期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Failure pressure calculation of fracturing well based on fluid-structure interaction 被引量:2
1
作者 Jinzhou Zhao Lan Ren +1 位作者 Min Li Yongming Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第S1期450-456,共7页
Failure pressure is a key parameter in reservoir hydrofracturing operation. Existing analytical methods for calculating the failure pressure are based on the assumption that borehole fluid is under two extreme conditi... Failure pressure is a key parameter in reservoir hydrofracturing operation. Existing analytical methods for calculating the failure pressure are based on the assumption that borehole fluid is under two extreme conditions: non-infiltration or complete infiltration. The assumption is not suitable for the actual infiltration process, and this will cause a great error in practical calculation. It shows that during the injection process, the dynamic variation in effective stress-dependent permeability has an influence on the infiltration, and the influence also brings about calculation errors. Based on the fluid-structure interaction and finite element method (FEM), considering partial infiltration during injection process, a numerical model for calculating rock failure pressure is established. According to the analysis of permeability test results and response-surface method, a new variation rule of rock permeability with the change of effective stress is presented, and the relationships among the permeability, confining pressure and pore pressure are proposed. There are some differences between the dynamic value of permeability-effective-stress coefficient observed herein and the one obtained by the classical theory. Combining with the numerical model and the dynamic permeability, a coupling method for calculating failure pressure is developed. Comparison of field data and calculated values obtained by various methods shows that accurate values can be obtained by the coupling method. The coupling method can be widely applied to the calculation of failure pressure of reservoirs and complex wells to achieve effective fracturing operation. 展开更多
关键词 failure pressure fluid-structure interaction HYDROFRACTURING coupling method response-surface method
在线阅读 下载PDF
The Effects of Stochastic Characteristics of Materials on the Reliability of a Composite Ship Hull
2
作者 张炜 唐文勇 +1 位作者 陈念众 张圣坤 《Journal of Marine Science and Application》 2011年第1期1-6,共6页
The effects of stochastic characteristics of materials on the reliability of ship hulls made of composite materials under longitudinal moment were extensively studied using reliability and sensitivity calculations of ... The effects of stochastic characteristics of materials on the reliability of ship hulls made of composite materials under longitudinal moment were extensively studied using reliability and sensitivity calculations of a composite ship hull which was sagging.The reliability indices and failure probabilities of the ship in three kinds of failure modes (buckling,material failure,and ultimate collapse) were calculated by the surface response method and JC method.The importance factors of random variables in stochastic models,such as the model errors in predicting the ultimate longitudinal strength of ship and the longitudinal bending moment that the ship withstands,as well as the stochastic characteristics of materials in the models used,were calculated.Then,the effects of these random variables,including the stochastic characteristics of materials on the reliability index and the failure probability of ships which were sagging,were discussed with their importance factors.The results show that the effects of stochastic characteristics of materials on the reliability of ship hulls made of composite materials should be considered during the reliability assessment of composite ships.Finally,some conclusions and recommendations were given for high-speed ship design and safety assessment. 展开更多
关键词 composite material reliability analysis response-surface method sensitivity analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部