnosis of diabetic liver injury is of great significance for providing quality of life for diabetic patients.Most of the activated dual-modal probes are usually activated by single factor stimulation,which greatly reduces the diagnostic accuracy of liver injury.Here,a novel cysteine(Cys)/homocysteine(Hcy)and viscosity-enhanced dual-modal probe DAL was developed for the first time to monitor diabetic liver injury and its repair process.In the presence of Cys/Hcy,the near-infrared fluorescence(NIRF)and photoacoustic(PA)signals of the probe DAL were activated,with further signal enhancement in high viscosity environments.This Cys/Hcy and viscosity cascade probe exhibits heightened sensitivity and enhanced anti-interference capabilities,contributing to the advancement of liver injury diagnosis accuracy.In addition,the probe DAL shows exceptional mitochondrial targeting ability,enabling sensitive monitoring of Cys/Hcy and viscosity alterations within mitochondria.Based on NIRF/PA dual-modal imaging technology,the probe was successfully used for the first time in a mouse diabetic liver injury model to evaluate the extent of liver damage and the repair process by tracking the levels of Cys/Hcy and viscosity.Therefore,the two-factor activated dual-modal probe developed in this study provides a powerful instrument for accurate diagnosis and efficacy evaluation of complications related to diabetes. 展开更多
关键词 Cysteine/homocysteine Viscosity responsive Near-infrared fluorescence Photoacoustic imaging Fluorescence imaging
原文传递
A multi-stimuli responsive[3]rotaxane based on hydrogen-bonded aramide azo-macrocycles
4
作者 Zhiyao Yang Kuirong Fu +6 位作者 Wentao Yu Along Jia Xinnan Chen Yimin Cai Xiaowei Li Wen Feng Lihua Yuan 《Chinese Chemical Letters》 2025年第9期355-359,共5页
A novel[3]rotaxane,featuring two hydrogen-bonded aramide azo-macrocycles mechanically interlocked on a dumbbell with distinct recognition sites,a secondary dialkylammonium(AM)unit and a 4,4'-bipyridinium(BP)unit,h... A novel[3]rotaxane,featuring two hydrogen-bonded aramide azo-macrocycles mechanically interlocked on a dumbbell with distinct recognition sites,a secondary dialkylammonium(AM)unit and a 4,4'-bipyridinium(BP)unit,has been synthesized.This multi-stimuli-responsive[3]rotaxane exhibits unique molecular motion,with the macrocycles shuttling along the axle in response to acid-base reactions,temperature changes,solvent variations,and light irradiation.The molecular shuttle and reversibility were investigated by^(1)H NMR,2D NOESY,HRESI-MS,and UV-vis spectroscopy.This study provides a rare example of a higher order rotaxane with multi-stimuli responsiveness,highlighting its potential for multi-state control over the motion of interlocked rings on an axle.The ability to manipulate the molecular motion of the macrocycles through various external triggers offers insights for future developments in molecular machinery and adaptive materials. 展开更多
关键词 ROTAXANE Molecular shuttle Multi-stimuli responsiveness Hydrogen-bonded macrocycles Supramolecular chemistry
原文传递
Physicochemical design of magneto-responsive confined interfaces for manipulation of nonmagnetic liquids
5
作者 Jing Liu Ming Li +3 位作者 Jian Zhang Xinyu Li Yuqing Zheng Xu Hou 《Chinese Chemical Letters》 2025年第8期231-239,共9页
Controllable liquid manipulation is of paramount scientific and technological importance in various fields,such as the chemical industry,biomedicine,and agricultural production.Magnetic actuation,characterized by rapi... Controllable liquid manipulation is of paramount scientific and technological importance in various fields,such as the chemical industry,biomedicine,and agricultural production.Magnetic actuation,characterized by rapid,contactless,and environmentally benign operation,has emerged as a promising approach for precise liquid control.However,conventional magnetic strategies typically govern droplet movement on open surfaces,facing limitations such as restricted liquid volumes,uncertain flow paths,and inevitable evaporation,thereby constraining their broader practical applications.Recently,a variety of magneticdriven strategies have been developed to dynamically regulate liquids within enclosed spaces,especially through physicochemical mechanisms.These approaches provide efficient control over liquid behavior by leveraging magnetically induced chemical changes,structural deformations,and dragging motions,opening new opportunities for flexible and versatile fluid management.This review explores the design and mechanisms of magneto-responsive confined interfaces for the manipulation of nonmagnetic liquids,highlighting key advancements and potential applications including liquid valves,liquid mixing,liquid flow regulation,and liquid pumping.Finally,the existing challenges and future prospects in this field are presented. 展开更多
