The Monte Carlo study evaluates the relative accuracy of Warm's (1989) weighted likelihood estimate (WLE) compared to the maximum likelihood estimate (MLE) using the nominal response model. And the results indi...The Monte Carlo study evaluates the relative accuracy of Warm's (1989) weighted likelihood estimate (WLE) compared to the maximum likelihood estimate (MLE) using the nominal response model. And the results indicate that WLE was more accurate than MLE.展开更多
There are certain limitations in the application of uncooled focal plane array (FPA) detector due to the lack of an effective response model which reliably transforms the target temperature to analog output voltage....There are certain limitations in the application of uncooled focal plane array (FPA) detector due to the lack of an effective response model which reliably transforms the target temperature to analog output voltage. This paper establishes the response model of microbolometer through researching the detection theory of microbolometer and the heat balance equation under the condition of the pulsed voltage bias. In the establishing process, we simplified the heat balance equation to acquire a simple answer. The experimental data show that, in the temperature dynamic range of 30 K, the biggest tolerance between the model data and the experiment data is 0.2 K; while in the temperature dynamic range of 100 K, it is 1 K. This model can reflect the real response of the microbolometer with only small differences which are acceptable in engineering applications.展开更多
This article describes the development and application of a streamlined air control and response modeling system with a novel response surface modeling-linear coupled fitting method and a new module to provide streaml...This article describes the development and application of a streamlined air control and response modeling system with a novel response surface modeling-linear coupled fitting method and a new module to provide streamlined model data for PM_(2.5) attainment assessment in China.This method is capable of significantly reducing the dimensions required to establish a response surface model,as well as capturing more realistic response of PM_(2.5) to emission changes with a limited number of model simulations.The newly developed module establishes a data link between the system and the Software for Model Attainment Test—Community Edition(SMAT-CE),and has the ability to rapidly provide model responses to emission control scenarios for SMAT-CE using a simple interface.The performance of this streamlined system is demonstrated through a case study of the Yangtze River Delta(YRD) in China.Our results show that this system is capable of reproducing the Community Multi-Scale Air Quality(CMAQ) model simulation results with maximum mean normalized error 〈 3.5%.It is also demonstrated that primary emissions make a major contribution to ambient levels of PM_(2.5) in January and August(e.g.,more than50%contributed by primary emissions in Shanghai),and Shanghai needs to have regional emission control both locally and in its neighboring provinces to meet China's annual PM_(2.5)National Ambient Air Quality Standard.The streamlined system provides a real-time control/response assessment to identify the contributions of major emission sources to ambient PM_(2.5)(and potentially O_3 as well) and streamline air quality data for SMAT-CE to perform attainment assessments.展开更多
A response surface method was utilized for the finite element model updating of a cable-stayed bridge in this paper to establish a baseline finite element model(FEM)that accurately reflects the characteristics of the ...A response surface method was utilized for the finite element model updating of a cable-stayed bridge in this paper to establish a baseline finite element model(FEM)that accurately reflects the characteristics of the actual bridge structure.Firstly,an initial FEM was established by the large-scale finite element software ANSYS,and the modal analysis was carried out on the dynamic response measured by the actual bridge structural health monitoring system.The initial error was obtained by comparing the dynamic characteristics of the measured data with those of the initial finite element model.Then,the second-order complete polynomial was selected to construct the response surface model;the corrected parameters were chosen using the sensitivity method.The response surface model(RSM)was fitted under the test cases designed using the central composite design method.After constructing the objective function,the RSMwas optimized and iterated by the sequential quadratic programmingmethod to obtain the corrected FEM.Finally,the dynamic characteristics of the modified FEM were compared with those of the actual bridge to get the final error.The results show that the modified FEM simulates the dynamic characteristics of the actual cable-stayed bridges more accurately.展开更多
The modern aircraft Thermal Management System(TMS)faces significant challenges due to increasing thermal loads and limited heat dissipation pathways.To optimize TMS during the conceptual design stage,the development o...The modern aircraft Thermal Management System(TMS)faces significant challenges due to increasing thermal loads and limited heat dissipation pathways.To optimize TMS during the conceptual design stage,the development of a modeling and simulation tool is crucial.In this study,a TMS simulation model library was created using MATLAB/SIMULINK.To simplify the complexity of the Vapor Cycle System(VCS)model,a Response Surface Model(RSM)was constructed using the Monte Carlo method and validated through simulation experiments.Taking the F-22 fighter TMS as an example,a thermal dynamic simulation model was constructed to analyze the variation of thermal response parameters in key subsystems and elucidate their coupling relationships.Furthermore,the impact of total fuel flow and ram air flow on the TMS was investigated.The findings demonstrate the existence of an optimal total fuel flow that achieves a balance between maximizing fuel heat sink utilization and minimizing bleed air demand.The adaptive distribution of fuel and ram air flow was found to enhance aircraft thermal management performance.This study contributes to improving modeling efficiency and enhancing the understanding of the thermal dynamic characteristics of TMS,thereby facilitating further optimization in aircraft TMS design.展开更多
