The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the rel...The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters.展开更多
In order to improve the quality of 3D printed raspberry preserves after post-processing,microwave ovens combining infrared and microwave methods were utilized.The effects of infrared heating temperature,infrared heati...In order to improve the quality of 3D printed raspberry preserves after post-processing,microwave ovens combining infrared and microwave methods were utilized.The effects of infrared heating temperature,infrared heating time,microwave power,microwave heating time on the center temperature,moisture content,the chroma(C*),the total color difference(ΔE*),shape fidelity,hardness,and the total anthocyanin content of 3D printed raspberry preserves were analyzed by response surface method(RSM).The results showed that under combining with the two methods,infrared heating improved the fidelity and quality degradation of printed products,while microwave heating enhanced the efficiency of infrared heating.Infrared-microwave combination cooking could maintain relatively stable color appearance and shape of 3D printed raspberry preserves.The AHP–CRITIC hybrid weighting method combined with the response surface test to determine the comprehensive weights of the evaluation indicators optimized the process parameters,and the optimal process parameters were obtained:infrared heating temperature of 190℃,infrared heating time of 10 min and 30 s,microwave power of 300 W,and microwave heating time of 2 min and 6 s.The 3D printed raspberry cooking methods obtained under the optimal conditions seldom had color variation,porous structure,uniform texture,and high shape fidelity,which retained the characteristics of personalized manufacturing by 3D printing.This study could provide a reference for the postprocessing and quality control of 3D cooking methods.展开更多
The escalating production of industrial solid waste,combined with the dwindling availability of natural resources,has intensified the focus on waste recycling.However,the heterogeneity and complexity of waste pose sig...The escalating production of industrial solid waste,combined with the dwindling availability of natural resources,has intensified the focus on waste recycling.However,the heterogeneity and complexity of waste pose significant challenges to determining process parameters.In this study,burnt coal cinder(BCC),granite powder(GP),and high-calcium fly ash(Class-C FA)were used as raw materials,and the response surface methodology(RSM)and single-factor experiments were applied to optimize the process parameters for geopolymer preparation.The optimized precursor powder composition was determined to be a mass ratio of 1.6:0.9:7.3 for BCC,GP,and Class-C FA.The NaOH-precursor powder ratio and liquid-solid ratio were adjusted to 0.084 and 0.222,respectively.The curing condition was set at 80℃ for 24 h.The resulting 28 d-aged multi-solid wastes-based geopolymer exhibited a high compressive strength of61.34 MPa.The microstructure,mineral phase,and atomic bonding of geopolymers were investigated using X-ray diffraction(XRD),thermal analysis(TA),Fourier transform infrared spectroscopy(FTIR),and scanning electron microscopy with energy dispersive spectroscopy(SEM-EDS).Findings indicate that the compressive strength of geopolymer is most significantly influenced by the Class-C FA,followed by BCC.Furthermore,a minor addition of GP can optimize the structural density of the geopolymer.The Ca present in the Class-C FA participates in the geopolymerization,forming a hybrid N-(C)-A-S-H gel.RSM optimization facilitates the synergistic utilization of multi-solid wastes,ensuring an even distribution of gel and filler.This research establishes a theoretical framework for optimizing the preparation parameters of multi-solid wastes-based geopolymer and its subsequent applications;it holds significant scientific implications for the circular economy,resource transformation,and environmental conservation.展开更多
Background Early embryo development plays a pivotal role in determining pregnancy outcomes,postnatal development,and lifelong health.Therefore,the strategic selection of functional nutrients to enhance embryo developm...Background Early embryo development plays a pivotal role in determining pregnancy outcomes,postnatal development,and lifelong health.Therefore,the strategic selection of functional nutrients to enhance embryo development is of paramount importance.In this study,we established a stable porcine trophectoderm cell line expressing dual fluorescent reporter genes driven by the CDX2 and TEAD4 gene promoter segments using lentiviral transfection.Results Three amino acid metabolites—kynurenic acid,taurine,and tryptamine—met the minimum z-score criteria of 2.0 for both luciferase and Renilla luciferase activities and were initially identified as potential metabolites for embryo development,with their beneficial effects validated by qPCR.Given that the identified metabolites are closely related to methionine,arginine,and tryptophan,we selected these three amino acids,using lysine as a standard,and employed response surface methodology combined with our high-throughput screening cell model to efficiently screen and optimize amino acid combination conducive to early embryo development.The optimized candidate amino acid system included lysine(1.87 mmol/L),methionine(0.82 mmol/L),tryptophan(0.23 mmol/L),and arginine(3 mmol/L),with the ratio of 1:0.43:0.12:1.60.In vitro experiments confirmed that this amino acid system enhances the expression of key genes involved in early embryonic development and improves in vitro embryo adhesion.Transcriptomic analysis of blastocysts suggested that candidate amino acid system enhances early embryo development by regulating early embryonic cell cycle and differentiation,as well as improving nutrient absorption.Furthermore,based on response surface methodology,400 sows were used to verify this amino acid system,substituting arginine with the more cost-effective N-carbamoyl glutamate(NCG),a precursor of arginine.The optimal dietary amino acid requirement was predicted to be 0.71%lysine,0.32%methionine,0.22%tryptophan,and 0.10%NCG for sows during early gestation.The optimized amino acid system ratio of the feed,derived from the peripheral release of essential amino acids,was found to be 1:0.45:0.13,which is largely consistent with the results obtained from the cell model optimization.Subsequently,we furtherly verified that this optimal dietary amino acid system significantly increased total litter size,live litter size and litter weight in sows.Conclusions In summary,we successfully established a dual-fluorescent high-throughput screening cell model for the efficient identification of potential nutrients that would promote embryo development and implantation.This innovative approach overcomes the limitations of traditional amino acid nutrition studies in sows,providing a more effective model for enhancing reproductive outcomes.展开更多