关键词 Physicochemical design Magnetic response Confinedinterfaces Liquid manipulation Nonmagnetic liquids
原文传递
Femtosecond laser subtractive/additive-integrated biomimetic manufacturing for visible/infrared encryption and stimuli-responsive infrared decryption
6
作者 Ruijie Liu Dongshi Zhang Zhuguo Li 《International Journal of Extreme Manufacturing》 2025年第4期387-404,共18页
Black wings of butterfly Ornithoptera goliath and infrared-band radiative cooling function of Rapala dioetas butterfly wings are associated with black pigment(e.g.,melanin)and unique hierarchical micro/nanostructures,... Black wings of butterfly Ornithoptera goliath and infrared-band radiative cooling function of Rapala dioetas butterfly wings are associated with black pigment(e.g.,melanin)and unique hierarchical micro/nanostructures,greatly stimulating biomimetic fabrication of functional photonic structures but mainly targeted to one prototype.Targeted at two-prototype integrated biomimetic fabrication from fully compositional/structural/functional aspects,femtosecond(fs)laser subtractive/additive-integrated hierarchical micro/nano-manufacturing technique is proposed in this work.This technique can one-step transfer refractory metals(e.g.,W,Mo,Nb,Ta)into black non-stoichiometric oxide nanomaterials with abundant oxygen vacancies and simultaneously enable the realization of in situ quasi-controllable micro/nanoscale hierarchical aggregation and assembly,all displaying black color but with tunable infrared emission.Adjusting the scan interval for biomimetic manufacturing can tailor the structural oxidation degree,the emission in the long-wave infrared(LWIR)band while keeping the blackness of hierarchical aggregates,and the confined height between the covering quartz plate and the ablated sample.The blackening efficiency of this technique can reach∼11.25 cm^(2)·min^(−1),opening opportunities for high-throughput optical/thermal applications.Selectively patterned Chinese characters,Arabic numbers,and English letters are easily fabricable,which are intrinsically invisible-infrared dual-band encrypted but decryptable via static/dynamic environment stimuli(e.g.,sample heating/cooling,introducing external hot/cold sources including human hands).The self-evolution from‘orderless’structuring to‘ordered’functionalization is validated for the proposed fs laser subtractive/additive-integrated biomimetic manufacturing,specifically from the synthesis of diverse black nanomaterials and the seemingly disordered micro/nano-aggregates to the ordered optical/thermal regulation capacities for a delicate modulation of information encryption and decryption,unveiling a new concept for future exploration and extension. 展开更多
关键词 femtosecond laser biomimetic manufacturing black particle aggregates subtractive/additive-integrated manufacturing intrinsic visible-infrared encryption stimuli responsive decrypted IR display
在线阅读 下载PDF
Coupling of an Au@AgPt nanozyme array with an micrococcal nuclease-specific responsiveness strategy for colorimetric/SERS sensing of Staphylococcus aureus in patients with sepsis
7
作者 Xueqin Huang Yingqi Yang +12 位作者 Hanlin Zhou Liping Hu Annan Yang Hua Jin Biying Zheng Jiang Pi Jun Xu Pinghua Sun Huai-Hong Cai Xujing Liang Bin Pan Junxia Zheng Haibo Zhou 《Journal of Pharmaceutical Analysis》 2025年第2期389-400,共12页
Rapid and ultrasensitive detection of pathogen-associated biomarkers is vital for the early diagnosis and therapy of bacterial infections.Herein,we developed a close-packed and ordered Au@AgPt array coupled with a cas... Rapid and ultrasensitive detection of pathogen-associated biomarkers is vital for the early diagnosis and therapy of bacterial infections.Herein,we developed a close-packed and ordered Au@AgPt array coupled with a cascade triggering strategy for surface-enhanced Raman scattering(SERS)and colorimetric identification of the Staphylococcus aureus biomarker micrococcal nuclease(MNase)in serum samples.The trimetallic Au@AgPt nanozymes can catalyze the oxidation of 3,3’,5,5’-tetramethylbenzidine(TMB)molecules to SERS-enhanced oxidized TMB(oxTMB),accompanied by the color change from colorless to blue.In the presence of S.aureus,the secreted MNase preferentially cut the nucleobase AT-rich regions of DNA sequences on magnetic beads(MBs)to release alkaline