This paper is concerned with the estimation of change-point in a binary response model with the assumption that the conditional median of the error term, given the explanatory variable, is zero. We construct an estima...This paper is concerned with the estimation of change-point in a binary response model with the assumption that the conditional median of the error term, given the explanatory variable, is zero. We construct an estimation of change-point based on the maximum score function and give its exponential convergence rate under some mild conditions.展开更多
The lower confidence limits for response probabilities based on binary response data under the logistic response model are considered by saddlepoint approach.The high order approximation to the conditional distributio...The lower confidence limits for response probabilities based on binary response data under the logistic response model are considered by saddlepoint approach.The high order approximation to the conditional distribution of a statistic for an interested parameter and then the lower confidence limits of response probabilities are derived.A simulation comparing these lower confidence limits with those obtained from the asymptotic normality is conducted.The proposed approximation is applied to two real data sets.Numerical results show that the saddlepoint approximations are much more accurate than the asymptotic normality approximations,especially for the cases of small or moderate sample sizes.展开更多
To develop a sound ozone(O_3) pollution control strategy,it is important to well understand and characterize the source contribution due to the complex chemical and physical formation processes of O_3.Using the "Sh...To develop a sound ozone(O_3) pollution control strategy,it is important to well understand and characterize the source contribution due to the complex chemical and physical formation processes of O_3.Using the "Shunde" city as a pilot summer case study,we apply an innovative response surface modeling(RSM) methodology based on the Community Multi-Scale Air Quality(CMAQ) modeling simulations to identify the O_3 regime and provide dynamic analysis of the precursor contributions to effectively assess the O_3 impacts of volatile organic compound(VOC) control strategy.Our results show that Shunde is a typical VOC-limited urban O_3 polluted city.The "Jiangmen" city,as the main upper wind area during July 2014,its VOCs and nitrogen oxides(NO_x) emissions make up the largest contribution(9.06%).On the contrary,the contribution from local(Shunde) emission is lowest(6.35%) among the seven neighbor regions.The local VOCs industrial source emission has the largest contribution comparing to other precursor emission sectors in Shunde.The results of dynamic source contribution analysis further show that the local NO_x control could slightly increase the ground O_3 under low(10.00%) and medium(40.00%)reduction ratios,while it could start to turn positive to decrease ground O_3 under the high NO_x abatement ratio(75.00%).The real-time assessment of O_3 impacts from VOCs control strategies in Pearl River Delta(PRD) shows that the joint regional VOCs emission control policy will effectively reduce the ground O_3 concentration in Shunde.展开更多
This paper investigates the scaled prediction variances in the errors-in-variables model and compares the performance with those in classic model of response surface designs for three factors.The ordinary least square...This paper investigates the scaled prediction variances in the errors-in-variables model and compares the performance with those in classic model of response surface designs for three factors.The ordinary least squares estimators of regression coefficients are derived from a second-order response surface model with errors in variables.Three performance criteria are proposed.The first is the difference between the empirical mean of maximum value of scaled prediction variance with errors and the maximum value of scaled prediction variance without errors.The second is the mean squared deviation from the mean of simulated maximum scaled prediction variance with errors.The last performance measure is the mean squared scaled prediction variance change with and without errors.In the simulations,1 000 random samples were performed following three factors with 20 experimental runs for central composite designs and 15 for Box-Behnken design.The independent variables are coded variables in these designs.Comparative results show that for the low level errors in variables,central composite face-centered design is optimal;otherwise,Box-Behnken design has a relatively better performance.展开更多
Neurodevelopmental disorders are a group of conditions classified together by the most recent edition of the Diagnostic and Statistical Manual of Mental Disorders which include intellectual disability,communication di...Neurodevelopmental disorders are a group of conditions classified together by the most recent edition of the Diagnostic and Statistical Manual of Mental Disorders which include intellectual disability,communication disorders,autism spectrum disorder,attention-deficit/hyperactivity disorder,specific learning disorder(SLD),and motor disorders.SLD is present in many students,who exhibit significant difficulties in the acquisition of reading,written expression,and mathematics,mostly due to problems with executive functions(EF).The present study is a review of the current situation of neurodevelopmental disorders and SLD focusing on the benefits of the response to intervention model(RtI),which allows the combination of evaluation and intervention processes.It also addresses the key role of EF.The importance of adapting RtI to new possibilities such as the use of virtual reality is discussed and a theoretical framework for carrying that out is provided.展开更多