The asphalt pavement industry is transforming because of the growing influence of artificial intelligence and industrial digitization.As a result of this shift,there is a stronger emphasis on advanced statistical appr...The asphalt pavement industry is transforming because of the growing influence of artificial intelligence and industrial digitization.As a result of this shift,there is a stronger emphasis on advanced statistical approaches like optimization tools like response surface methodology(RSM)and machine learning(ML)techniques.The goal of this paper is to provide a scientometric and systematic review of the application of RSM and ML applications in data-driven approaches such as optimizing,modeling,and predicting asphalt pavement performance to achieve sustainable asphalt pavements in support of numerous sustainable development goals(SDGs).These include Goals 9(sustainable infrastructure),11(urban resilience),12(sustainable construction strategies),13(climate action through optimized materials),and 17(multidisciplinary interaction).A thorough search of the ScienceDirect,Web of Science,and Scopus databases from 2010 to 2023 yielded 1249 relevant records,with 125 studies closely examined.Over the last thirteen years,there has been significant research growth in RSM and ML applications,particularly in ML-based pavement optimization.The study shows that the topic has a global presence,with notable contributions from Asia,North America,Europe,and other continents.Researchers have concentrated on utilizing sophisticated ML models such as support vector machines(SVM),artificial neural networks(ANN),and Bayesian networks for prediction.Also,the integration of RSM and ML provides a faster and more efficient method for analyzing large datasets to optimize asphalt pavement performance variables.Key contributors include the United States,China,and Malaysia,with global efforts focused on sustainable materials and approaches to reduce impact on the environment.Furthermore,the review demonstrates the integrated use of RSM and ML as transformative tools for improving sustainability,which contributes significantly to SDGs 9,11,12,13,and 17.Providing valuable insights for future research and guiding decision-making for soft computing applications for asphalt pavement projects.展开更多
Practical applications of desulfurization gypsum are limited owing to its brittleness and low strength.To overcome these challenges,researchers have developed engineered desulfurization gypsum composites(EDGCs)by inco...Practical applications of desulfurization gypsum are limited owing to its brittleness and low strength.To overcome these challenges,researchers have developed engineered desulfurization gypsum composites(EDGCs)by incorporating ultrahigh molecular weight polyethylene(UHMWPE)fiber and sulfoaluminate cement(SAC).The mix ratio was optimized using response surface methodology(RSM).Experimental testing of EDGC under compressive and tensile loads led to the creation of a regression model that investigates the influence of variables and their interactions on the material’s compressive and tensile strengths.Additionally,microscopic morphology and hydration product composition were analyzed to explore the influence mechanism.The results indicated that EDGC’s compressive strength increased by up to 38.4%owing to a decreased water-binder ratio and higher SAC content.Similarly,tensile strength increased by up to 38.6%owing to increased SAC and fiber content.Moreover,EDGC demonstrated excellent strain-hardening behavior and multiple cracking characteristics,achieving a maximum tensile strain of nearly 3%.The research findings provide valuable insights for optimizing the performance of desulfurization gypsum.展开更多
Safety,high protein content,and the numerous health benefits make Spirulina an outstanding source of bioactive peptides.Peptides from Spirulina,which exhibit antioxidant,anti-inflammatory,and antihypertensive effects,...Safety,high protein content,and the numerous health benefits make Spirulina an outstanding source of bioactive peptides.Peptides from Spirulina,which exhibit antioxidant,anti-inflammatory,and antihypertensive effects,may assist in the management of cardiovascular diseases(CVDs).Here,we present the optimization of enzyme-digested hydrolysates derived from Spirulina sp.by using response surface methodology(RSM).We also evaluated the biological activity of Spirulina protein hydrolysates(SPHs)in contributing to the amelioration of hypertension and associated cardiovascular diseases.Our findings suggest that Spirulina protein extracts contain a complex proteinaceous composition with phycocyanin being the dominant protein,as evidenced by both SDS-PAGE and LC-MS/MS profiling.Alkaline protease,protease K,andα-chymotrypsin exhibited a substantial hydrolytic effect on Spirulina protein,taking into account their degree of hydrolysis(DH),peptide yield,and molecular weight distribution.Single-factor experiments identified pH,temperature,and enzyme/substrate ratio as the key factors influencing DH.Moreover,optimal hydrolysis conditions for the proteases were determined via RSM,leading to a considerable enhancement of the actual DH.Bioassays showed that SPHs have strong antioxidant activity against various free radicals,with a higher ability to scavenge hydroxyl radicals.Furthermore,SPHs inhibited macrophage nitric oxide secretion and significantly inhibited angiotensin I-converting enzyme in vitro at 400μg/mL.It is worth noting that SPHs prepared with protease K exhibited a potent anti-hypertensive effect in vivo.The findings indicate the potential usefulness of including dietary SPHs in preventing hypertension and associated CVDs.This research could be valuable in guiding the development of health-promoting foods within the Spirulina industry.展开更多
In situ recycling is one of the most effective methods to dispose of earth pressure balance(EPB)shield waste muck with residual foaming agents with high moisture content.In this context,response surface methodology(RS...In situ recycling is one of the most effective methods to dispose of earth pressure balance(EPB)shield waste muck with residual foaming agents with high moisture content.In this context,response surface methodology(RSM)was employed to quantify the effects of independent variables,including flocculant dosage,defoamer dosage,and muck drying mass(MDM)and their interactions on defoaming-flocculation-dewatering indices.The polymeric aluminum chloride(PACL)and hydroxy silicone oil-glycerol polypropylene ether(H-G)were selected as the flocculant and defoamer.The contents of surfactants and foam stabilizers in residual foaming agents were determined using the proposed empirical equation.The defoaming ratio,antifoaming ratio,turbidity,moisture content,filtration loss ratio,and fall cone penetration depth were considered as dependent variables.The accuracy of developed RSM models was verified by the analysis results of variance,residuals,and paired t-test.Combined with the desirability approach,an optimal mixing ratio of 0.078 wt%PACL,0.016 wt%H-G,and 27.882 wt%MDM was recommended,leading to a defoaming ratio of 98.34 vol%for residual foams and a moisture content of 56.72 wt%for pressure-filtration cakes.Our findings were demonstrated to be able to provide useful guidance for prediction and optimization of the in situ recycling indicators of EPB shield waste muck in metro tunnel construction sites.展开更多
The objective of this study was to determine the optimal proportions of plant growth regulators for growth and non-tube rapid propagation of Cymbidium tortisepalum var. longibracteatum;seedlings were utilized as the m...The objective of this study was to determine the optimal proportions of plant growth regulators for growth and non-tube rapid propagation of Cymbidium tortisepalum var. longibracteatum;seedlings were utilized as the material. The effects of various combinations and concentrations of 6-benzylaminopurine (6-BA), gibberellic acid (GA_(3)), and naphthaleneacetic acid (NAA) on growth and non-tube rapid propagation were assessed through a single-factor testing and response surface methodology. The results indicated that 6-BA at 60 mg/L, GA_(3) at 150 mg/L, and NAA at 30 mg/L were the most effective concentrations for promoting leaf buds formation in the single-factor analysis. Response surface methodology clarified the sensitivity of the proliferation rate of lateral buds to the three factors, with 6-BA being the most influential, followed by GA_(3) and NAA. The increase in leaf area was most significantly influenced by NAA, then GA_(3), and least by 6-BA, while the increase in plant height was most responsive to GA_(3), followed by 6-BA, and then NAA. The ideal concentrations of plant growth regulators were established as 6-BA at 43 mg/L, GA_(3) at 169 mg/L, and NAA at 36 mg/L. Under these conditions, the lateral bud number per plant was 2.78, with a leaf area increment of 2.87 cm2 and a plant height increment of 2.67 cm.展开更多