phosphatase(ALP),which subsequently mediated the oxTMB reduction for inducing the colorimetric/SERS signal fade away.Using this“on-to-off”triggering strategy,the target S.aureus can be recorded in a wide linear range with a limit of detection of 38 CFU/mL in the colorimetric mode and 6 CFU/mL in the SERS mode.Meanwhile,the MNase-mediated strategy characterized by high specificity and sensitivity successfully discriminated between patients with sepsis(n=7)and healthy participants(n=3),as well as monitored the prognostic progression of the disease(n=2).Overall,benefiting from highly active and dense“hot spot”substrate,MNase-mediated cascade response strategy,and colorimetric/SERS dual-signal output,this methodology will offer a promising avenue for the early diagnosis of S.aureus infection. 展开更多
关键词 Au@AgPt nanoarrays Surface-enhanced Raman scattering COLORIMETRY Cascade response strategy MNase
在线阅读 下载PDF
A Biomimetic Magnetic-Responsive Surface With the Dynamic Antifouling Property Inspired by Calliphora Vicina Wing
8
作者 You Chen Zijing Quan +6 位作者 Xiaofeng Jiang Hanliang Ding Bo Li Jie Zhao Shichao Niu Zhiwu Han Luquan Ren 《Journal of Bionic Engineering》 2025年第3期1352-1363,共12页
Superhydrophobic/superhydrophilic antifouling materials are widely used to solve the severe water pollution and bio-adhesion of marine equipment.However,conventional antifouling materials rely on the static superwetta... Superhydrophobic/superhydrophilic antifouling materials are widely used to solve the severe water pollution and bio-adhesion of marine equipment.However,conventional antifouling materials rely on the static superwettability of surfaces,which suffer from poorly sustained antifouling effects.Inspired by the unique dynamic antifouling strategies of Calliphora Vicina wing surface based on the hydrophobic micro-cilia arrays,a Biomimetic Magnetic-Responsive Antifouling Surface(BMRAS)is designed and fabricated using a method combining UV lithography and an inverse molding.The BMRAS is coated by high-aspect-ratio micro-cilia,which are filled with synthesized magnetic Fe3O4 nanoparticles.The bioinspired hydrophobic micro-cilia arrays endow the BMRAS with excellent intrinsic superhydrophobicity,benefiting from the high-aspect-ratio feature and roughness effect.Remarkably,the static contact angle is more than 156.9±1.6°and the rolling angle is less than 2.3±0.3°.The synthesized magnetic nanomaterials play a key role in implementing dynamic antifouling strategies.On the one hand,the surface tension can be adjusted as required under magnetically controlled oscillations.On the other hand,the doping of magnetic nanomaterials can enhance mechanical properties and reduce capillary force-induced aggregation of high-aspect-ratio micro-cilia.The antifouling tests demonstrate that the chemically modified micro-cilia can effectively expel gravels under the stimulation of an external magnetic field and enable the BMRAS to achieve dynamic self-cleaning.Specifically,0.17 g gravel distributed on BMRAS can be completely cleaned up within 0.296 s,which improved by 14.2%compared with the flat materials.This work provides a brief and effective strategy for designing dynamic antifouling surfaces with excellent physicochemical durability and great potential value in the applications of marine fouling. 展开更多
关键词 Calliphora Vicina wing High-aspect-ratio micro-cilia Biomimetic surface Magnetic response Dynamic antifouling
在线阅读 下载PDF
A Novel Thermo-Salinity-Responsive Nanographite System for Enhanced Oil Recovery in Deep Reservoirs
9
作者 Caili Dai Wanlei Geng +4 位作者 Jiaming Li Guang Zhao Bin Yuan Yang Zhao Tayfun Babadagli 《Engineering》 2025年第6期164-176,共13页
In deep oil reservoir development,enhanced oil recovery(EOR)techniques encounter significant challenges under high-temperature and high-salinity conditions.Traditional profile-control agents often fail to maintain sta... In deep oil reservoir development,enhanced oil recovery(EOR)techniques encounter significant challenges under high-temperature and high-salinity conditions.Traditional profile-control agents often fail to maintain stable blocking under extreme conditions and exhibit poor resistance to high temperature and high salinity.This study develops a functionalized nanographite system(the MEGO system)with superior high-temperature dispersibility and thermosalinity-responsive capability through polyether amine(PEA)grafting and noncovalent interactions with disodium naphthalene sulfonate(DNS)molecules.The grafted PEA and DNS provide steric hindrance and electrostatic repulsion,enhancing thermal and