Agents response equilibrium (ARE) model has been taken advantage of to build a multi-agent system for analyzing fiscal policy effect. Through establishing various types of economic entities and endowing them with abil...Agents response equilibrium (ARE) model has been taken advantage of to build a multi-agent system for analyzing fiscal policy effect. Through establishing various types of economic entities and endowing them with abilities to react and make decision, the whole system will evolve to new conditions in response to policy change. Compared with different scenarios, it can be concluded that when raising taxation ratio, sectoral scale will shrink to some extent. But supported by government expenditure, certain sectors could be kept in comparatively larger production scale.展开更多
It is important to investigate the dynamic behaviors of deep rocks near explosion cavity to reveal the mechanisms of deformations and fractures. Some improvements are carried out for Grigorian model with focuses on th...It is important to investigate the dynamic behaviors of deep rocks near explosion cavity to reveal the mechanisms of deformations and fractures. Some improvements are carried out for Grigorian model with focuses on the dilation effects and the relaxation effects of deep rocks, and the high pressure equations of states with Mie-Grüneisen form are also established. Numerical calculations of free field parameters for deep underground explosions are carried out based on the user subroutines which are compiled by means of the secondary development functions of LS-DYNA9703 D software. The histories of radial stress, radial velocity and radial displacement of rock particles are obtained, and the calculation results are compared with those of U.S. Hardhat nuclear test. It is indicated that the dynamic responses of free field for deep underground explosions are well simulated based on improved Grigorian model, and the calculation results are in good agreement with the data of U.S. Hardhat nuclear test. The peak values of particle velocities are consistent with those of test, but the waveform widths and the rising times are obviously greater than those without dilation effects. The attenuation rates of particle velocities are greater than the calculation results with classic plastic model, and they are consistent with the results of Hardhat nuclear test. The attenuation behaviors and the rising times of stress waves are well shown by introducing dilation effects and relaxation effects into the calculation model. Therefore, the defects of Grigorian model are avoided. It is also indicated that the initial stress has obvious influences on the waveforms of radial stress and the radial displacements of rock particles.展开更多
Based on the scale-free network, an integrated systemic inflammatory response syndrome model with artificial immunity, a feedback mechanism, crowd density and the moving activities of an individual can be built. The e...Based on the scale-free network, an integrated systemic inflammatory response syndrome model with artificial immunity, a feedback mechanism, crowd density and the moving activities of an individual can be built. The effects of these factors on the spreading process are investigated through the model. The research results show that the artificial immunity can reduce the stable infection ratio and enhance the spreading threshold of the system. The feedback mechanism can only reduce the stable infection ratio of system, but cannot affect the spreading threshold of the system. The bigger the crowd density is, the higher the infection ratio of the system is and the smaller the spreading threshold is. In addition, the simulations show that the individual movement can enhance the stable infection ratio of the system only under the condition that the spreading rate is high, however, individual movement will reduce the stable infection ratio of the system.展开更多
Because of the recent growth in ground-level ozone and increased emission of volatile organic compounds(VOCs),VOC emission control has become a major concern in China.In response,emission caps to control VOC have been...Because of the recent growth in ground-level ozone and increased emission of volatile organic compounds(VOCs),VOC emission control has become a major concern in China.In response,emission caps to control VOC have been stipulated in recent policies,but few of them were constrained by the co-control target of PM_(2.5)and ozone,and discussed the factor that influence the emission cap formulation.Herein,we proposed a framework for quantification of VOC emission caps constrained by targets for PM_(2.5)and ozone via a new response surface modeling(RSM)technique,achieving 50%computational cost savings of the quantification.In the Pearl River Delta(PRD)region,the VOC emission caps constrained by air quality targets varied greatly with the NOxemission reduction level.If control measures in the surrounding areas of the PRD region were not considered,there could be two feasible strategies for VOC emission caps to meet air quality targets(160μg/m^(3)for the maximum 8-hr-average 90th-percentile(MDA8-90%)ozone and 25μg/m^(3)for the annual average of PM_(2.5)):a moderate VOC emission cap with<20%NOxemission reductions or a notable VOC emission cap with>60%NOxemission reductions.If the ozone concentration target were reduced to 155μg/m^(3),deep NOxemission reductions is the only feasible ozone control measure in PRD.Optimization of seasonal VOC emission caps based on the Monte Carlo simulation could allow us to gain higher ozone benefits or greater VOC emission reductions.If VOC emissions were further reduced in autumn,MDA8-90%ozone could be lowered by 0.3-1.5μg/m^(3),equaling the ozone benefits of 10%VOC emission reduction measures.The method for VOC emission cap quantification and optimization proposed in this study could provide scientific guidance for coordinated control of regional PM_(2.5)and O_(3)pollution in China.展开更多
In order to shorten the design period, the paper describes a new optimization strategy for computationally expensive design optimization of turbomachinery, combined with design of experiment (DOE), response surface mo...In order to shorten the design period, the paper describes a new optimization strategy for computationally expensive design optimization of turbomachinery, combined with design of experiment (DOE), response surface models (RSM), genetic algorithm (GA) and a 3-D Navier-Stokes solver(Numeca Fine). Data points for response evaluations were selected by improved distributed hypercube sampling (IHS) and the 3-D Navier-Stokes analysis was carried out at these sample points. The quadratic response surface model was used to approximate the relationships between the design variables and flow parameters. To maximize the adiabatic efficiency, the genetic algorithm was applied to the response surface model to perform global optimization to achieve the optimum design of NASA Stage 35. An optimum leading edge line was found, which produced a new 3-D rotor blade combined with sweep and lean, and a new stator one with skew. It is concluded that the proposed strategy can provide a reliable method for design optimization of turbomachinery blades at reasonable computing cost.展开更多
