The nonlinear finite element(FE) analysis has been widely used in the design and analysis of structural or geotechnical systems.The response sensitivities(or gradients) to the model parameters are of significant i...The nonlinear finite element(FE) analysis has been widely used in the design and analysis of structural or geotechnical systems.The response sensitivities(or gradients) to the model parameters are of significant importance in these realistic engineering problems.However the sensitivity calculation has lagged behind,leaving a gap between advanced FE response analysis and other research hotspots using the response gradient.The response sensitivity analysis is crucial for any gradient-based algorithms,such as reliability analysis,system identification and structural optimization.Among various sensitivity analysis methods,the direct differential method(DDM) has advantages of computing efficiency and accuracy,providing an ideal tool for the response gradient calculation.This paper extended the DDM framework to realistic complicated soil-foundation-structure interaction(SFSI) models by developing the response gradients for various constraints,element and materials involved.The enhanced framework is applied to three-dimensional SFSI system prototypes for a pilesupported bridge pier and a pile-supported reinforced concrete building frame structure,subjected to earthquake loading conditions.The DDM results are verified by forward finite difference method(FFD).The relative importance(RI) of the various material parameters on the responses of SFSI system are investigated based on the DDM response sensitivity results.The FFD converges asymptotically toward the DDM results,demonstrating the advantages of DDM(e.g.,accurate,efficient,insensitive to numerical noise).Furthermore,the RI and effects of the model parameters of structure,foundation and soil materials on the responses of SFSI systems are investigated by taking advantage of the sensitivity analysis results.The extension of DDM to SFSI systems greatly broaden the application areas of the d gradient-based algorithms,e.g.FE model updating and nonlinear system identification of complicated SFSI systems.展开更多
Shot and step response measurements were carried out with inert bed and adsorption bed both under iso-thermal conditions.Parameter values were determined from a time domain analysis of the measured inputand response s...Shot and step response measurements were carried out with inert bed and adsorption bed both under iso-thermal conditions.Parameter values were determined from a time domain analysis of the measured inputand response signal.Sensitivity test in the parameter values showed that shot response measurements maygive more reliable parameter values than step measurements.Since Kubin[1]and Kucera[2]proposed a parameter estimation technique based on a moment methodfor adsorption system,attention has been focused on dynamic input-output measurements with variouspacked bed systems for the parameter estimation.The object of this work is to compare shot and step re-sponse measurements and see which measurement gives more reliable parameter values.展开更多
To reasonably design the blade-tip radial running clearance(BTRRC) of high pressure turbine and improve the performance and reliability of gas turbine, the multi-object multi-discipline reliability sensitivity analysi...To reasonably design the blade-tip radial running clearance(BTRRC) of high pressure turbine and improve the performance and reliability of gas turbine, the multi-object multi-discipline reliability sensitivity analysis of BTRRC was accomplished from a probabilistic prospective by considering nonlinear material attributes and dynamic loads. Firstly, multiply response surface model(MRSM) was proposed and the mathematical model of this method was established based on quadratic function. Secondly, the BTRRC was decomposed into three sub-components(turbine disk, blade and casing), and then the single response surface functions(SRSFs) of three structures were built in line with the basic idea of MRSM. Thirdly, the response surface function(MRSM) of BTRRC was reshaped by coordinating SRSFs. From the analysis, it is acquired to probabilistic distribution characteristics of input-output variables, failure probabilities of blade-tip clearance under different static blade-tip clearances δ and major factors impacting BTRRC. Considering the reliability and efficiency of gas turbine, δ=1.87 mm is an optimally acceptable option for rational BTRRC. Through the comparison of three analysis methods(Monte Carlo method, traditional response surface method and MRSM), the results show that MRSM has higher accuracy and higher efficiency in reliability sensitivity analysis of BTRRC. These strengths are likely to become more prominent with the increasing times of simulations. The present study offers an effective and promising approach for reliability sensitivity analysis and optimal design of complex dynamic assembly relationship.展开更多
The paper introduces some findings about a sensitivity analysis conducted on every geometrical and mechanical parameters which characterize the use of a railway superstructure at the high velocity. This analysis was c...The paper introduces some findings about a sensitivity analysis conducted on every geometrical and mechanical parameters which characterize the use of a railway superstructure at the high velocity. This analysis was carried out by implementing a forecast model that is derived from the simplified Gazetas and Dobry one. This model turns out to be particularly appropriate in the explication of problems connected to high velocity, since it evaluates both inertial and viscous effects activated by the moving load speed. The model implementation requires the transfer function determination that represents the action occurred by the bed surfaces on the railway and it therefore contains information concerning the geometrical and the mechanical characteristics of the embankment, of the ballast and of the sub-ballast. The transfer function H has been evaluated with the finite elements method and particularly, by resorting the ANSYS code with a harmonic structural analysis in the frequencies field. The authors, from the critic examination of the system's dynamics response in its entirety, glean a series of observations both of a general and a specific character, finally attaining a propose of a design modification of the standard railway superstructure at the high velocity of train operation adopted today especially in Italy.展开更多