salinity resistance.After ten days of aggregation,the MEGO system forms stable particle aggregates(55.51-61.80 lm)that are suitable for deep reservoir migration and profile control.Both experiments and simulations reveal that particle size variations are synergistically controlled by temperature and salt ions(Na^(+),Ca^(2+),and Mg^(2+)).Compared with monovalent ions,divalent ions promote nanographite aggregation more strongly through double-layer compression and bridging effects.In core displacement experiments,the MEGO system demonstrated superior performance in reservoirs with permeabilities ranging from 21.6 to 103 mD.The aggregates formed within the pore throats significantly enhanced flow resistance,expanded the sweep volume,and increased the overall oil recovery to 56.01%.This research indicates that the MEGO system holds excellent potential for EOR in deep oil reservoirs. 展开更多
关键词 Deep oil reservoirs MEGO system Thermosalinity responsiveness Conformance control Enhanced oil recovery
在线阅读 下载PDF
Facile GSH responsive glycyrrhetinic acid conjunction for liver targeting therapy
10
作者 Xinran Xi Xiyu Wang +4 位作者 Ziyue Xi Chuanyong Fan Yingying Jiang Zhenhua Li Lu Xu 《Chinese Chemical Letters》 2025年第10期391-396,共6页
Glycyrrhetinic acid(GA)sheds new light on liver-targeted therapy due to high-specific accumulation to GA receptors in liver,however,the limitation of commonly used macromolecular GA modification approaches as well as ... Glycyrrhetinic acid(GA)sheds new light on liver-targeted therapy due to high-specific accumulation to GA receptors in liver,however,the limitation of commonly used macromolecular GA modification approaches as well as the application gap across various vector have constrained its use.In this study,we proposed a novel perspective to break out,disulfide bonds(SS)were employed as linkage to facilitate GA modification,which allowed further connections with various carriers,while provided additional glutathione(GSH)-responsive property.The superiority of GA-disulfide conjunction was validated using mesoporous silica nanoparticles(MSN)as model carriers,chemotherapeutic drug(doxorubicin)and photosensitizer(indocyanine green)were loaded into MSN-SS-GA to further achieve chemo-photothermal synergistic anti-tumor therapy.Based on results from multiple evaluations,the GA-disulfide drafted MSN(DI/MSN-SS-GA)demonstrated expected liver tumor targeting effect and exhibited GSH-stimuli release property to reduce preleakage.Taken together,this study presents an effective chemo-photothermal therapy for liver cancer(88.26%),offers a potential,robust and straightforward strategy on GA application for enhancing liver targeting therapy. 展开更多
关键词 Glycyrrhetinic acid Glutathione response Liver targeting therapy Mesoporous silica nanoparticles Chemo-photothermal therapy
原文传递
Tunable Thermo-Responsive Shape Memory Materials Enabled by Poly(ε-caprolactone)-Poly(2-vinyl)ethylene Glycol Copolymers via Facile Thiol-Ene Photo-Crosslink
11
作者 Ming-Hang Wang Fan Yang Yong-Jian Zhang 《Chinese Journal of Polymer Science》 2025年第2期278-288,共11页
Control crosslink network and chain connectivity are essential to develop shape memory polymers(SMPs)with high shape memory capabilities,adjustable response temperature,and satisfying mechanistical properties.In this ... Control crosslink network and chain connectivity are essential to develop shape memory polymers(SMPs)with high shape memory capabilities,adjustable response temperature,and satisfying mechanistical properties.In this study,novel poly(ε-caprolactone)(PCL)-poly(2-vinyl)ethylene glycol(PVEG)copolymers bearing multi-pendant vinyl groups is synthesized by branched-selective allylic etherification polymerization of vinylethylene carbonate(VEC)with linear and tetra-arm PCLs under a synergistic catalysis of palladium complex and boron reagent.Facile thiol-ene photo-click reaction of PCL-PVEG copolymers with multifunctional thiols can rapidly access a serious crosslinked SMPs with high shape memory performance.The thermal properties,mechanical properties and response temperature of the obtained SMPs are tunable by the variation of PCL prepolymers,vinyl contents and functionality of thiols.Moreover,high elastic modulus in the rubbery plateau region can be maintained effectively owing to high-density topological networks of the PCL materials.In addition,the utility of the present SMPs is further demonstrated by the post-functionalization via thiol-ene photo-click chemistry. 展开更多
关键词 Shape memory polymers POLYCAPROLACTONE Thiol-ene photo-crosslink Controlled crosslinking density Tunable response temperature