On the basis of the wave energy balance equation, the response model of mean directions of locally wind-generated waves in slowly turning wind fields has been derived. The results show that in a homogeneous field, the...On the basis of the wave energy balance equation, the response model of mean directions of locally wind-generated waves in slowly turning wind fields has been derived. The results show that in a homogeneous field, the time scale of the response is not only related to the rate of wave growth, but also to the directional energy distribution and the angle between the wind direction and the mean wave direction. Furthermore, the law of change in the mean wave direction has been derived. The numerical computations show that the response of wave directions to slowly turning wind directions can be treated as the superposition of the responses of wave directions to a series of sudden small-angle changes of wind directions and the turning rate of the mean wave direction depends on the turning rate and the total turning angles of the wind direction. The response of wave directions is in agreement with the response for a sudden change of wind directions if the change in wind directions is very fast. Based on the normalized rates of wave growth under local winds presented by Wen et al. (1989), a quantitative estimate of the time scale of the response shows that the relationships between the dimensionless time scale and both the dimensionless total wave energy and the dimensionless peak frequency agree fairly well with the observations in comparison with other models.展开更多
Response surface methodology(RSM) is introduced into corrosion research as a tool to assess the effects of environmental factors and their interactions on corrosion behavior and establish a model for corrosion predi...Response surface methodology(RSM) is introduced into corrosion research as a tool to assess the effects of environmental factors and their interactions on corrosion behavior and establish a model for corrosion prediction in complex coupled environment(CCE). In this study, a typical CCE, that is, the corrosion environment of pipelines in gas field is taken as an example. The effects of environmental factors such as chloride concentration, pH value and pressure as well as their interactions on critical pitting temperature(CPT) were evaluated, and a quadratic polynomial model was developed for corrosion prediction by RSM. The results showed that the model was excellent in corrosion prediction with R2= 0.9949. CPT was mostly affected by single environmental factor rather than interaction, and among the whole factors, chloride concentration was the most influential factor of CPT.展开更多
To understand and develop new nanostructure materials with specific mechanical properties, a good knowledge of the elastic strain response is mandatory. Here we investigate the linear elasticity response in the modifi...To understand and develop new nanostructure materials with specific mechanical properties, a good knowledge of the elastic strain response is mandatory. Here we investigate the linear elasticity response in the modified phase-field-crystal(MPFC) model. The results show that two different propagation modes control the elastic interaction length and time, which determine whether the density waves can propagate or not. By quantitatively calculating the strain field, we find that the strain distribution is indeed extremely uniform in case of elasticity. Further, we present a detailed theoretical analysis for the orientation dependence and temperature dependence of shear modulus. The simulation results show that the shear modulus reveals strong anisotropy and the one-mode analysis provides a good guideline for determining elastic shear constants until the system temperature falls below a certain value.展开更多
Current dynamic finite element model updating methods are not efficient or restricted to the problem of local optima. To circumvent these, a novel updating method which integrates the meta-model and the genetic algori...Current dynamic finite element model updating methods are not efficient or restricted to the problem of local optima. To circumvent these, a novel updating method which integrates the meta-model and the genetic algorithm is proposed. Experimental design technique is used to determine the best sampling points for the estimation of polynomial coefficients given the order and the number of independent variables. Finite element analyses are performed to generate the sampling data. Regression analysis is then used to estimate the response surface model to approximate the functional relationship between response features and design parameters on the entire design space. In the fitness evaluation of the genetic algorithm, the response surface model is used to substitute the finite element model to output features with given design parameters for the computation of fitness for the individual. Finally, the global optima that corresponds to the updated design parameter is acquired after several generations of evolution. In the application example, finite element analysis and modal testing are performed on a real chassis model. The finite element model is updated using the proposed method. After updating, root-mean-square error of modal frequencies is smaller than 2%. Furthermore, prediction ability of the updated model is validated using the testing results of the modified structure. The root-mean-square error of the prediction errors is smaller than 2%.展开更多
文摘The Monte Carlo study evaluates the relative accuracy of Warm's (1989) weighted likelihood estimate (WLE) compared to the maximum likelihood estimate (MLE) using the nominal response model. And the results indicate that WLE was more accurate than MLE.