基金National Key Research and Development Program of China under Grant No.2016YFC0701106Natural Sciences and Engineering Research Council of Canada via Discovery under Grant No.NSERC RGPIN-2017-05556 Li
文摘The nonlinear finite element(FE) analysis has been widely used in the design and analysis of structural or geotechnical systems.The response sensitivities(or gradients) to the model parameters are of significant importance in these realistic engineering problems.However the sensitivity calculation has lagged behind,leaving a gap between advanced FE response analysis and other research hotspots using the response gradient.The response sensitivity analysis is crucial for any gradient-based algorithms,such as reliability analysis,system identification and structural optimization.Among various sensitivity analysis methods,the direct differential method(DDM) has advantages of computing efficiency and accuracy,providing an ideal tool for the response gradient calculation.This paper extended the DDM framework to realistic complicated soil-foundation-structure interaction(SFSI) models by developing the response gradients for various constraints,element and materials involved.The enhanced framework is applied to three-dimensional SFSI system prototypes for a pilesupported bridge pier and a pile-supported reinforced concrete building frame structure,subjected to earthquake loading conditions.The DDM results are verified by forward finite difference method(FFD).The relative importance(RI) of the various material parameters on the responses of SFSI system are investigated based on the DDM response sensitivity results.The FFD converges asymptotically toward the DDM results,demonstrating the advantages of DDM(e.g.,accurate,efficient,insensitive to numerical noise).Furthermore,the RI and effects of the model parameters of structure,foundation and soil materials on the responses of SFSI systems are investigated by taking advantage of the sensitivity analysis results.The extension of DDM to SFSI systems greatly broaden the application areas of the d gradient-based algorithms,e.g.FE model updating and nonlinear system identification of complicated SFSI systems.
文摘Shot and step response measurements were carried out with inert bed and adsorption bed both under iso-thermal conditions.Parameter values were determined from a time domain analysis of the measured inputand response signal.Sensitivity test in the parameter values showed that shot response measurements maygive more reliable parameter values than step measurements.Since Kubin[1]and Kucera[2]proposed a parameter estimation technique based on a moment methodfor adsorption system,attention has been focused on dynamic input-output measurements with variouspacked bed systems for the parameter estimation.The object of this work is to compare shot and step re-sponse measurements and see which measurement gives more reliable parameter values.
基金Projects(51175017,51245027)supported by the National Natural Science Foundation of China
文摘To reasonably design the blade-tip radial running clearance(BTRRC) of high pressure turbine and improve the performance and reliability of gas turbine, the multi-object multi-discipline reliability sensitivity analysis of BTRRC was accomplished from a probabilistic prospective by considering nonlinear material attributes and dynamic loads. Firstly, multiply response surface model(MRSM) was proposed and the mathematical model of this method was established based on quadratic function. Secondly, the BTRRC was decomposed into three sub-components(turbine disk, blade and casing), and then the single response surface functions(SRSFs) of three structures were built in line with the basic idea of MRSM. Thirdly, the response surface function(MRSM) of BTRRC was reshaped by coordinating SRSFs. From the analysis, it is acquired to probabilistic distribution characteristics of input-output variables, failure probabilities of blade-tip clearance under different static blade-tip clearances δ and major factors impacting BTRRC. Considering the reliability and efficiency of gas turbine, δ=1.87 mm is an optimally acceptable option for rational BTRRC. Through the comparison of three analysis methods(Monte Carlo method, traditional response surface method and MRSM), the results show that MRSM has higher accuracy and higher efficiency in reliability sensitivity analysis of BTRRC. These strengths are likely to become more prominent with the increasing times of simulations. The present study offers an effective and promising approach for reliability sensitivity analysis and optimal design of complex dynamic assembly relationship.
文摘The paper introduces some findings about a sensitivity analysis conducted on every geometrical and mechanical parameters which characterize the use of a railway superstructure at the high velocity. This analysis was carried out by implementing a forecast model that is derived from the simplified Gazetas and Dobry one. This model turns out to be particularly appropriate in the explication of problems connected to high velocity, since it evaluates both inertial and viscous effects activated by the moving load speed. The model implementation requires the transfer function determination that represents the action occurred by the bed surfaces on the railway and it therefore contains information concerning the geometrical and the mechanical characteristics of the embankment, of the ballast and of the sub-ballast. The transfer function H has been evaluated with the finite elements method and particularly, by resorting the ANSYS code with a harmonic structural analysis in the frequencies field. The authors, from the critic examination of the system's dynamics response in its entirety, glean a series of observations both of a general and a specific character, finally attaining a propose of a design modification of the standard railway superstructure at the high velocity of train operation adopted today especially in Italy.