Background:Polygonati cyrtonema Hua(PC)has many pharmacological effects such as immune regulation,hypoglycemic and lipid-lowering,anti-oxidation and anti-tumor.Oligosaccharide is one of the main active components of P...Background:Polygonati cyrtonema Hua(PC)has many pharmacological effects such as immune regulation,hypoglycemic and lipid-lowering,anti-oxidation and anti-tumor.Oligosaccharide is one of the main active components of PC.At present,the research on Polygonatum cyrtonema oligosaccharides(PCOS)is not deep,and there is a lack of systematic research on the optimization of extraction process of pcos and the change of pcos and Polygonatum cyrtonema polysaccharide content before and after wine steaming.Methods:The optimum extraction process of oligosaccharides from PC was optimized,and the content of oligosaccharides before and after wine steaming of PC was investigated.The single factor experiment was carried out with the ratio of liquid to material,extraction temperature and extraction time as the investigation factors.The extraction process of PCOS was optimized by Box Behnken design-response surface methodology,and the changes of total oligosaccharides and total polysaccharides before and after wine steaming were studied.Results:The optimal extraction process for the PCOS was 32:1 mL/g,85℃,and 1.5 h.The total PCOS decreased slightly after steaming,but the percentage of the total sugar increased.Conclusion:The extraction process of PCOS optimized by response surface method is reasonable and feasible.The changes of total oligosaccharides and total polysaccharides during the steaming process of PC can reveal the processing mechanism of PC to a certain extent,and provide scientific basis and technical support for better in-depth excavation and development and utilization of PCOS.展开更多
A response surface method was utilized for the finite element model updating of a cable-stayed bridge in this paper to establish a baseline finite element model(FEM)that accurately reflects the characteristics of the ...A response surface method was utilized for the finite element model updating of a cable-stayed bridge in this paper to establish a baseline finite element model(FEM)that accurately reflects the characteristics of the actual bridge structure.Firstly,an initial FEM was established by the large-scale finite element software ANSYS,and the modal analysis was carried out on the dynamic response measured by the actual bridge structural health monitoring system.The initial error was obtained by comparing the dynamic characteristics of the measured data with those of the initial finite element model.Then,the second-order complete polynomial was selected to construct the response surface model;the corrected parameters were chosen using the sensitivity method.The response surface model(RSM)was fitted under the test cases designed using the central composite design method.After constructing the objective function,the RSMwas optimized and iterated by the sequential quadratic programmingmethod to obtain the corrected FEM.Finally,the dynamic characteristics of the modified FEM were compared with those of the actual bridge to get the final error.The results show that the modified FEM simulates the dynamic characteristics of the actual cable-stayed bridges more accurately.展开更多
[Objectives] To optimize the crystallization process of ceftriaxone sodium using response surface methodology (RSM) for enhancing both the crystallization rate and the quality of the final product. [Methods] Four key ...[Objectives] To optimize the crystallization process of ceftriaxone sodium using response surface methodology (RSM) for enhancing both the crystallization rate and the quality of the final product. [Methods] Four key factors, including crystallization temperature, stirring speed, solvent drop rate, and seed crystal content, were employed as independent variables, while the crystallization rate served as the response variable. The Box-Behnken response surface method was utilized for the optimization design. [Results] The optimal parameters for the crystallization process, determined through optimization, were as follows: a temperature of 10.6 ℃, a stirring rate of 150 rpm, a solvent drop rate of 1.50 mL/min, and a seed crystal content of 0.12 g. Validation tests conducted under these conditions yielded an average crystallization rate of 94.38% for the refined product. [Conclusions] The crystallization efficiency of ceftriaxone sodium is markedly enhanced, thereby offering substantial support for its industrial production and clinical application.展开更多
[Objectives]This study was conducted to improve the poor water-holding capacity(WHC)and high syneresis rate of fermented soy milk by optimizing fermentation process conditions.[Methods]Based on the results of single f...[Objectives]This study was conducted to improve the poor water-holding capacity(WHC)and high syneresis rate of fermented soy milk by optimizing fermentation process conditions.[Methods]Based on the results of single factor experiments,response surface methodology was employed to optimize the fermentation temperature,fermentation time,and starter culture addition for enhancing WHC.The physicochemical properties of fermented soybean milk were analyzed.[Results]The optimal process parameters were determined as follows:fermentation temperature 36℃,fermentation time 8 h,and starter culture addition 5%.Under these conditions,WHC reached(77.18±0.08)%,which was consistent with the theoretical prediction value of(76.75±0.15)%.During fermentation,the pH decreased from(6.6±0.11)to(4.65±0.09),while acidity increased from(16.5±0.04)°T to(81.5±0.08)°T.The viable cell count rose from 1×10^(7)to 29×10^(7)cfu/ml,and WHC was improved significantly from(10.50±0.18)%to(77.40±0.13)%.[Conclusions]This study optimized the fermentation process parameters and revealed physicochemical characteristic changes during soybean milk fermentation,providing a theoretical foundation for industrial production.展开更多
The modern aircraft Thermal Management System(TMS)faces significant challenges due to increasing thermal loads and limited heat dissipation pathways.To optimize TMS during the conceptual design stage,the development o...The modern aircraft Thermal Management System(TMS)faces significant challenges due to increasing thermal loads and limited heat dissipation pathways.To optimize TMS during the conceptual design stage,the development of a modeling and simulation tool is crucial.In this study,a TMS simulation model library was created using MATLAB/SIMULINK.To simplify the complexity of the Vapor Cycle System(VCS)model,a Response Surface Model(RSM)was constructed using the Monte Carlo method and validated through simulation experiments.Taking the F-22 fighter TMS as an example,a thermal dynamic simulation model was constructed to analyze the variation of thermal response parameters in key subsystems and elucidate their coupling relationships.Furthermore,the impact of total fuel flow and ram air flow on the TMS was investigated.The findings demonstrate the existence of an optimal total fuel flow that achieves a balance between maximizing fuel heat sink utilization and minimizing bleed air demand.The adaptive distribution of fuel and ram air flow was found to enhance aircraft thermal management performance.This study contributes to improving modeling efficiency and enhancing the understanding of the thermal dynamic characteristics of TMS,thereby facilitating further optimization in aircraft TMS design.展开更多