基金Project supported by the National Defense Pre-research Fund of China (Grant No. 50405050303)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2009049)
文摘There are certain limitations in the application of uncooled focal plane array (FPA) detector due to the lack of an effective response model which reliably transforms the target temperature to analog output voltage. This paper establishes the response model of microbolometer through researching the detection theory of microbolometer and the heat balance equation under the condition of the pulsed voltage bias. In the establishing process, we simplified the heat balance equation to acquire a simple answer. The experimental data show that, in the temperature dynamic range of 30 K, the biggest tolerance between the model data and the experiment data is 0.2 K; while in the temperature dynamic range of 100 K, it is 1 K. This model can reflect the real response of the microbolometer with only small differences which are acceptable in engineering applications.
基金Financial support and data source for this work is provided by the US Environmental Protection Agency(No.OR13810-001.04 A10-0223-S001-A02)Guangzhou Environmental Protection Bureau(No.x2hj B2150020)+4 种基金the project of an integrated modeling and filed observational verification on the deposition of typical industrial point-source mercury emissions in the Pearl River Deltapartly supported by the funding of Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control(No.2011A060901011)the project of Atmospheric Haze Collaboration Control Technology Design(No.XDB05030400)from the Chinese Academy of Sciencesthe Ministry of Environmental Protection's Special Funds for Research on Public Welfare(No.201409002)Partly financial support is also provided by the Guangdong Provincial Department of Science and Technology,the project of demonstration research of air quality management cost-benefit analysis and attainment assessments technology(No.2014A050503019)
文摘This article describes the development and application of a streamlined air control and response modeling system with a novel response surface modeling-linear coupled fitting method and a new module to provide streamlined model data for PM_(2.5) attainment assessment in China.This method is capable of significantly reducing the dimensions required to establish a response surface model,as well as capturing more realistic response of PM_(2.5) to emission changes with a limited number of model simulations.The newly developed module establishes a data link between the system and the Software for Model Attainment Test—Community Edition(SMAT-CE),and has the ability to rapidly provide model responses to emission control scenarios for SMAT-CE using a simple interface.The performance of this streamlined system is demonstrated through a case study of the Yangtze River Delta(YRD) in China.Our results show that this system is capable of reproducing the Community Multi-Scale Air Quality(CMAQ) model simulation results with maximum mean normalized error 〈 3.5%.It is also demonstrated that primary emissions make a major contribution to ambient levels of PM_(2.5) in January and August(e.g.,more than50%contributed by primary emissions in Shanghai),and Shanghai needs to have regional emission control both locally and in its neighboring provinces to meet China's annual PM_(2.5)National Ambient Air Quality Standard.The streamlined system provides a real-time control/response assessment to identify the contributions of major emission sources to ambient PM_(2.5)(and potentially O_3 as well) and streamline air quality data for SMAT-CE to perform attainment assessments.
基金supported by the National Natural Science Foundation of China(NNSFC)(Grant no.12272148).
文摘A response surface method was utilized for the finite element model updating of a cable-stayed bridge in this paper to establish a baseline finite element model(FEM)that accurately reflects the characteristics of the actual bridge structure.Firstly,an initial FEM was established by the large-scale finite element software ANSYS,and the modal analysis was carried out on the dynamic response measured by the actual bridge structural health monitoring system.The initial error was obtained by comparing the dynamic characteristics of the measured data with those of the initial finite element model.Then,the second-order complete polynomial was selected to construct the response surface model;the corrected parameters were chosen using the sensitivity method.The response surface model(RSM)was fitted under the test cases designed using the central composite design method.After constructing the objective function,the RSMwas optimized and iterated by the sequential quadratic programmingmethod to obtain the corrected FEM.Finally,the dynamic characteristics of the modified FEM were compared with those of the actual bridge to get the final error.The results show that the modified FEM simulates the dynamic characteristics of the actual cable-stayed bridges more accurately.
文摘The modern aircraft Thermal Management System(TMS)faces significant challenges due to increasing thermal loads and limited heat dissipation pathways.To optimize TMS during the conceptual design stage,the development of a modeling and simulation tool is crucial.In this study,a TMS simulation model library was created using MATLAB/SIMULINK.To simplify the complexity of the Vapor Cycle System(VCS)model,a Response Surface Model(RSM)was constructed using the Monte Carlo method and validated through simulation experiments.Taking the F-22 fighter TMS as an example,a thermal dynamic simulation model was constructed to analyze the variation of thermal response parameters in key subsystems and elucidate their coupling relationships.Furthermore,the impact of total fuel flow and ram air flow on the TMS was investigated.The findings demonstrate the existence of an optimal total fuel flow that achieves a balance between maximizing fuel heat sink utilization and minimizing bleed air demand.The adaptive distribution of fuel and ram air flow was found to enhance aircraft thermal management performance.This study contributes to improving modeling efficiency and enhancing the understanding of the thermal dynamic characteristics of TMS,thereby facilitating further optimization in aircraft TMS design.
