Watermelon fruit undergoes distinct development stages with dramatic changes during fruit ripening.To date,the molecular mechanics of watermelon ripening remain unclear.Genetic and transcriptome evidences suggested th...Watermelon fruit undergoes distinct development stages with dramatic changes during fruit ripening.To date,the molecular mechanics of watermelon ripening remain unclear.Genetic and transcriptome evidences suggested that the ethylene response factor(ERF)gene ClERF069 may be an important candidate factor affecting watermelon fruit ripening.To dissect the roles of ClERF069 in fruit ripening,structure and phylogenetic analysis were performed using the amplified full-length sequence.Normal-ripening watermelon 97103,non-ripening watermelon PI296341-FR and the RIL population were used to analyze ClERF069 expression dynamics and the correlation with fruit ripening indexs.The results indicated that ClERF069 belongs to ERF family group VI and show high homology(83%identity)to melon ERF069-like protein.ClERF069 expression in watermelon flesh was negatively correlated with fruit lycopene content and sugar content during fruit ripening progress.Further transgenic evidences indicated that overexpression of 35S:ClERF069 in tomato noticeably delayed the ripening process up to 5.2 days.Lycopene,β-carotenoid accumulation patterns were altered and ethylene production patterns in transgenic fruits was significantly delayed during fruit ripening.Taken together,watermelon ethylene response factor ClERF069 was concluded to be a negative regulator of fruit ripening.展开更多
Plants under pathogen attack produce high levels of the gaseous phytohormone ethylene to induce plant defense responses via the ethylene signaling pathway.The 1-aminocyclopropane-1-carboxylate synthase(ACS)is a critic...Plants under pathogen attack produce high levels of the gaseous phytohormone ethylene to induce plant defense responses via the ethylene signaling pathway.The 1-aminocyclopropane-1-carboxylate synthase(ACS)is a critical rate-limiting enzyme of ethylene biosynthesis.Transcriptional and post-translational upregulation of ACS2 and ACS6 by the mitogen-activated protein kinases MPK3 and MPK6 are previously shown to be crucial for pathogen-induced ethylene biosynthesis in Arabidopsis.Here,we report that the fungal pathogen Botrytis cinerea-induced ethylene biosynthesis in Arabidopsis is under the negative feedback regulation by ethylene signaling pathway.The ethylene response factor ERF1 A is further found to act downstream of ethylene signaling to negatively regulate the B.cinerea-induced ethylene biosynthesis via indirectly suppressing the expression of ACS2 and ACS6.Interestingly,ERF1 A is shown to also upregulate defensin genes directly and therefore promote Arabidopsis resistance to B.cinerea.Furthermore,ERF1 A is identified to be a substrate of MPK3 and MPK6,which phosphoactivate ERF1 A to enhance its functions in suppressing ethylene biosynthesis and inducing defensin gene expression.Taken together,our data reveal that ERF1 A and its phosphorylation by MPK3/MPK6 not only mediate the negativefeedback regulation of the B.cinerea-induced ethylene biosynthesis,but also upregulate defensin gene expression to increase Arabidopsis resistance to B.cinerea.展开更多
Serum response factor(SRF) is a transcription factor that regulates many genes involved in cellular activities such as proliferation,migration,differentiation,angiogenesis,and apoptosis.Although it has only been known...Serum response factor(SRF) is a transcription factor that regulates many genes involved in cellular activities such as proliferation,migration,differentiation,angiogenesis,and apoptosis.Although it has only been known for about two decades,SRF has been studied extensively.To date,over a thousand SRF studies have been published,but it still remains a hot topic.Due to its critical role in mesoderm-derived tissues,most of the SRF studies focused on muscle structure/function,cardiovascular development/maintenance,and smooth muscle generation/repair.Recently,SRF has received more attention in the digestive field and several important discoveries have been made.This review will summarize what we have learned about SRF in the gastrointestinal tract and provide insights into possible future directions in this area.展开更多
Studies have snown that serum response factor is beneficaial for axonar regeneration of peripheral herves.However,Its role after central nervous system injury remains unclear. In this study,we established a rat model ...Studies have snown that serum response factor is beneficaial for axonar regeneration of peripheral herves.However,Its role after central nervous system injury remains unclear. In this study,we established a rat model of T9-T10 spinal cord transection injury.We found that the expression of serum response factor in injured spinal cord gray matter neurons gradually increased with time,reached its peak on the 7^(th) day,and then gradually decreased.To investigate the role of serum response factor,we used lentivirus vecto rs to ove rexpress and silence serum response factor in spinal cord tissue.We found that overexpression of serum response factor promoted motor function recovery in rats with spinal cord injury.Qualitative observation of biotinylated dextran amine anterograde tra cing showed that ove rexpression of serum response factor increased nerve fibers in the injured spinal co rd.Additionally,transmission electron microscopy showed that axon and myelin sheath morphology was restored.Silencing serum response factor had the opposite effects of ove rexpression.These findings suggest that serum response factor plays a role in the recovery of motor function after spinal cord injury.The underlying mechanism may be related to the regulation of axonal regeneration.展开更多