In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters o...In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters on the morphology and structure of the cladding layer,we prepared the 316L coating on HT 200 by using Design-Expert software central composite design(CCD)based on response surface analysis.We built a regression prediction model and analyzed the ANOVA with the inspection results.With a target cladding layer width of 3.5 mm and height of 1.3 mm,the process parameters were optimized to obtain the best combination of process parameters.The microstructure,phases,and hardness variations of the cladding layer from experiments with optimal parameters were analyzed by the metallographic microscope,confocal microscope,and microhardness instrument.The experimental results indicate that laser power has a significant impact on the cladding layer width,followed by powder feed rate;scan speed has a significant impact on the cladding layer height,followed by powder feed rate.The HT200 substrate and 316L can metallurgically bond well,and the cladding layer structure consists of dendritic crystals,columnar crystals,and equiaxed crystals in sequence.The optimal process parameter combination satisfying the morphology requirements is laser power(A)of 1993 W,scan speed(B)of 8.949 mm/s,powder feed rate(C)of 1.408 r/min,with a maximum hardness of 1564.3 HV0.5,significantly higher than the hardness of the HT200 substrate.展开更多
This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization a...This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.展开更多
Silver nanoparticles(AgNPs)synthesized using tartaric acid as a capping agent have a great impact on the reaction kinetics and contribute significantly to the stability of AgNPs.The protective layer formed by tartaric...Silver nanoparticles(AgNPs)synthesized using tartaric acid as a capping agent have a great impact on the reaction kinetics and contribute significantly to the stability of AgNPs.The protective layer formed by tartaric acid is an important factor that protects the silver surface and reduces potential cytotoxicity problems.These attributes are critical for assessing the compatibility of AgNPs with biological systems and making them suitable for drug delivery applications.The aim of this research is to conduct a comprehensive study of the effect of tartaric acid concentration,sonication time and temperature on the formation of silver nanoparticles.Using Response Surface Methodology(RSM)with Face-Centered Central Composite Design(FCCD),the optimization process identifies the most favorable synthesis conditions.UV-Vis spectrum regression analysis shows that AgNPs stabilized with tartaric acid are more stable than AgNPs without tartaric acid.This highlights the increased stability that tartaric acid provides in AgNP ssssynthesis.Particle size distribution analysis showed a multimodal distribution for AgNPs with tartaric acid and showed the smallest size peak with an average size of 20.53 nm.The second peak with increasing intensity shows a dominant average size of 108.8 nm accompanied by one standard deviation of 4.225 nm and a zeta potential of−11.08 mV.In contrast,AgNPs synthesized with polyvinylpyrrolidone(PVP)showed a unimodal particle distribution with an average particle size of 81.62 nm and a zeta potential of−2.96 mV.The more negative zeta potential of AgNP-tartaric acid indicates its increased stability.Evaluation of antibacterial activity showed that AgNPs stabilized with tartaric acid showed better performance against E.coli and B.subtilis bacteria compared with AgNPs-PVP.In summary,this study highlights the potential of tartaric acid in AgNP synthesis and suggests an avenue for the development of stable AgNPs with versatile applications.展开更多
[Objectives]To optimize the formulation and preparation of oregano oil microspheres by Box-Behnken response surface methodology.[Methods]Chitosan was used as the carrier material to prepare oregano oil microspheres by...[Objectives]To optimize the formulation and preparation of oregano oil microspheres by Box-Behnken response surface methodology.[Methods]Chitosan was used as the carrier material to prepare oregano oil microspheres by emulsion crosslinking method.The encapsulation efficiency,drug loading and ID 50 were used as the evaluation indicators,and the comprehensive score(OD)obtained by"coefficient of variation-AHP comprehensive weighting method"was used as the final evaluation indicator.The formulation design and preparation process were optimized by single factor experiment and Box-Behnken response surface methodology,and the optimal process parameters were determined.[Results]The optimal formulation and preparation process parameters of oregano oil microspheres were as follows:the ratio of oregano oil to chitosan was 2∶1,the emulsifying speed of double emulsion was 200 r/min,the amount of emulsifier in the colostrum was 4%,and the volume of curing agent was 1.0 mL.The average encapsulation efficiency was 45.33%±1.32%,the average drug loading was 30.59%±2.45%,and the median diameter(ID 50)was 52.596μm±0.023%.[Conclusions]The encapsulation efficiency,drug loading and ID 50 of oregano oil chitosan microspheres prepared by emulsion crosslinking method met the requirements.The drug-loaded microsphere not only can be used as a preparation finished product for direct application,but also be used as a product intermediate to lay a foundation for the research and development of subsequent dosage forms.展开更多
Yingshan Yunwu tea was a characteristic agricultural product in Hubei Province.It possesses special flavor and great taste.However,the lack of Yunwu tea products made it lose competition in the market.In this study,th...Yingshan Yunwu tea was a characteristic agricultural product in Hubei Province.It possesses special flavor and great taste.However,the lack of Yunwu tea products made it lose competition in the market.In this study,the peanuts with Yingshan Yunwu tea flavor were cooked,and the effect of factors on the sensory test was investigated.The single-factor experiment was performed to study all factors on the sensory score of the peanut,including tea amount,salt amount,sugar amount,flavor amount and cooking time.Then,response surface methodology with the Box-Behnken design were carried out,and the optimal formulation composition was 100 g peanuts,500 mL of water,25 g tea,5 g salt,8 g sugar and 1 g tea flavor with a sensory score of 94.3 points.This study demonstrated that the peanuts with Yingshan Yunwu flavor could be a valuable product for the market and contribute to promoting practical application of Yingshan Yunwu tea.展开更多
[Objectives]To study and optimize the process conditions of enzymatic hydrolysis technology for extracting polysaccharides from Pseudostellaria heterophylla fibrous roots and its application in workshop pilot tests.[M...[Objectives]To study and optimize the process conditions of enzymatic hydrolysis technology for extracting polysaccharides from Pseudostellaria heterophylla fibrous roots and its application in workshop pilot tests.[Methods]P.heterophylla fibrous roots were taken as the matrix material,and Box Behnken design was used to analyze the extraction time,composite enzyme addition amount,and liquid-solid ratio for response surface optimization experiments,and then applied to the pilot extraction of P.heterophylla fibrous roots.[Results]Response surface analysis showed that all factors had a significant impact on the experimental indicators.The optimal extraction process conditions for polysaccharides from P.heterophylla fibrous roots were extraction time of 2.7 h,compound enzyme addition of 2.5%,and liquid-solid ratio of 32.The yield of polysaccharides from P.heterophylla fibrous roots was 4.83%.The water extraction process of P.heterophylla fibrous roots extraction pilot was used as the control group for response surface optimization of the pilot experiment.The optimization results showed that the extraction time was 3 h,the amount of composite enzyme added was 2.5%,and the liquid-solid ratio was 28.The polysaccharide yield was 4.75%,an increase of 4.63%compared to the control group.[Conclusions]This paper could provide feasibility for the innovation of enzy-matic hydrolysis technology for P.heterophylla fibrous roots and its workshop pilot practice application,as well as a reference for the industrial application of its medicinal resources.展开更多
基金supported by the Education and Teaching Research Project of Universities in Fujian Province(FBJY20230167).