基金The research is partially supported by the National Natural Science Foundation of China under Grant No.10471136Ph.D.Program Foundation of the Ministry of Education of ChinaSpecial Foundations of the Chinese Academy of Sciences and University of Science and Technology of China.
文摘This paper is concerned with the estimation of change-point in a binary response model with the assumption that the conditional median of the error term, given the explanatory variable, is zero. We construct an estimation of change-point based on the maximum score function and give its exponential convergence rate under some mild conditions.
文摘The lower confidence limits for response probabilities based on binary response data under the logistic response model are considered by saddlepoint approach.The high order approximation to the conditional distribution of a statistic for an interested parameter and then the lower confidence limits of response probabilities are derived.A simulation comparing these lower confidence limits with those obtained from the asymptotic normality is conducted.The proposed approximation is applied to two real data sets.Numerical results show that the saddlepoint approximations are much more accurate than the asymptotic normality approximations,especially for the cases of small or moderate sample sizes.
基金Financial support for this work is provided by the Shunde Environment ProtectionTransportation and Urban Administration Bureau(no.0851-1361FS02CL51)+5 种基金the Guangdong Provincial Science and Technology Plan Projects(no.2014A050503019)Guangzhou Environmental Protection Bureau(no.x2hjB2150020)supported by the funding of State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complexthe project of Atmospheric Haze Collaboration Control Technology Design(no.XDB05030400)from Chinese Academy of Sciencesthe Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(U1501501)(the second phase)the Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal(no.b2152120)
文摘To develop a sound ozone(O_3) pollution control strategy,it is important to well understand and characterize the source contribution due to the complex chemical and physical formation processes of O_3.Using the "Shunde" city as a pilot summer case study,we apply an innovative response surface modeling(RSM) methodology based on the Community Multi-Scale Air Quality(CMAQ) modeling simulations to identify the O_3 regime and provide dynamic analysis of the precursor contributions to effectively assess the O_3 impacts of volatile organic compound(VOC) control strategy.Our results show that Shunde is a typical VOC-limited urban O_3 polluted city.The "Jiangmen" city,as the main upper wind area during July 2014,its VOCs and nitrogen oxides(NO_x) emissions make up the largest contribution(9.06%).On the contrary,the contribution from local(Shunde) emission is lowest(6.35%) among the seven neighbor regions.The local VOCs industrial source emission has the largest contribution comparing to other precursor emission sectors in Shunde.The results of dynamic source contribution analysis further show that the local NO_x control could slightly increase the ground O_3 under low(10.00%) and medium(40.00%)reduction ratios,while it could start to turn positive to decrease ground O_3 under the high NO_x abatement ratio(75.00%).The real-time assessment of O_3 impacts from VOCs control strategies in Pearl River Delta(PRD) shows that the joint regional VOCs emission control policy will effectively reduce the ground O_3 concentration in Shunde.
基金Supported by National Natural Science Foundation of China (No.70871087 and No.70931004)
文摘This paper investigates the scaled prediction variances in the errors-in-variables model and compares the performance with those in classic model of response surface designs for three factors.The ordinary least squares estimators of regression coefficients are derived from a second-order response surface model with errors in variables.Three performance criteria are proposed.The first is the difference between the empirical mean of maximum value of scaled prediction variance with errors and the maximum value of scaled prediction variance without errors.The second is the mean squared deviation from the mean of simulated maximum scaled prediction variance with errors.The last performance measure is the mean squared scaled prediction variance change with and without errors.In the simulations,1 000 random samples were performed following three factors with 20 experimental runs for central composite designs and 15 for Box-Behnken design.The independent variables are coded variables in these designs.Comparative results show that for the low level errors in variables,central composite face-centered design is optimal;otherwise,Box-Behnken design has a relatively better performance.
基金Supported by Ministry of Sciences and Innovation I+D+i Project,No.PID2019-107201GB-100Principality of Asturias,No.FCGRUPIN-IDI/2018/000199.
文摘Neurodevelopmental disorders are a group of conditions classified together by the most recent edition of the Diagnostic and Statistical Manual of Mental Disorders which include intellectual disability,communication disorders,autism spectrum disorder,attention-deficit/hyperactivity disorder,specific learning disorder(SLD),and motor disorders.SLD is present in many students,who exhibit significant difficulties in the acquisition of reading,written expression,and mathematics,mostly due to problems with executive functions(EF).The present study is a review of the current situation of neurodevelopmental disorders and SLD focusing on the benefits of the response to intervention model(RtI),which allows the combination of evaluation and intervention processes.It also addresses the key role of EF.The importance of adapting RtI to new possibilities such as the use of virtual reality is discussed and a theoretical framework for carrying that out is provided.