Light is an environmental signaling,whereas Aux/IAA proteins and Auxin Response Factors(ARFs)are regulators of auxin signalling.Aux/IAA proteins are unstable,and their degradation dependents on 26S ubiquitin-proteasom...Light is an environmental signaling,whereas Aux/IAA proteins and Auxin Response Factors(ARFs)are regulators of auxin signalling.Aux/IAA proteins are unstable,and their degradation dependents on 26S ubiquitin-proteasome and is promoted by Auxin.Auxin binds directly to a SCF-type ubiquitin-protein ligase,TIR1,facilitates the interaction between Aux/IAA proteins and TIR1,and then the degradation of Aux/IAA proteins.A few studies have reported that some ARFs are also unstable proteins,and their degradation is also mediated by 26S proteasome.In this study,by using of antibodies recognizing endogenous ARF7 proteins,we found that protein stability of ARF7 was affected by light.By expressing MYC tagged ARF activators in protoplasts,we found that degradation of ARF7 was inhibited by 26 proteasome inhibitors.In addition,at least ARF5 and ARF19 were also unstable proteins,and degradation of ARF5 via 26S proteasome was further confirmed by using stable transformed plants overexpressing ARF5 with a GUS tag.展开更多
To verify the seismic design response factors of high-rise buildings, five reference structures, varying in height from 20- to 60-stories, were selected and designed according to modern design codes to represent a wid...To verify the seismic design response factors of high-rise buildings, five reference structures, varying in height from 20- to 60-stories, were selected and designed according to modern design codes to represent a wide range of concrete wall structures. Verified fiber-based analytical models for inelastic simulation were developed, considering the geometric nonlinearity and material inelasticity of the structural members. The ground motion uncertainty was accounted for by employing 20 earthquake records representing two seismic scenarios, consistent with the latest understanding of the tectonic setting and seismicity of the selected reference region (UAE). A large number of Inelastic Pushover Analyses (IPAs) and Incremental Dynamic Collapse Analyses (IDCAs) were deployed for the reference structures to estimate the seismic design response factors. It is concluded that the factors adopted by the design code are adequately conservative. The results of this systematic assessment of seismic design response factors apply to a wide variety of contemporary concrete wall buildings with various characteristics.展开更多
The response factors of refractive index(RI) and ultraviolet(UV) detectors of size exclusion chromatography (SEC) defined as the ratio of area of output signal to the mass of injected sample are studied and anal...The response factors of refractive index(RI) and ultraviolet(UV) detectors of size exclusion chromatography (SEC) defined as the ratio of area of output signal to the mass of injected sample are studied and analyzed by using five narrowly distributed polystyrene(PS) standard samples with known molar masses.It is found that the individual response factor for a given sample varies with the concentration of the injected solution within a limited range bounded by an upper and a lower limiting response factor values.This variation reveals the conformational change of the polymer chains with the concentration of the injected solution.The dynamic contact concentrations c_s of the PS samples derived from the response factor data are in good accordance with those reported earlier by other methods.The physical meanings of the signals of the two detectors are further analyzed and theoretically formulated.The solvation of the polymer chain and the conformation changes play an important role in these detecting systems.Both of the solvation number of the structural repeating unit and the extra embedded solvent due to cluster forming in higher concentrations could be deduced from the variation of response factor with the concentration of the injected solution.展开更多
Auxin is a crucial phytohormone that has various effects on the regulators of plant growth and development.Auxin signal transduction is mainly controlled by two gene families:auxin response factor(ARF)and auxin/indole...Auxin is a crucial phytohormone that has various effects on the regulators of plant growth and development.Auxin signal transduction is mainly controlled by two gene families:auxin response factor(ARF)and auxin/indole-3-acetic acid(Aux/IAA).ARFs are plant-specific transcription factors that bind directly to auxin response elements in the promoters of auxinresponsive genes.ARF proteins contain three conserved regions:a conserved N-terminal B3DNA-binding domain,a variable intermediate middle region domain that functions in activation or repression,and a C-terminal domain including the Phox and Bem1p region for dimerization,similar to theⅢandⅣelements of Aux/IAA,which facilitate protein–protein interaction through homodimerization of ARF proteins or heterodimerization of ARF and Aux/IAA proteins.In the two decades following the identification of the first ARF,23 ARF members have been identified and characterized in Arabidopsis.Using whole-genome sequencing,22,25,23,25,and 36 ARF genes have been identified in tomato,rice,wheat,sorghum,and maize,respectively,in addition to which the related biofunctions of some ARFs have been reported.ARFs play crucial roles in regulating the growth and development of roots,leaves,flowers,fruits,seeds,responses to biotic and abiotic stresses,and phytohormone signal crosstalk.In this review,we summarize the research progress on the structures and functions of ARFs in Arabidopsis,tomato,and cereal crops,to provide clues for future basic research on phytohormone signaling and the molecular design breeding of crops.展开更多