文摘The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters.
基金Supported by the National Natural Science Foundation of China(32072352)。
文摘In order to improve the quality of 3D printed raspberry preserves after post-processing,microwave ovens combining infrared and microwave methods were utilized.The effects of infrared heating temperature,infrared heating time,microwave power,microwave heating time on the center temperature,moisture content,the chroma(C*),the total color difference(ΔE*),shape fidelity,hardness,and the total anthocyanin content of 3D printed raspberry preserves were analyzed by response surface method(RSM).The results showed that under combining with the two methods,infrared heating improved the fidelity and quality degradation of printed products,while microwave heating enhanced the efficiency of infrared heating.Infrared-microwave combination cooking could maintain relatively stable color appearance and shape of 3D printed raspberry preserves.The AHP–CRITIC hybrid weighting method combined with the response surface test to determine the comprehensive weights of the evaluation indicators optimized the process parameters,and the optimal process parameters were obtained:infrared heating temperature of 190℃,infrared heating time of 10 min and 30 s,microwave power of 300 W,and microwave heating time of 2 min and 6 s.The 3D printed raspberry cooking methods obtained under the optimal conditions seldom had color variation,porous structure,uniform texture,and high shape fidelity,which retained the characteristics of personalized manufacturing by 3D printing.This study could provide a reference for the postprocessing and quality control of 3D cooking methods.
基金supported by the Fundamental Research Funds for the Central Universities,China(No.104972025RSCrc0005)the Science and Technology Project of Shaanxi Yanchang Petroleum(Group)Co.,LTD,China(No.yc-whlg-2023ky-03)。
文摘The escalating production of industrial solid waste,combined with the dwindling availability of natural resources,has intensified the focus on waste recycling.However,the heterogeneity and complexity of waste pose significant challenges to determining process parameters.In this study,burnt coal cinder(BCC),granite powder(GP),and high-calcium fly ash(Class-C FA)were used as raw materials,and the response surface methodology(RSM)and single-factor experiments were applied to optimize the process parameters for geopolymer preparation.The optimized precursor powder composition was determined to be a mass ratio of 1.6:0.9:7.3 for BCC,GP,and Class-C FA.The NaOH-precursor powder ratio and liquid-solid ratio were adjusted to 0.084 and 0.222,respectively.The curing condition was set at 80℃ for 24 h.The resulting 28 d-aged multi-solid wastes-based geopolymer exhibited a high compressive strength of61.34 MPa.The microstructure,mineral phase,and atomic bonding of geopolymers were investigated using X-ray diffraction(XRD),thermal analysis(TA),Fourier transform infrared spectroscopy(FTIR),and scanning electron microscopy with energy dispersive spectroscopy(SEM-EDS).Findings indicate that the compressive strength of geopolymer is most significantly influenced by the Class-C FA,followed by BCC.Furthermore,a minor addition of GP can optimize the structural density of the geopolymer.The Ca present in the Class-C FA participates in the geopolymerization,forming a hybrid N-(C)-A-S-H gel.RSM optimization facilitates the synergistic utilization of multi-solid wastes,ensuring an even distribution of gel and filler.This research establishes a theoretical framework for optimizing the preparation parameters of multi-solid wastes-based geopolymer and its subsequent applications;it holds significant scientific implications for the circular economy,resource transformation,and environmental conservation.
基金supported by National Natural Science Foundation of China (32172747 and 32425052)
文摘Background Early embryo development plays a pivotal role in determining pregnancy outcomes,postnatal development,and lifelong health.Therefore,the strategic selection of functional nutrients to enhance embryo development is of paramount importance.In this study,we established a stable porcine trophectoderm cell line expressing dual fluorescent reporter genes driven by the CDX2 and TEAD4 gene promoter segments using lentiviral transfection.Results Three amino acid metabolites—kynurenic acid,taurine,and tryptamine—met the minimum z-score criteria of 2.0 for both luciferase and Renilla luciferase activities and were initially identified as potential metabolites for embryo development,with their beneficial effects validated by qPCR.Given that the identified metabolites are closely related to methionine,arginine,and tryptophan,we selected these three amino acids,using lysine as a standard,and employed response surface methodology combined with our high-throughput screening cell model to efficiently screen and optimize amino acid combination conducive to early embryo development.The optimized candidate amino acid system included lysine(1.87 mmol/L),methionine(0.82 mmol/L),tryptophan(0.23 mmol/L),and arginine(3 mmol/L),with the ratio of 1:0.43:0.12:1.60.In vitro experiments confirmed that this amino acid system enhances the expression of key genes involved in early embryonic development and improves in vitro embryo adhesion.Transcriptomic analysis of blastocysts suggested that candidate amino acid system enhances early embryo development by regulating early embryonic cell cycle and differentiation,as well as improving nutrient absorption.Furthermore,based on response surface methodology,400 sows were used to verify this amino acid system,substituting arginine with the more cost-effective N-carbamoyl glutamate(NCG),a precursor of arginine.The optimal dietary amino acid requirement was predicted to be 0.71%lysine,0.32%methionine,0.22%tryptophan,and 0.10%NCG for sows during early gestation.The optimized amino acid system ratio of the feed,derived from the peripheral release of essential amino acids,was found to be 1:0.45:0.13,which is largely consistent with the results obtained from the cell model optimization.Subsequently,we furtherly verified that this optimal dietary amino acid system significantly increased total litter size,live litter size and litter weight in sows.Conclusions In summary,we successfully established a dual-fluorescent high-throughput screening cell model for the efficient identification of potential nutrients that would promote embryo development and implantation.This innovative approach overcomes the limitations of traditional amino acid nutrition studies in sows,providing a more effective model for enhancing reproductive outcomes.
文摘The asphalt pavement industry is transforming because of the growing influence of artificial intelligence and industrial digitization.As a result of this shift,there is a stronger emphasis on advanced statistical approaches like optimization tools like response surface methodology(RSM)and machine learning(ML)techniques.The goal of this paper is to provide a scientometric and systematic review of the application of RSM and ML applications in data-driven approaches such as optimizing,modeling,and predicting asphalt pavement performance to achieve sustainable asphalt pavements in support of numerous sustainable development goals(SDGs).These include Goals 9(sustainable infrastructure),11(urban resilience),12(sustainable construction strategies),13(climate action through optimized materials),and 17(multidisciplinary interaction).A thorough search of the ScienceDirect,Web of Science,and Scopus databases from 2010 to 2023 yielded 1249 relevant records,with 125 studies closely examined.Over the last thirteen years,there has been significant research growth in RSM and ML applications,particularly in ML-based pavement optimization.The study shows that the topic has a global presence,with notable contributions from Asia,North America,Europe,and other continents.Researchers have concentrated on utilizing sophisticated ML models such as support vector machines(SVM),artificial neural networks(ANN),and Bayesian networks for prediction.Also,the integration of RSM and ML provides a faster and more efficient method for analyzing large datasets to optimize asphalt pavement performance variables.Key contributors include the United States,China,and Malaysia,with global efforts focused on sustainable materials and approaches to reduce impact on the environment.Furthermore,the review demonstrates the integrated use of RSM and ML as transformative tools for improving sustainability,which contributes significantly to SDGs 9,11,12,13,and 17.Providing valuable insights for future research and guiding decision-making for soft computing applications for asphalt pavement projects.