原文传递
Magnetically-responsive phase change thermal storage materials:Mechanisms,advances,and beyond
12
作者 Yan Gao Yang Li +3 位作者 Jinjie Lin Panpan Liu Xiao Chen Ge Wang 《Journal of Energy Chemistry》 2025年第2期485-510,I0010,共27页
Rapid advances in thermal management technology and the increasing need for multi-energy conversion have placed stringent energy efficiency requirements on next-generation shape-stable composite phase change materials... Rapid advances in thermal management technology and the increasing need for multi-energy conversion have placed stringent energy efficiency requirements on next-generation shape-stable composite phase change materials(PCMs).Magnetically-responsive phase change thermal storage materials are considered an emerging concept for energy storage systems,enabling PCMs to perform unprecedented functions(such as green energy utilization,magnetic thermotherapy,drug release,etc.).The combination of multifunctional magnetic nanomaterials and PCMs is a milestone in the creation of advanced multifunctional composite PCMs.However,a timely and comprehensive review of composite PCMs based on magnetic nanoparticle modification is still missing.Herein,we furnish an exhaustive exposition elucidating the cutting-edge advancements in magnetically responsive composite PCMs.We delve deeply into the multifarious roles assumed by distinct nanoparticles within composite PCMs of varying dimensions,meticulously scrutinizing the intricate interplay between their architectures and thermophysical attributes.Moreover,we prognosticate future research trajectories,delineate alternative stratagems,and illuminate prospective avenues.This review is intended to stimulate broader academic interest in interdisciplinary fields and provide valuable insights into the development of next-generation magnetically-responsive composite PCMs. 展开更多
关键词 Phase change materials Magnetic-thermal conversion Magnetic nanoparticles Thermal energy storage Response mechanism
在线阅读 下载PDF
Tumor microenvironment-responsive drug self-delivery systems to treat cancer and overcome MDR
13
作者 Ling-Mei Li Yi-Pin Xie +4 位作者 Yu-Rong Qin Hai-Ping Chu Hui Xie De-Jin Zang Teng Liu 《Rare Metals》 2025年第1期1-33,共33页
Tumor microenvironment-responsive drug self-delivery systems utilize tumor microenvironment-responsive chemical bonds to link anti-tumor drugs,exploiting the hydrophilic and hydrophobic properties of different drugs t... Tumor microenvironment-responsive drug self-delivery systems utilize tumor microenvironment-responsive chemical bonds to link anti-tumor drugs,exploiting the hydrophilic and hydrophobic properties of different drugs to form amphiphilic prodrug molecules with self-assembly characteristics.Upon stimulation by specific factors in the tumor microenvironment,these amphiphilic prodrug molecules can release drugs at precise sites within the tumor.These strategies significantly increase the drug concentration at the tumor site while effectively reducing the damage of anti-cancer drugs to normal tissues.Owing to the advanced delivery strategies such as synergistic administration and controlled drug release,tumor microenvironment-responsive drug self-delivery systems hold great potential for treating malignant tumors with multidrug resistance(MDR).At the same time,the stimulus-reactivity of metal complexes provides an important opportunity to design site-specific prodrugs that can maximize therapeutic efficacy while minimizing adverse side effects of metal drugs.This innovative drug design complements the tumor microenvironment-responsive self-delivery system,providing more feasible therapeutic strategies and possibilities in the field of cancer therapy and drug delivery.This work provides a comprehensive review of recent advancements in drug self-delivery systems,offering insights into their potential applications in cancer therapy and MDR reversal. 展开更多
关键词 Drug self-delivery system Metal drug Tumor microenvironment response Drug carrier Tumor multidrug resistance
原文传递
Thermo-responsive microneedles patch for transdermal drug delivery via squeezing in diabetic foot ulcers
14
作者 Xiaotong Wu Dan Xia +4 位作者 Tingting Shi Baoe Li Donghui Wang Chunyong Liang Mingdong Dong 《Journal of Materials Science & Technology》 2025年第2期299-314,共16页