Ethylene response factor (ERF) proteins are important plant-specific transcription factors. Increasing evidence shows that ERF proteins regulate plant pathogen resistance, abiotic stress response and plant developme...Ethylene response factor (ERF) proteins are important plant-specific transcription factors. Increasing evidence shows that ERF proteins regulate plant pathogen resistance, abiotic stress response and plant development through interaction with different stress responsive pathways. Previously, we revealed that overexpression of TERF1 in tobacco activates a cluster gene expression through interacting with GCC box and dehydration responsive element (DRE), resulting in enhanced sensitivity to abscisic acid (ABA) and tolerance to drought, and dark green leaves of mature plants, indicating that TERF1 participates in the integration of ethylene and osmotic responses. Here we further report that overexpression of TERF1 confers sugar response in tobacco. Analysis of the novel isolated tomato TERF1 promoter provides information indicating that there are many cis-acting elements, including sugar responsive elements (SURE) and W box, suggesting that TERF1 might be sugar inducible. This prediction is confirmed by results of reverse transcription-polymerase chain reaction amplification, indicating that transcripts of TERF1 are accumulated in tomato seedlings after application of glucose. Further investigation indicates that the expression of TERF1 in tobacco enhances sensitivity to glucose during seed germination, root and seedling development, showing a decrease of the fresh weight and root elongation under glucose treatment. Detailed investigations provide evidence that TERF1 interacts with the sugar responsive cis-acting element SURE and activates the expression of sugar response genes, establishing the transcriptional regulation of TERF1 in sugar response. Therefore, our results deepen our understanding of the glucose response mediated by the ERF protein TERF1 in tobacco.展开更多
Auxin response factors (ARFs), a family of transcription factors, have been discovered recently. The ARFs bind specifically to the auxin response elements (AuxREs) within promoters of primary auxin responsive gene...Auxin response factors (ARFs), a family of transcription factors, have been discovered recently. The ARFs bind specifically to the auxin response elements (AuxREs) within promoters of primary auxin responsive genes and function as activators or repressors. The ARFs contain three domains, namely a conserved Nterminal DNA-binding domain, a non-conserved middle region, and a conserved C-termlnal dlmerlzatlon domaln. The ARFs can form a protein complex with auxin/indoleacetic acid through homodimerization or heterodlmerization. The particular protein-protein interaction may play a key role in moduiating the expression of early auxin responsive genes. The identification of ARF mutations in Arabidopsis helps to demonstrate/dissect the function of ARFs in the normal growth and development of plants. Phylogenetic analysis also reveals some interesting protein evolution points in the ARF family.展开更多
Most current seismic design includes the nonlinear response of a structure through a response reduction factor (R). This allows the designer to use a linear elastic force-based approach while accounting for nonlinea...Most current seismic design includes the nonlinear response of a structure through a response reduction factor (R). This allows the designer to use a linear elastic force-based approach while accounting for nonlinear behavior and deformation limits. In fact, the response reduction factor is used in modem seismic codes to scale down the elastic response of a structure. This study focuses on estimating the actual 'R' value for engineered design/construction of reinforced concrete (RC) buildings in Kathmandu valley. The ductility and overstrength of representative RC buildings in Kathmandu are investigated. Nonlinear pushover analysis was performed on structural models in order to evaluate the seismic performance of buildings. Twelve representative engineered irregular buildings with a variety of characteristics located in the Kathmandu valley were selected and studied. Furthermore, the effects of overstrength on the ductility factor, beam column capacity ratio on the building ductility, and load path on the response reduction factor, are examined. Finally, the results are further analyzed and compared with different structural parameters of the buildings.展开更多