基金The National Natural Science Foundation of China(No.51978504).
文摘Practical applications of desulfurization gypsum are limited owing to its brittleness and low strength.To overcome these challenges,researchers have developed engineered desulfurization gypsum composites(EDGCs)by incorporating ultrahigh molecular weight polyethylene(UHMWPE)fiber and sulfoaluminate cement(SAC).The mix ratio was optimized using response surface methodology(RSM).Experimental testing of EDGC under compressive and tensile loads led to the creation of a regression model that investigates the influence of variables and their interactions on the material’s compressive and tensile strengths.Additionally,microscopic morphology and hydration product composition were analyzed to explore the influence mechanism.The results indicated that EDGC’s compressive strength increased by up to 38.4%owing to a decreased water-binder ratio and higher SAC content.Similarly,tensile strength increased by up to 38.6%owing to increased SAC and fiber content.Moreover,EDGC demonstrated excellent strain-hardening behavior and multiple cracking characteristics,achieving a maximum tensile strain of nearly 3%.The research findings provide valuable insights for optimizing the performance of desulfurization gypsum.
基金Supported by the Science and Technology Project of Fujian Province(Nos.2023T3034,2020N3011)the Innovation Academy for Drug Discovery and DevelopmentChinese Academy of Sciences。
文摘Safety,high protein content,and the numerous health benefits make Spirulina an outstanding source of bioactive peptides.Peptides from Spirulina,which exhibit antioxidant,anti-inflammatory,and antihypertensive effects,may assist in the management of cardiovascular diseases(CVDs).Here,we present the optimization of enzyme-digested hydrolysates derived from Spirulina sp.by using response surface methodology(RSM).We also evaluated the biological activity of Spirulina protein hydrolysates(SPHs)in contributing to the amelioration of hypertension and associated cardiovascular diseases.Our findings suggest that Spirulina protein extracts contain a complex proteinaceous composition with phycocyanin being the dominant protein,as evidenced by both SDS-PAGE and LC-MS/MS profiling.Alkaline protease,protease K,andα-chymotrypsin exhibited a substantial hydrolytic effect on Spirulina protein,taking into account their degree of hydrolysis(DH),peptide yield,and molecular weight distribution.Single-factor experiments identified pH,temperature,and enzyme/substrate ratio as the key factors influencing DH.Moreover,optimal hydrolysis conditions for the proteases were determined via RSM,leading to a considerable enhancement of the actual DH.Bioassays showed that SPHs have strong antioxidant activity against various free radicals,with a higher ability to scavenge hydroxyl radicals.Furthermore,SPHs inhibited macrophage nitric oxide secretion and significantly inhibited angiotensin I-converting enzyme in vitro at 400μg/mL.It is worth noting that SPHs prepared with protease K exhibited a potent anti-hypertensive effect in vivo.The findings indicate the potential usefulness of including dietary SPHs in preventing hypertension and associated CVDs.This research could be valuable in guiding the development of health-promoting foods within the Spirulina industry.
基金supported by the National Youth Top-notch Talent Support Program of China(Grant No.00389335)the National Natural Science Foundation of China(Grant No.52378392)the“Foal Eagle Program”Youth Top-notch Talent Project of Fujian Province(Grant No.00387088).
文摘In situ recycling is one of the most effective methods to dispose of earth pressure balance(EPB)shield waste muck with residual foaming agents with high moisture content.In this context,response surface methodology(RSM)was employed to quantify the effects of independent variables,including flocculant dosage,defoamer dosage,and muck drying mass(MDM)and their interactions on defoaming-flocculation-dewatering indices.The polymeric aluminum chloride(PACL)and hydroxy silicone oil-glycerol polypropylene ether(H-G)were selected as the flocculant and defoamer.The contents of surfactants and foam stabilizers in residual foaming agents were determined using the proposed empirical equation.The defoaming ratio,antifoaming ratio,turbidity,moisture content,filtration loss ratio,and fall cone penetration depth were considered as dependent variables.The accuracy of developed RSM models was verified by the analysis results of variance,residuals,and paired t-test.Combined with the desirability approach,an optimal mixing ratio of 0.078 wt%PACL,0.016 wt%H-G,and 27.882 wt%MDM was recommended,leading to a defoaming ratio of 98.34 vol%for residual foams and a moisture content of 56.72 wt%for pressure-filtration cakes.Our findings were demonstrated to be able to provide useful guidance for prediction and optimization of the in situ recycling indicators of EPB shield waste muck in metro tunnel construction sites.
基金funded by the Sichuan Science and Technology Program“Research on Synergistic Relationship and Reintroduction Technology of C.tortisepalum var.longibracteatum and Endophytic Mycorrhizal Fungi in Eastern Sichuan”(2017JY0132)Longshan Academic Talent Research Supporting Program of SWUST(17LZX521,18LZX522).
文摘The objective of this study was to determine the optimal proportions of plant growth regulators for growth and non-tube rapid propagation of Cymbidium tortisepalum var. longibracteatum;seedlings were utilized as the material. The effects of various combinations and concentrations of 6-benzylaminopurine (6-BA), gibberellic acid (GA_(3)), and naphthaleneacetic acid (NAA) on growth and non-tube rapid propagation were assessed through a single-factor testing and response surface methodology. The results indicated that 6-BA at 60 mg/L, GA_(3) at 150 mg/L, and NAA at 30 mg/L were the most effective concentrations for promoting leaf buds formation in the single-factor analysis. Response surface methodology clarified the sensitivity of the proliferation rate of lateral buds to the three factors, with 6-BA being the most influential, followed by GA_(3) and NAA. The increase in leaf area was most significantly influenced by NAA, then GA_(3), and least by 6-BA, while the increase in plant height was most responsive to GA_(3), followed by 6-BA, and then NAA. The ideal concentrations of plant growth regulators were established as 6-BA at 43 mg/L, GA_(3) at 169 mg/L, and NAA at 36 mg/L. Under these conditions, the lateral bud number per plant was 2.78, with a leaf area increment of 2.87 cm2 and a plant height increment of 2.67 cm.