文摘Agents response equilibrium (ARE) model has been taken advantage of to build a multi-agent system for analyzing fiscal policy effect. Through establishing various types of economic entities and endowing them with abilities to react and make decision, the whole system will evolve to new conditions in response to policy change. Compared with different scenarios, it can be concluded that when raising taxation ratio, sectoral scale will shrink to some extent. But supported by government expenditure, certain sectors could be kept in comparatively larger production scale.
基金Project(51378498)supported by the National Natural Science Foundation of ChinaProject(BK20141066)supported the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(SKLGDUEK1208)supported by State Key Laboratory for Geo Mechanics and Deep Underground Engineering(China University of Mining & Technology),ChinaProject(DPMEIKF201301)supported by State Key Laboratory of Disaster Prevention & Mitigation of Explosion & Impact(PLA University of Science and Technology),China
文摘It is important to investigate the dynamic behaviors of deep rocks near explosion cavity to reveal the mechanisms of deformations and fractures. Some improvements are carried out for Grigorian model with focuses on the dilation effects and the relaxation effects of deep rocks, and the high pressure equations of states with Mie-Grüneisen form are also established. Numerical calculations of free field parameters for deep underground explosions are carried out based on the user subroutines which are compiled by means of the secondary development functions of LS-DYNA9703 D software. The histories of radial stress, radial velocity and radial displacement of rock particles are obtained, and the calculation results are compared with those of U.S. Hardhat nuclear test. It is indicated that the dynamic responses of free field for deep underground explosions are well simulated based on improved Grigorian model, and the calculation results are in good agreement with the data of U.S. Hardhat nuclear test. The peak values of particle velocities are consistent with those of test, but the waveform widths and the rising times are obviously greater than those without dilation effects. The attenuation rates of particle velocities are greater than the calculation results with classic plastic model, and they are consistent with the results of Hardhat nuclear test. The attenuation behaviors and the rising times of stress waves are well shown by introducing dilation effects and relaxation effects into the calculation model. Therefore, the defects of Grigorian model are avoided. It is also indicated that the initial stress has obvious influences on the waveforms of radial stress and the radial displacements of rock particles.
基金Project supported by the Natural Science Foundation of the Education Department of Guizhou Province,China (Grant No.20090133)International Cooperative Foundation of Guizhou Province,China (Grant No.20117007)
文摘Based on the scale-free network, an integrated systemic inflammatory response syndrome model with artificial immunity, a feedback mechanism, crowd density and the moving activities of an individual can be built. The effects of these factors on the spreading process are investigated through the model. The research results show that the artificial immunity can reduce the stable infection ratio and enhance the spreading threshold of the system. The feedback mechanism can only reduce the stable infection ratio of system, but cannot affect the spreading threshold of the system. The bigger the crowd density is, the higher the infection ratio of the system is and the smaller the spreading threshold is. In addition, the simulations show that the individual movement can enhance the stable infection ratio of the system only under the condition that the spreading rate is high, however, individual movement will reduce the stable infection ratio of the system.
基金supported by the National Key Research and Development Program of China(No.2018YFC0213905)the National Natural Science Foundation of China(No.41805068)。
文摘Because of the recent growth in ground-level ozone and increased emission of volatile organic compounds(VOCs),VOC emission control has become a major concern in China.In response,emission caps to control VOC have been stipulated in recent policies,but few of them were constrained by the co-control target of PM_(2.5)and ozone,and discussed the factor that influence the emission cap formulation.Herein,we proposed a framework for quantification of VOC emission caps constrained by targets for PM_(2.5)and ozone via a new response surface modeling(RSM)technique,achieving 50%computational cost savings of the quantification.In the Pearl River Delta(PRD)region,the VOC emission caps constrained by air quality targets varied greatly with the NOxemission reduction level.If control measures in the surrounding areas of the PRD region were not considered,there could be two feasible strategies for VOC emission caps to meet air quality targets(160μg/m^(3)for the maximum 8-hr-average 90th-percentile(MDA8-90%)ozone and 25μg/m^(3)for the annual average of PM_(2.5)):a moderate VOC emission cap with<20%NOxemission reductions or a notable VOC emission cap with>60%NOxemission reductions.If the ozone concentration target were reduced to 155μg/m^(3),deep NOxemission reductions is the only feasible ozone control measure in PRD.Optimization of seasonal VOC emission caps based on the Monte Carlo simulation could allow us to gain higher ozone benefits or greater VOC emission reductions.If VOC emissions were further reduced in autumn,MDA8-90%ozone could be lowered by 0.3-1.5μg/m^(3),equaling the ozone benefits of 10%VOC emission reduction measures.The method for VOC emission cap quantification and optimization proposed in this study could provide scientific guidance for coordinated control of regional PM_(2.5)and O_(3)pollution in China.