The molecular mechanism of DNA damage induced by hydroquinone (HQ) remains unclear. Poly(ADP-ribose) polymerase-1 (PARP-1) usually works as a DNA damage sensor, and hence, it is possible that PARP-1 is involved ...The molecular mechanism of DNA damage induced by hydroquinone (HQ) remains unclear. Poly(ADP-ribose) polymerase-1 (PARP-1) usually works as a DNA damage sensor, and hence, it is possible that PARP-1 is involved in the DNA damage response induced by HQ. In TK6 cells treated with HQ, PARP activity as well as the expression of apoptosis antagonizing transcription factor (AATF), PARP-1, and phosphorylated H2AX (v-H2AX) were maximum at 0.5 h, 6 h, 3 h, and 3 h, respectively. To explore the detailed mechanisms underlying the prompt DNA repair reaction, the above indicators were investigated in PARP-l-silenced cells. PARP activity and expression of AATF and PARP-1 decreased to 36%, 32%, and 33%, respectively, in the cells; however, y-H2AX expression increased to 265%. Co-immunoprecipitation (co-IP) assays were employed to determine whether PARP-1 and AATF formed protein complexes. The interaction between these proteins together with the results from IP assays and confocal microscopy indicated that poly(ADP-ribosyl)ation {PARylation) regulated AATF expression, in conclusion, PARP-1 was involved in the DNA damage repair induced by HQ via increasing the accumulation of AATF through PARylation.展开更多
Objective:Neuropathic pain(NP)is one of the most common forms of chronic pain,yet current treatment options are limited in effectiveness.Peripheral nerve injury activates spinal microglia,altering their inflammatory r...Objective:Neuropathic pain(NP)is one of the most common forms of chronic pain,yet current treatment options are limited in effectiveness.Peripheral nerve injury activates spinal microglia,altering their inflammatory response and phagocytic functions,which contributes to the progression of NP.Most current research on NP focuses on microglial inflammation,with relatively little attention to their phagocytic function.Early growth response factor 2(EGR2)has been shown to regulate microglial phagocytosis,but its specific role in NP remains unclear.This study aims to investigate how EGR2 modulates microglial phagocytosis and its involvement in NP,with the goal of identifying potential therapeutic targets.Methods:Adult male Sprague-Dawley(SD)rats were used to establish a chronic constriction injury(CCI)model of the sciatic nerve.Pain behaviors were assessed on days 1,3,7,10,and 14 post-surgery to confirm successful model induction.The temporal and spatial expression of EGR2 in the spinal cord was examined using real-time quantitative PCR(RT-qPCR),Western blotting,and immunofluorescence staining.Adeno-associated virus(AAV)was used to overexpress EGR2 in the spinal cord,and behavioral assessments were performed to evaluate the effects of EGR2 modulation of NP.CCI and lipopolysaccharide(LPS)models were established in animals and microglial cell lines,respectively,and changes in phagocytic activity were measured using RT-qPCR and fluorescent latex bead uptake assays.After confirming the involvement of microglial phagocytosis in NP,AAV was used to overexpress EGR2 in both in vivo and in vitro models,and phagocytic activity was further evaluated.Finally,eukaryotic transcriptome sequencing was conducted to screen differentially expressed mRNAs,followed by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analyses to identify potential downstream effectors of EGR2.Results:The CCI model successfully induced NP.Following CCI,EGR2 expression in the spinal cord was upregulated in parallel with NP development.Overexpression of EGR2 via spinal AAV injection enhanced microglial phagocytic activity and increased pain hypersensitivity in rats.Both animal and cellular models showed that CCI or LPS stimulation enhanced microglial phagocytosis,which was further amplified by EGR2 overexpression.Transcriptomic analysis of spinal cord tissues from CCI rats overexpressing EGR2 revealed upregulation of numerous genes associated with microglial phagocytosis and pain regulation.Among them,Lag3 emerged as a potential downstream target of EGR2.Conclusion:EGR2 contributes to the maintenance of NP by enhancing microglial phagocytosis in the spinal dorsal horn.展开更多
Maize(Zea mays)is highly susceptible to waterlogging stress,which reduces both the yield and quality of this important crop.However,the molecular mechanism governing waterlogging tolerance is poorly understood.In this...Maize(Zea mays)is highly susceptible to waterlogging stress,which reduces both the yield and quality of this important crop.However,the molecular mechanism governing waterlogging tolerance is poorly understood.In this study,we identify a waterlogging-and ethylene-inducible gene ZmEREB179 that encodes an ethylene response factor(ERF)localized in the nucleus.Overexpression of ZmEREB179 in maize increases the sensitivity to waterlogging stress.Conversely,the zmereb179 knockout mutants are more tolerant to waterlogging,suggesting that ZmEREB179 functions as a negative regulator of waterlogging tolerance.A transcriptome analysis of the ZmEREB179-overexpressing plants reveals that the ERF-type transcription factor modulates the expression of various stress-related genes,including ZmEREB180.We find that ZmEREB179 directly targets the ZmEREB180 promoter and represses its expression.Notably,the analysis of a panel of 220 maize inbred lines reveals that genetic variations in the ZmEREB179 promoter(Hap2)are highly associated with waterlogging resistance.The functional association of Hap2 with waterlogging resistance is tightly co-segregated in two F2 segregating populations,highlighting its potential applications in breeding programs.Our findings shed light on the involvement of the transcriptional cascade of ERF genes in regulating plant-waterlogging tolerance.展开更多