Microneedle(MN)patches could be a promising treatment for diabetic foot ulcers that plague thousands of people worldwide.While reducing skin resistance or increasing driving force can accelerate the efficiency of tran... Microneedle(MN)patches could be a promising treatment for diabetic foot ulcers that plague thousands of people worldwide.While reducing skin resistance or increasing driving force can accelerate the efficiency of transdermal drug delivery with conventional MN patches,it can create toxic chemical residues or require the help of additional devices.Herein,a thermo-responsive microneedles patch(TMN)with high biocompatibility without additional equipment is proposed.The TMN consisted of a bilayer microneedles composed of sodium alginate(SA)-g-poly(N-isopropylacrylamide)layer(SA-g-PNIPAM)loaded with sucrose octasulfate sodium salt(SOS)and hyaluronic acid layer and a polycaprolactone/chitosan nanofiber membrane loading with tetracycline hydrochloride(TH)and SOS.PNIPAM accelerates drug release by extruding the drug through a volumetric phase transition in response to temperature changes,and TH and SOS promote wound healing by inhibiting bacterial growth and promoting vascular regeneration and epithelial formation.The results showed that the drug release of TMN was significantly faster,with the drug release rate of more than 80% in the 10th h,and the antibacterial rate of TMN could reach 800%.In addition,TMN had good biocompatibility and good healing effects in vivo,which may be helpful for the design of multifunctional dressings in the future. 展开更多
关键词 Microneedles patch Thermal response Transdermal drug delivery Diabetic foot ulcers
原文传递
Infectious microenvironment responsive bimetallic sulfide combined with NIR irradiation to enhance photodynamic gas synergistic therapy of maxillofacial trauma
15
作者 Yin-Han Liao Hai-Qing Liao +11 位作者 Xing-Mou Wu Xu-Zhi Liang Shi-Yu Zhang Yan Liu Wei-Jiu Mo Sui-Hua Li Ming-Yang Jiang Zhi-Wei Gao Jia-Xi Wang Ming Gao Hao Li Cui-Ping Li 《Rare Metals》 2025年第10期7587-7602,共16页
Maxillofacial trauma is an infection and oxidative stress-induced damage to maxillofacial area related cells.Increasing evidences have suggested that therapeutic strategies with controllable anti-infective and anti-in... Maxillofacial trauma is an infection and oxidative stress-induced damage to maxillofacial area related cells.Increasing evidences have suggested that therapeutic strategies with controllable anti-infective and anti-inflammatory capabilities hold great potentials in the clinical treatment of maxillofacial trauma.Herein,we reported an infectious microenvironment responsive bimetallic sulfide(FeCuS_(x),FCS)combining with near infrared(NIR)irradiation for maxillofacial trauma therapy.In cellular levels,FCS exhibited the most efficient antioxidant and anti-inflammatory,cell migration,and angiogenesis behaviors through down-regulating the inflammatory factor(iNOS)expression level,up-regulating anti-inflammatory factors(Arg^(-1)and TGF-β)expression level,inducing macrophages M2 polarization(CD86down-regulation and CD206 up-regulation),and promoting tissue repair factors(CD31)expression level.Besides,it presented the excellent antibacterial ability of Escherichia coli(99.74%)and MRSA(99.78%)for FCS+NIR.Significantly,it also confirmed that FCS+NIR presented the excellent functions of inhibiting wound infections,decreasing wound inflammation,as well as promoting trauma tissue repairing.Altogether,it had developed the strategy of FCS+NIR for the synergistic enhancement of infectious maxillofacial trauma healing,could also serve as a promising therapeutic strategy for the treatment of infectious diseases. 展开更多
关键词 Maxillofacial trauma Photodynamic gas synergistic therapy Bimetallic sulfide nanozyme Infectious microenvironment response Accelerated tissue repair
原文传递
Biotin-Thiamine-Responsive Basal Ganglia Disease: Clinical Features, Treatment Response and Predictive Factors in a Cohort in a Tertiary Hospital
16
作者 Talal Alwahhabi Faris Alzhrany +1 位作者 Mohammed Alzhrany Sadia Tabassum 《World Journal of Neuroscience》 2025年第1期58-72,共15页
Introduction: Biotin-thiamine-responsive basal ganglia disease (BTBGD) is a neuroregressive disorder associated with subacute encephalopathy, confusion, dysarthria, and dysphagia, as well as occasional external ophtha... Introduction: Biotin-thiamine-responsive basal ganglia disease (BTBGD) is a neuroregressive disorder associated with subacute encephalopathy, confusion, dysarthria, and dysphagia, as well as occasional external ophthalmoplegia or supranuclear facial nerve palsy. It may progress to severe rigidity, dystonia, and quadriparesis. Combination therapy of high-dose thiamine and biotin helps to control the symptoms and prevent progression of the disease. Methods: This retrospective, cross-sectional