文摘In order to shorten the design period, the paper describes a new optimization strategy for computationally expensive design optimization of turbomachinery, combined with design of experiment (DOE), response surface models (RSM), genetic algorithm (GA) and a 3-D Navier-Stokes solver(Numeca Fine). Data points for response evaluations were selected by improved distributed hypercube sampling (IHS) and the 3-D Navier-Stokes analysis was carried out at these sample points. The quadratic response surface model was used to approximate the relationships between the design variables and flow parameters. To maximize the adiabatic efficiency, the genetic algorithm was applied to the response surface model to perform global optimization to achieve the optimum design of NASA Stage 35. An optimum leading edge line was found, which produced a new 3-D rotor blade combined with sweep and lean, and a new stator one with skew. It is concluded that the proposed strategy can provide a reliable method for design optimization of turbomachinery blades at reasonable computing cost.
文摘On the basis of the wave energy balance equation, the response model of mean directions of locally wind-generated waves in slowly turning wind fields has been derived. The results show that in a homogeneous field, the time scale of the response is not only related to the rate of wave growth, but also to the directional energy distribution and the angle between the wind direction and the mean wave direction. Furthermore, the law of change in the mean wave direction has been derived. The numerical computations show that the response of wave directions to slowly turning wind directions can be treated as the superposition of the responses of wave directions to a series of sudden small-angle changes of wind directions and the turning rate of the mean wave direction depends on the turning rate and the total turning angles of the wind direction. The response of wave directions is in agreement with the response for a sudden change of wind directions if the change in wind directions is very fast. Based on the normalized rates of wave growth under local winds presented by Wen et al. (1989), a quantitative estimate of the time scale of the response shows that the relationships between the dimensionless time scale and both the dimensionless total wave energy and the dimensionless peak frequency agree fairly well with the observations in comparison with other models.
基金financially supported by the Hundred Talents Program of Chinese Academy of Sciencesthe National Natural Science Foundation of China (No. U1460202)the Key Laboratory of Superlight Material and Surface Technology (Harbin Engineering University), Ministry of Education
文摘Response surface methodology(RSM) is introduced into corrosion research as a tool to assess the effects of environmental factors and their interactions on corrosion behavior and establish a model for corrosion prediction in complex coupled environment(CCE). In this study, a typical CCE, that is, the corrosion environment of pipelines in gas field is taken as an example. The effects of environmental factors such as chloride concentration, pH value and pressure as well as their interactions on critical pitting temperature(CPT) were evaluated, and a quadratic polynomial model was developed for corrosion prediction by RSM. The results showed that the model was excellent in corrosion prediction with R2= 0.9949. CPT was mostly affected by single environmental factor rather than interaction, and among the whole factors, chloride concentration was the most influential factor of CPT.
基金Project supported by the National Natural Science foundation of China(Grant Nos.51571165 and 51371151)Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(the second phase),Chinathe Fundamental Research Funds for the Central Universities,China(Grant No.3102015BJ(II)ZS001)
文摘To understand and develop new nanostructure materials with specific mechanical properties, a good knowledge of the elastic strain response is mandatory. Here we investigate the linear elasticity response in the modified phase-field-crystal(MPFC) model. The results show that two different propagation modes control the elastic interaction length and time, which determine whether the density waves can propagate or not. By quantitatively calculating the strain field, we find that the strain distribution is indeed extremely uniform in case of elasticity. Further, we present a detailed theoretical analysis for the orientation dependence and temperature dependence of shear modulus. The simulation results show that the shear modulus reveals strong anisotropy and the one-mode analysis provides a good guideline for determining elastic shear constants until the system temperature falls below a certain value.
文摘Current dynamic finite element model updating methods are not efficient or restricted to the problem of local optima. To circumvent these, a novel updating method which integrates the meta-model and the genetic algorithm is proposed. Experimental design technique is used to determine the best sampling points for the estimation of polynomial coefficients given the order and the number of independent variables. Finite element analyses are performed to generate the sampling data. Regression analysis is then used to estimate the response surface model to approximate the functional relationship between response features and design parameters on the entire design space. In the fitness evaluation of the genetic algorithm, the response surface model is used to substitute the finite element model to output features with given design parameters for the computation of fitness for the individual. Finally, the global optima that corresponds to the updated design parameter is acquired after several generations of evolution. In the application example, finite element analysis and modal testing are performed on a real chassis model. The finite element model is updated using the proposed method. After updating, root-mean-square error of modal frequencies is smaller than 2%. Furthermore, prediction ability of the updated model is validated using the testing results of the modified structure. The root-mean-square error of the prediction errors is smaller than 2%.