Integrating sprinkler with deficit irrigation system is a new approach to improve crop water productivity and ensure water and food security in arid areas of India.This study undertook a field experiment of sprinkler-...Integrating sprinkler with deficit irrigation system is a new approach to improve crop water productivity and ensure water and food security in arid areas of India.This study undertook a field experiment of sprinkler-irrigated cumin(variety GC-4)with a mini-lysimeter setup at an experimental research farm in Jodhpur,India during 2019-2022.Four irrigation treatments T_(1),T_(2),T_(3),and T4 were designed at irrigation water/cumulative pan evaporation(IW/CPE)of 1.0,0.8,0.6,and 0.4,respectively,with three replications.Daily actual crop evapotranspiration(ETc)was recorded and weekly soil moisture was monitored over the crop growth period.Quantities of applied water and drainage from mini-lysimeters were also measured at every irrigation event.Yield of cumin was recorded at crop maturity.Furthermore,change in farmer's net income from 1-hm2 land was computed based on the cost of applying irrigation water and considering yield variations among the treatments.Results indicated the highest mean seasonal actual ETc(371.7 mm)and cumin yield(952.47 kg/hm2)under T_(1)(with full irrigation).Under T_(2),T_(3),and T4,the seasonal actual ETc decreased by 10.4%,27.6%,and 41.3%,respectively,while yield declined by 5.0%,28.4%,and 50.8%,respectively,as compared to the values under T_(1).Furthermore,crop water productivity of 0.272(±0.068)kg/m3 under T_(2)was found relatively higher in comparison to other irrigation treatments,indicating that T_(2)can achieve improved water productivity of cumin in arid areas at an optimum level of deficit irrigation.The results of cost-economics indicated that positive change in farmer's net income from 1-hm2 land was 108.82 USD under T_(2),while T_(3)and T4 showed net losses of 5.33 and 209.67 USD,respectively.Moreover,value of yield response factor and ratio of relative yield reductions to relative ETc deficits were found to be less than 1.00 under T_(2)(0.48),and more than 1.00 under T_(3)(1.07)and T4(1.23).This finding further supports that T_(2)shows the optimized level of deficit irrigation that saves 20.0%of water with sacrificing 5.0%yield in the arid areas of India.Findings of this study provide useful strategies to save irrigation water,bring additional area under irrigation,and improve crop water productivity in India and other similar arid areas in the world.展开更多
Background:Clear cell renal carcinoma(ccRCC),the leading histological subtype of RCC,lacks any targeted therapy options.Although some studies have shown that early growth response factor 1(EGR1)has a significant role ...Background:Clear cell renal carcinoma(ccRCC),the leading histological subtype of RCC,lacks any targeted therapy options.Although some studies have shown that early growth response factor 1(EGR1)has a significant role in cancer development and progression,its role and underlying mechanisms in ccRCC remain poorly understood.Methods:The Cancer Genome Atlas(TCGA)database was utilized to examine the expression of EGR1 in ccRCC.The expression of EGR1 in 55 ccRCC tissues was evaluated using immunohistochemistry.The link between EGR1 expression and clinicopathological variables was examined through an analysis.Gain-of-function assays were employed to investigate EGR1’s biological functions in ccRCC cells,involving proliferation,colony formation,invasion assays,and tumorigenesis in nude mice.In order to assess the protein expression of mitogen-activated protein kinase 15(MAPK15),E-cadherin,matrix metalloproteinase-9/-2(MMP-9 and MMP-2),Western blot technique was applied.Results:The results revealed a decrease in EGR1 expression in ccRCC tissues.This decrease was strongly linked to TNM stage,lymphatic metastasis,tumor size,histological grade,and unfavorable prognosis in ccRCC patients.It has been demonstrated that overexpressing EGR1 inhibits the growth of xenograft tumors in vivo and inhibits cell colony formation,motility,and invasion in vitro.Furthermore,EGR1 can prevent the development and movement of ccRCC cells by controlling the expression of MMP-2,MMP-9,E-cadherin,and MAPK15.Conclusions:The EGR1/MAPK15 axis may represent a promising target for drug development,with EGR1 serving as a possible target for ccRCC therapy.展开更多
Cassava,Manihot esculenta Crantz (Me),is a major dietary source of calories for over 700 million people in tropical regions.The production of cassava is constantly threatened by cassava bacterial blight (CBB),caused b...Cassava,Manihot esculenta Crantz (Me),is a major dietary source of calories for over 700 million people in tropical regions.The production of cassava is constantly threatened by cassava bacterial blight (CBB),caused by Xanthomonas axonopodis pv.manihotis (Xam).The gene resources for CBB-resistant breeding of cassava are limited.In model plant species,ethylene response factors play important roles in response to pathogen infection.In this study,cassava ethylene response factors (MeERFs) were identified and characterized as the first step in studying their potential for CBB-resistant breeding of cassava.In the cassava genome 155 MeERFs were identified,of which 23 were induced by Xam infection.The promoter regions of204 genes harbored GCC-box that had the potential to interact with MeERFs.Using 37 transcriptomes derived from Xam infection treatment,four gene co-expression modules for the MeERFs and GCC-box containing genes were constructed.Six MeERFs were associated with two GCC-box containing genes:transcription initiation factor TFIIE subunit beta (MeTFIIE),and histone-lysine N-methyltransferase ASHR1 (MeASHR1).Dual-luciferase reporter assays showed that MeERF10 and MeERF58 positively regulated Me TFIIE;MeERF137 negatively regulated Me TFIIE;MeERF10 and MeERF137 positively regulated Me ASHR1;and MeERF35 negatively regulated Me ASHR1.The four MeERFs may mediate pathogen response by regulating the expression of the two GCC-box containing genes.展开更多