基金sponsored by National Key Research and Development Program of China(Grant No.2023YFC3504200)High Level Key Discipline Construction of Traditional Chinese Medicine Program(Grant No.zyyzdxk-2023272).
文摘Background:Polygonati cyrtonema Hua(PC)has many pharmacological effects such as immune regulation,hypoglycemic and lipid-lowering,anti-oxidation and anti-tumor.Oligosaccharide is one of the main active components of PC.At present,the research on Polygonatum cyrtonema oligosaccharides(PCOS)is not deep,and there is a lack of systematic research on the optimization of extraction process of pcos and the change of pcos and Polygonatum cyrtonema polysaccharide content before and after wine steaming.Methods:The optimum extraction process of oligosaccharides from PC was optimized,and the content of oligosaccharides before and after wine steaming of PC was investigated.The single factor experiment was carried out with the ratio of liquid to material,extraction temperature and extraction time as the investigation factors.The extraction process of PCOS was optimized by Box Behnken design-response surface methodology,and the changes of total oligosaccharides and total polysaccharides before and after wine steaming were studied.Results:The optimal extraction process for the PCOS was 32:1 mL/g,85℃,and 1.5 h.The total PCOS decreased slightly after steaming,but the percentage of the total sugar increased.Conclusion:The extraction process of PCOS optimized by response surface method is reasonable and feasible.The changes of total oligosaccharides and total polysaccharides during the steaming process of PC can reveal the processing mechanism of PC to a certain extent,and provide scientific basis and technical support for better in-depth excavation and development and utilization of PCOS.
基金supported by the National Natural Science Foundation of China(NNSFC)(Grant no.12272148).
文摘A response surface method was utilized for the finite element model updating of a cable-stayed bridge in this paper to establish a baseline finite element model(FEM)that accurately reflects the characteristics of the actual bridge structure.Firstly,an initial FEM was established by the large-scale finite element software ANSYS,and the modal analysis was carried out on the dynamic response measured by the actual bridge structural health monitoring system.The initial error was obtained by comparing the dynamic characteristics of the measured data with those of the initial finite element model.Then,the second-order complete polynomial was selected to construct the response surface model;the corrected parameters were chosen using the sensitivity method.The response surface model(RSM)was fitted under the test cases designed using the central composite design method.After constructing the objective function,the RSMwas optimized and iterated by the sequential quadratic programmingmethod to obtain the corrected FEM.Finally,the dynamic characteristics of the modified FEM were compared with those of the actual bridge to get the final error.The results show that the modified FEM simulates the dynamic characteristics of the actual cable-stayed bridges more accurately.
基金Supported by Central Guided Local Science and Technology Development Funds(ZY20230102)Guilin Scientific Research and Technology Development Programme Project(2023010301-1,20220104-4)+1 种基金Guangxi Science and Technology Programme Project(GK AB24010263)Guangxi Innovation Driving Development Special Funds Project(GK AA22096020).
文摘[Objectives] To optimize the crystallization process of ceftriaxone sodium using response surface methodology (RSM) for enhancing both the crystallization rate and the quality of the final product. [Methods] Four key factors, including crystallization temperature, stirring speed, solvent drop rate, and seed crystal content, were employed as independent variables, while the crystallization rate served as the response variable. The Box-Behnken response surface method was utilized for the optimization design. [Results] The optimal parameters for the crystallization process, determined through optimization, were as follows: a temperature of 10.6 ℃, a stirring rate of 150 rpm, a solvent drop rate of 1.50 mL/min, and a seed crystal content of 0.12 g. Validation tests conducted under these conditions yielded an average crystallization rate of 94.38% for the refined product. [Conclusions] The crystallization efficiency of ceftriaxone sodium is markedly enhanced, thereby offering substantial support for its industrial production and clinical application.
基金Supported by Postgraduate Research Innovation Project of Shaoyang University(CX2023SY026)Natural Science Foundation of Hunan Province(2022JJ50232)Horizontal Scientific Research Project of Shaoyang University(2023HX43).
文摘[Objectives]This study was conducted to improve the poor water-holding capacity(WHC)and high syneresis rate of fermented soy milk by optimizing fermentation process conditions.[Methods]Based on the results of single factor experiments,response surface methodology was employed to optimize the fermentation temperature,fermentation time,and starter culture addition for enhancing WHC.The physicochemical properties of fermented soybean milk were analyzed.[Results]The optimal process parameters were determined as follows:fermentation temperature 36℃,fermentation time 8 h,and starter culture addition 5%.Under these conditions,WHC reached(77.18±0.08)%,which was consistent with the theoretical prediction value of(76.75±0.15)%.During fermentation,the pH decreased from(6.6±0.11)to(4.65±0.09),while acidity increased from(16.5±0.04)°T to(81.5±0.08)°T.The viable cell count rose from 1×10^(7)to 29×10^(7)cfu/ml,and WHC was improved significantly from(10.50±0.18)%to(77.40±0.13)%.[Conclusions]This study optimized the fermentation process parameters and revealed physicochemical characteristic changes during soybean milk fermentation,providing a theoretical foundation for industrial production.
文摘The modern aircraft Thermal Management System(TMS)faces significant challenges due to increasing thermal loads and limited heat dissipation pathways.To optimize TMS during the conceptual design stage,the development of a modeling and simulation tool is crucial.In this study,a TMS simulation model library was created using MATLAB/SIMULINK.To simplify the complexity of the Vapor Cycle System(VCS)model,a Response Surface Model(RSM)was constructed using the Monte Carlo method and validated through simulation experiments.Taking the F-22 fighter TMS as an example,a thermal dynamic simulation model was constructed to analyze the variation of thermal response parameters in key subsystems and elucidate their coupling relationships.Furthermore,the impact of total fuel flow and ram air flow on the TMS was investigated.The findings demonstrate the existence of an optimal total fuel flow that achieves a balance between maximizing fuel heat sink utilization and minimizing bleed air demand.The adaptive distribution of fuel and ram air flow was found to enhance aircraft thermal management performance.This study contributes to improving modeling efficiency and enhancing the understanding of the thermal dynamic characteristics of TMS,thereby facilitating further optimization in aircraft TMS design.
基金Funded by the National Natural Science Foundation of China(No.51975540)。
文摘In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters on the morphology and structure of the cladding layer,we prepared the 316L coating on HT 200 by using Design-Expert software central composite design(CCD)based on response surface analysis.We built a regression prediction model and analyzed the ANOVA with the inspection results.With a target cladding layer width of 3.5 mm and height of 1.3 mm,the process parameters were optimized to obtain the best combination of process parameters.The microstructure,phases,and hardness variations of the cladding layer from experiments with optimal parameters were analyzed by the metallographic microscope,confocal microscope,and microhardness instrument.The experimental results indicate that laser power has a significant impact on the cladding layer width,followed by powder feed rate;scan speed has a significant impact on the cladding layer height,followed by powder feed rate.The HT200 substrate and 316L can metallurgically bond well,and the cladding layer structure consists of dendritic crystals,columnar crystals,and equiaxed crystals in sequence.The optimal process parameter combination satisfying the morphology requirements is laser power(A)of 1993 W,scan speed(B)of 8.949 mm/s,powder feed rate(C)of 1.408 r/min,with a maximum hardness of 1564.3 HV0.5,significantly higher than the hardness of the HT200 substrate.