study was conducted at King Fahad Medical City in Riyadh, Saudi Arabia, to investigate the demographic, clinical features, treatment response, outcomes, and predictive factors of BTBGD in the pediatric population. Results: Twenty-five records of pediatric patients diagnosed with BTBGD were included in the study. The most common symptoms observed at presentation were ataxia in 13 patients (52%), followed by developmental regression in 11 patients (44%), and seizures in 7 patients (28%). Statistically significant associations were found between patient’s age of presentation, seizures at presentation, lactate level and their health outcomes. Multivariate logistic regression analysis revealed significant differences in patient outcomes (prognosis) based on their age at presentation, seizures, and lactate levels (p Conclusion: This study reported BTBGD in 25 pediatric patients in Saudi Arabia. Age at presentation, seizures, and lactate levels were found to be significantly associated with patient health outcomes. Increasing public awareness of the condition, particularly among parents and pediatricians, is imperative. Early diagnosis, along with timely management using biotin and thiamine supplementation, promotes improved health outcomes and prevents progressive neurodegeneration and death. 展开更多
关键词 Biotin-Thiamin-responsive Basal Ganglia Disease Neuroregression Neurometabolic BIOTIN THIAMINE
暂未订购
A shape-reconfigurable,light and magnetic dual-responsive shape-memory micropillar array chip for droplet manipulation 被引量:1
17
作者 Wen-Qi Ye Wen-Xin Fu +2 位作者 Xiao-Peng Liu Chun-Guang Yang Zhang-Run Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第1期456-460,共5页
Droplet manipulation on an open surface has great potential in chemical analysis and biomedicine engineering.However,most of the reported platforms designed for the manipulation of water droplets cannot thoroughly sol... Droplet manipulation on an open surface has great potential in chemical analysis and biomedicine engineering.However,most of the reported platforms designed for the manipulation of water droplets cannot thoroughly solve the problem of droplet evaporation.Herein,we report a shape-reconfigurable micropillar array chip for the manipulation of water droplets,oil droplets and water-in-oil droplets.Water-in-oil droplets provide an enclosed space for water droplets,preventing the evaporation in an open environment.Perfluoropolyether coated on the surface of the chip effectively reduces the droplet movement resistance.The micropillar array chip has light and magnetic dual-response due to the Fe3O4 nanoparticles and the reduced iron powder mixed in the shape-memory polymer.The micropillars irradiated by a near-infrared laser bend under the magnetic force,while the unirradiated micropillars still keep their original shape.In the absence of a magnetic field,when the micropillars in a temporary shape are irradiated by the near-infrared laser to the transition temperature,the micropillars return to their initial shape.In this process,the surface morphology gradient caused by the deformation of the micropillars and the surface tension gradient caused by the temperature change jointly produce the driving force of droplet movement. 展开更多
关键词 MICROFLUIDICS Droplet manipulation Micropillar array Shape memory polymer Magnetic response Light response
原文传递
Diphylleia Grayi-Inspired Intelligent Temperature-Responsive Transparent Nanofiber Membranes 被引量:1
18
作者 Cengceng Zhao Gaohui Liu +6 位作者 Yanyan Lin Xueqin Li Na Meng Xianfeng Wang Shaoju Fu Jianyong Yu Bin Ding 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期67-78,共12页
Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a ... Nanofiber membranes(NFMs) have become attractive candidates for next-generation flexible transparent materials due to their exceptional flexibility and breathability. However, improving the transmittance of NFMs is a great challenge due to the enormous reflection and incredibly poor transmission generated by the nanofiber-air interface. In this research, we report a general strategy for the preparation of flexible temperature-responsive transparent(TRT) membranes,which achieves a rapid transformation of NFMs from opaque to highly transparent under a narrow temperature window. In this process, the phase change material eicosane is coated on the surface of the polyurethane nanofibers by electrospray technology. When the temperature rises to 37 ℃, eicosane rapidly completes the phase transition and establishes the light transmission path between the nanofibers, preventing light loss from reflection at the nanofiber-air interface. The resulting TRT membrane exhibits high transmittance(> 90%), and fast response(5 s). This study achieves the first TRT transition of NFMs, offering a general strategy for building highly transparent nanofiber materials, shaping the future of next-generation intelligent temperature monitoring, anti-counterfeiting measures, and other high-performance devices. 展开更多