Wind loading is a dominant factor for design of a cable-membrane structure. Three orthogonal turbulent components, including the longitudinal, lateral and vertical wind velocities, should be taken into account for the...Wind loading is a dominant factor for design of a cable-membrane structure. Three orthogonal turbulent components, including the longitudinal, lateral and vertical wind velocities, should be taken into account for the wind loads. In this study, a stochastic 3D coupling wind field model is derived by the spectral representation theory. The coherence functions of the three orthogonal turbulent components are considered in this model. Then the model is applied to generate the three correlated wind turbulent components. After that, formulae are proposed to transform the velocities into wind loads, and to introduce the modified wind pressure force. Finally, a wind-induced time-history response analysis is conducted for a 3D cable-membrane structure. Analytical results indicate that responses induced by the proposed wind load model are 10%-25% larger than those by the con- ventional uncorrelated model, and that the responses are not quite influenced by the modified wind pressure force. Therefore, we concluded that, in the time-history response analysis, the coherences of the three orthogonal turbulent components are necessary for a 3D cable-membrane structure, but the modified wind pressure force can be ignored.展开更多
Objective Reversed alkane δ;C and δ;H values in many prolific shale plays all over the world have aroused much attention in the study of the formation mechanism of reversed isotope series in alkanes in the past few ...Objective Reversed alkane δ;C and δ;H values in many prolific shale plays all over the world have aroused much attention in the study of the formation mechanism of reversed isotope series in alkanes in the past few years(Zou Caineng et al., 2016). Although many researchers have put forward different hypotheses, the mechanism has not been well understood yet. The openness degree of oil and gas system展开更多
This paper addresses the peak factors of wind- excited responses including alongwind, acrosswind tall building responses and vortex-induced vibration considering the bandwidth parameter. The influence of bandwidth par...This paper addresses the peak factors of wind- excited responses including alongwind, acrosswind tall building responses and vortex-induced vibration considering the bandwidth parameter. The influence of bandwidth parameter on the peak factor is investigated using advanced upcrossing theory taking the bandwidth influence into account. Results show that Davenport's formula without consideration of bandwidth parameter servers well in general. However, the advanced upcrossing theory leads to a better prediction of the peak factor of wind-induced response of very lightly damped buildings.展开更多
基金This work was financially supported by the National Key R&D Program of China(Grant No.2018YFD0100703)the Beijing Municipal Science and Technology Project(Grant No.D171100007617001)+4 种基金the Beijing Academy of Agricultural and Forestry Sciences(Grant Nos.QNJJ201733,KJCX20200202)the Ministry of Agriculture and Rural Affairs of China(Grant No.CARS-25)the Beijing Scholar Program(Grant No.BSP026)Beijing Innovation Consortium of Agriculture Research System(Grant No.BAIC10-2020)the Bagui Scholar Program(Grant No.2016A11).
文摘Watermelon fruit undergoes distinct development stages with dramatic changes during fruit ripening.To date,the molecular mechanics of watermelon ripening remain unclear.Genetic and transcriptome evidences suggested that the ethylene response factor(ERF)gene ClERF069 may be an important candidate factor affecting watermelon fruit ripening.To dissect the roles of ClERF069 in fruit ripening,structure and phylogenetic analysis were performed using the amplified full-length sequence.Normal-ripening watermelon 97103,non-ripening watermelon PI296341-FR and the RIL population were used to analyze ClERF069 expression dynamics and the correlation with fruit ripening indexs.The results indicated that ClERF069 belongs to ERF family group VI and show high homology(83%identity)to melon ERF069-like protein.ClERF069 expression in watermelon flesh was negatively correlated with fruit lycopene content and sugar content during fruit ripening progress.Further transgenic evidences indicated that overexpression of 35S:ClERF069 in tomato noticeably delayed the ripening process up to 5.2 days.Lycopene,β-carotenoid accumulation patterns were altered and ethylene production patterns in transgenic fruits was significantly delayed during fruit ripening.Taken together,watermelon ethylene response factor ClERF069 was concluded to be a negative regulator of fruit ripening.