基金This research was funded by the Faculty of Engineering,King Mongkut’s University of Technology North Bangkok.Contract No.ENG-NEW-66-39.
文摘This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.
基金funded by the Directorate of Research and Community Service (DRPM,Direktorat Riset dan Pengabdian Kepada Masyarakat)ITS through the ITS Research Local Grant (No:1665/PKS/ITS/2023).
文摘Silver nanoparticles(AgNPs)synthesized using tartaric acid as a capping agent have a great impact on the reaction kinetics and contribute significantly to the stability of AgNPs.The protective layer formed by tartaric acid is an important factor that protects the silver surface and reduces potential cytotoxicity problems.These attributes are critical for assessing the compatibility of AgNPs with biological systems and making them suitable for drug delivery applications.The aim of this research is to conduct a comprehensive study of the effect of tartaric acid concentration,sonication time and temperature on the formation of silver nanoparticles.Using Response Surface Methodology(RSM)with Face-Centered Central Composite Design(FCCD),the optimization process identifies the most favorable synthesis conditions.UV-Vis spectrum regression analysis shows that AgNPs stabilized with tartaric acid are more stable than AgNPs without tartaric acid.This highlights the increased stability that tartaric acid provides in AgNP ssssynthesis.Particle size distribution analysis showed a multimodal distribution for AgNPs with tartaric acid and showed the smallest size peak with an average size of 20.53 nm.The second peak with increasing intensity shows a dominant average size of 108.8 nm accompanied by one standard deviation of 4.225 nm and a zeta potential of−11.08 mV.In contrast,AgNPs synthesized with polyvinylpyrrolidone(PVP)showed a unimodal particle distribution with an average particle size of 81.62 nm and a zeta potential of−2.96 mV.The more negative zeta potential of AgNP-tartaric acid indicates its increased stability.Evaluation of antibacterial activity showed that AgNPs stabilized with tartaric acid showed better performance against E.coli and B.subtilis bacteria compared with AgNPs-PVP.In summary,this study highlights the potential of tartaric acid in AgNP synthesis and suggests an avenue for the development of stable AgNPs with versatile applications.
基金National Natural Science Foundation of China(81560659)General Program of Natural Science Foundation of Jiangxi Province(2023BAB206169)+2 种基金Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ2200903&GJJ2200952)Science and Technology Plan of Jiangxi Provincial Health Commission(202211411)National College Students Innovation and Entrepreneurship Training Program(202310412028&202110412041).
文摘[Objectives]To optimize the formulation and preparation of oregano oil microspheres by Box-Behnken response surface methodology.[Methods]Chitosan was used as the carrier material to prepare oregano oil microspheres by emulsion crosslinking method.The encapsulation efficiency,drug loading and ID 50 were used as the evaluation indicators,and the comprehensive score(OD)obtained by"coefficient of variation-AHP comprehensive weighting method"was used as the final evaluation indicator.The formulation design and preparation process were optimized by single factor experiment and Box-Behnken response surface methodology,and the optimal process parameters were determined.[Results]The optimal formulation and preparation process parameters of oregano oil microspheres were as follows:the ratio of oregano oil to chitosan was 2∶1,the emulsifying speed of double emulsion was 200 r/min,the amount of emulsifier in the colostrum was 4%,and the volume of curing agent was 1.0 mL.The average encapsulation efficiency was 45.33%±1.32%,the average drug loading was 30.59%±2.45%,and the median diameter(ID 50)was 52.596μm±0.023%.[Conclusions]The encapsulation efficiency,drug loading and ID 50 of oregano oil chitosan microspheres prepared by emulsion crosslinking method met the requirements.The drug-loaded microsphere not only can be used as a preparation finished product for direct application,but also be used as a product intermediate to lay a foundation for the research and development of subsequent dosage forms.
基金Supported by Youth Talent Project of Education Department Scientific Research Plan of Hubei Province(Q20232904).
文摘Yingshan Yunwu tea was a characteristic agricultural product in Hubei Province.It possesses special flavor and great taste.However,the lack of Yunwu tea products made it lose competition in the market.In this study,the peanuts with Yingshan Yunwu tea flavor were cooked,and the effect of factors on the sensory test was investigated.The single-factor experiment was performed to study all factors on the sensory score of the peanut,including tea amount,salt amount,sugar amount,flavor amount and cooking time.Then,response surface methodology with the Box-Behnken design were carried out,and the optimal formulation composition was 100 g peanuts,500 mL of water,25 g tea,5 g salt,8 g sugar and 1 g tea flavor with a sensory score of 94.3 points.This study demonstrated that the peanuts with Yingshan Yunwu flavor could be a valuable product for the market and contribute to promoting practical application of Yingshan Yunwu tea.
基金Supported by Special Project of Central Leading Local Science and Technology Development(202113030)Regional Development Project of Fujian Provincial Science and Technology Plan(2022N3017).
文摘[Objectives]To study and optimize the process conditions of enzymatic hydrolysis technology for extracting polysaccharides from Pseudostellaria heterophylla fibrous roots and its application in workshop pilot tests.[Methods]P.heterophylla fibrous roots were taken as the matrix material,and Box Behnken design was used to analyze the extraction time,composite enzyme addition amount,and liquid-solid ratio for response surface optimization experiments,and then applied to the pilot extraction of P.heterophylla fibrous roots.[Results]Response surface analysis showed that all factors had a significant impact on the experimental indicators.The optimal extraction process conditions for polysaccharides from P.heterophylla fibrous roots were extraction time of 2.7 h,compound enzyme addition of 2.5%,and liquid-solid ratio of 32.The yield of polysaccharides from P.heterophylla fibrous roots was 4.83%.The water extraction process of P.heterophylla fibrous roots extraction pilot was used as the control group for response surface optimization of the pilot experiment.The optimization results showed that the extraction time was 3 h,the amount of composite enzyme added was 2.5%,and the liquid-solid ratio was 28.The polysaccharide yield was 4.75%,an increase of 4.63%compared to the control group.[Conclusions]This paper could provide feasibility for the innovation of enzy-matic hydrolysis technology for P.heterophylla fibrous roots and its workshop pilot practice application,as well as a reference for the industrial application of its medicinal resources.