关键词 BIOMIMETIC TRANSPARENT Nanofibrous membrane Temperature response Phase change materials
在线阅读 下载PDF
Biomimetic Water-Responsive Helical Actuators for Space-Efficient and Adaptive Robotic Grippers 被引量:1
19
作者 Che Zhao Jinglong Liu +6 位作者 Lei Duan Rui Lan Xiaobo Yu Hongliang Hua Chao Zhou Qingping Liu Chao Xu 《Journal of Bionic Engineering》 CSCD 2024年第6期2847-2863,共17页
Traditional robotic grippers encounter significant challenges when handling small objects in confined spaces,underscoring the need for innovative instruments with enhanced space efficiency and adaptability.Erodium cic... Traditional robotic grippers encounter significant challenges when handling small objects in confined spaces,underscoring the need for innovative instruments with enhanced space efficiency and adaptability.Erodium cicutarium awns have evolved hygroresponsive helical deformation,efficiently driving seeds into soil crevices with limited space utilization.Drawing inspiration from this natural mechanism,we developed a biomimetic thin-walled actuator with water-responsive helical capabilities.It features a composite material structure comprising common engineering materials with low toxicity.Leveraging fused deposition modeling 3D printing technology and the composite impregnation process,the actuator’s manufacturing process is streamlined and cost-effective,suitable for real-world applications.Then,a mathematical model is built to delineate the relationship between the biomimetic actuator’s key structural parameters and deformation characteristics.The experimental results emphasize the actuator’s compact dimension(0.26 mm thickness)and its capability to form a helical tube under 5 mm diameter within 60 s,demonstrating outstanding space efficiency.Moreover,helical characteristics and stiffness of the biomimetic actuators are configurable through precise modifications to the composite material structure.Consequently,it is capable of effectively grasping an object smaller than 3 mm.The innovative mechanism and design principles hold promise for advancing robotic technology,particularly in fields requiring high space efficiency and adaptability,such as fine tubing decongestion,underwater sampling,and medical endoscopic surgery. 展开更多
关键词 Robotic gripper BIOMIMETIC responsive deformation Composite material structure Hybrid manufacturing
在线阅读 下载PDF
Tumor microenvironment-responsive hyperbranched polymers for controlled drug delivery 被引量:1
20
作者 Yuqiong Guo Xinni He +5 位作者 Gareth R.Williams Yue Zhou Xinying Liao Ziyi Xiao Cuiyun Yu Yang Liu 《Journal of Pharmaceutical Analysis》 CSCD 2024年第12期1749-1776,共28页
Hyperbranched polymers(HBPs)have drawn great interest in the biomedical field on account of their special morphology,low viscosity,self-regulation,and facile preparation methods.Moreover,their large intramolecular cav... Hyperbranched polymers(HBPs)have drawn great interest in the biomedical field on account of their special morphology,low viscosity,self-regulation,and facile preparation methods.Moreover,their large intramolecular cavities,high biocompatibility,biodegradability,and targeting properties render them very suitable for anti-tumor drug delivery.Recently,exploiting the specific characteristics of the tumor microenvironment,a range of multifunctional HBPs responsive to the tumor microenvironment have emerged.By further introducing various types of drugs through physical embedding or chemical coupling,the resulting HBPs based delivery systems have played a crucial part in improving drug stability,increasing effective drug concentration,decreasing drug toxicity and side effects,and enhancing anti-tumor effect.Here,based on different types of tumor microenvironment stimulation signals such as pH,redox,temperature,etc.,we systematically review the preparation and response mechanism of HBPs,summarize the latest advances in drug delivery applications,and analyze the challenges and future research directions for such nanomaterials in biomedical clinical applications. 展开更多
关键词 Drug delivery Hyperbranched polymer Stimuli responsive Tumor microenvironment
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部