基金supported by the National Natural Science Foundation of China (Grants 31970282 and 32170286 to X.M.)
文摘Plants under pathogen attack produce high levels of the gaseous phytohormone ethylene to induce plant defense responses via the ethylene signaling pathway.The 1-aminocyclopropane-1-carboxylate synthase(ACS)is a critical rate-limiting enzyme of ethylene biosynthesis.Transcriptional and post-translational upregulation of ACS2 and ACS6 by the mitogen-activated protein kinases MPK3 and MPK6 are previously shown to be crucial for pathogen-induced ethylene biosynthesis in Arabidopsis.Here,we report that the fungal pathogen Botrytis cinerea-induced ethylene biosynthesis in Arabidopsis is under the negative feedback regulation by ethylene signaling pathway.The ethylene response factor ERF1 A is further found to act downstream of ethylene signaling to negatively regulate the B.cinerea-induced ethylene biosynthesis via indirectly suppressing the expression of ACS2 and ACS6.Interestingly,ERF1 A is shown to also upregulate defensin genes directly and therefore promote Arabidopsis resistance to B.cinerea.Furthermore,ERF1 A is identified to be a substrate of MPK3 and MPK6,which phosphoactivate ERF1 A to enhance its functions in suppressing ethylene biosynthesis and inducing defensin gene expression.Taken together,our data reveal that ERF1 A and its phosphorylation by MPK3/MPK6 not only mediate the negativefeedback regulation of the B.cinerea-induced ethylene biosynthesis,but also upregulate defensin gene expression to increase Arabidopsis resistance to B.cinerea.
基金Supported by The Department of Veterans Affairs of the United States and the American Heart Association grants to Dr Chai J
文摘Serum response factor(SRF) is a transcription factor that regulates many genes involved in cellular activities such as proliferation,migration,differentiation,angiogenesis,and apoptosis.Although it has only been known for about two decades,SRF has been studied extensively.To date,over a thousand SRF studies have been published,but it still remains a hot topic.Due to its critical role in mesoderm-derived tissues,most of the SRF studies focused on muscle structure/function,cardiovascular development/maintenance,and smooth muscle generation/repair.Recently,SRF has received more attention in the digestive field and several important discoveries have been made.This review will summarize what we have learned about SRF in the gastrointestinal tract and provide insights into possible future directions in this area.
基金supported by the National Natural Science Foundation of China,No.81 8 70985 (to FH)Project of Shandong Province Higher Education Science and Technology Program,No.J18KA258 (to NLZ)+1 种基金Xu Rongxiang Regenerative Medicine Science and Technology Program of Binzhou Medical University,No.BY2020XRX06 (to NLZ)the Natural Science Foundation of Shandong Province,No.BS2015SW021 (to NLZ)。
文摘Studies have snown that serum response factor is beneficaial for axonar regeneration of peripheral herves.However,Its role after central nervous system injury remains unclear. In this study,we established a rat model of T9-T10 spinal cord transection injury.We found that the expression of serum response factor in injured spinal cord gray matter neurons gradually increased with time,reached its peak on the 7^(th) day,and then gradually decreased.To investigate the role of serum response factor,we used lentivirus vecto rs to ove rexpress and silence serum response factor in spinal cord tissue.We found that overexpression of serum response factor promoted motor function recovery in rats with spinal cord injury.Qualitative observation of biotinylated dextran amine anterograde tra cing showed that ove rexpression of serum response factor increased nerve fibers in the injured spinal co rd.Additionally,transmission electron microscopy showed that axon and myelin sheath morphology was restored.Silencing serum response factor had the opposite effects of ove rexpression.These findings suggest that serum response factor plays a role in the recovery of motor function after spinal cord injury.The underlying mechanism may be related to the regulation of axonal regeneration.
文摘Light is an environmental signaling,whereas Aux/IAA proteins and Auxin Response Factors(ARFs)are regulators of auxin signalling.Aux/IAA proteins are unstable,and their degradation dependents on 26S ubiquitin-proteasome and is promoted by Auxin.Auxin binds directly to a SCF-type ubiquitin-protein ligase,TIR1,facilitates the interaction between Aux/IAA proteins and TIR1,and then the degradation of Aux/IAA proteins.A few studies have reported that some ARFs are also unstable proteins,and their degradation is also mediated by 26S proteasome.In this study,by using of antibodies recognizing endogenous ARF7 proteins,we found that protein stability of ARF7 was affected by light.By expressing MYC tagged ARF activators in protoplasts,we found that degradation of ARF7 was inhibited by 26 proteasome inhibitors.In addition,at least ARF5 and ARF19 were also unstable proteins,and degradation of ARF5 via 26S proteasome was further confirmed by using stable transformed plants overexpressing ARF5 with a GUS tag.
基金UAE University Under Contracts No. 07-34-07-11/07 and 07-01-07-11/09
文摘To verify the seismic design response factors of high-rise buildings, five reference structures, varying in height from 20- to 60-stories, were selected and designed according to modern design codes to represent a wide range of concrete wall structures. Verified fiber-based analytical models for inelastic simulation were developed, considering the geometric nonlinearity and material inelasticity of the structural members. The ground motion uncertainty was accounted for by employing 20 earthquake records representing two seismic scenarios, consistent with the latest understanding of the tectonic setting and seismicity of the selected reference region (UAE). A large number of Inelastic Pushover Analyses (IPAs) and Incremental Dynamic Collapse Analyses (IDCAs) were deployed for the reference structures to estimate the seismic design response factors. It is concluded that the factors adopted by the design code are adequately conservative. The results of this systematic assessment of seismic design response factors apply to a wide variety of contemporary concrete wall buildings with various characteristics.
基金supported by the National Natural Science Foundation of China(No.50633030)
文摘The response factors of refractive index(RI) and ultraviolet(UV) detectors of size exclusion chromatography (SEC) defined as the ratio of area of output signal to the mass of injected sample are studied and analyzed by using five narrowly distributed polystyrene(PS) standard samples with known molar masses.It is found that the individual response factor for a given sample varies with the concentration of the injected solution within a limited range bounded by an upper and a lower limiting response factor values.This variation reveals the conformational change of the polymer chains with the concentration of the injected solution.The dynamic contact concentrations c_s of the PS samples derived from the response factor data are in good accordance with those reported earlier by other methods.The physical meanings of the signals of the two detectors are further analyzed and theoretically formulated.The solvation of the polymer chain and the conformation changes play an important role in these detecting systems.Both of the solvation number of the structural repeating unit and the extra embedded solvent due to cluster forming in higher concentrations could be deduced from the variation of response factor with the concentration of the injected solution.
基金funded by grants from the National Natural Science Foundation of China(32060451)Natural Science Foundation of Inner Mongolia(2022ZD11)+1 种基金Zhejiang Provincial Natural Science Foundation of China(LZ19C020001)Applied Technology Research and Development Foundation of Inner Mongolia(2021PT0001)。
文摘Auxin is a crucial phytohormone that has various effects on the regulators of plant growth and development.Auxin signal transduction is mainly controlled by two gene families:auxin response factor(ARF)and auxin/indole-3-acetic acid(Aux/IAA).ARFs are plant-specific transcription factors that bind directly to auxin response elements in the promoters of auxinresponsive genes.ARF proteins contain three conserved regions:a conserved N-terminal B3DNA-binding domain,a variable intermediate middle region domain that functions in activation or repression,and a C-terminal domain including the Phox and Bem1p region for dimerization,similar to theⅢandⅣelements of Aux/IAA,which facilitate protein–protein interaction through homodimerization of ARF proteins or heterodimerization of ARF and Aux/IAA proteins.In the two decades following the identification of the first ARF,23 ARF members have been identified and characterized in Arabidopsis.Using whole-genome sequencing,22,25,23,25,and 36 ARF genes have been identified in tomato,rice,wheat,sorghum,and maize,respectively,in addition to which the related biofunctions of some ARFs have been reported.ARFs play crucial roles in regulating the growth and development of roots,leaves,flowers,fruits,seeds,responses to biotic and abiotic stresses,and phytohormone signal crosstalk.In this review,we summarize the research progress on the structures and functions of ARFs in Arabidopsis,tomato,and cereal crops,to provide clues for future basic research on phytohormone signaling and the molecular design breeding of crops.
基金Supported by the National Natural Science Foundation of China (30525034)the State Key Basic Research and Development Plan of China(2006CB100102)
文摘Ethylene response factor (ERF) proteins are important plant-specific transcription factors. Increasing evidence shows that ERF proteins regulate plant pathogen resistance, abiotic stress response and plant development through interaction with different stress responsive pathways. Previously, we revealed that overexpression of TERF1 in tobacco activates a cluster gene expression through interacting with GCC box and dehydration responsive element (DRE), resulting in enhanced sensitivity to abscisic acid (ABA) and tolerance to drought, and dark green leaves of mature plants, indicating that TERF1 participates in the integration of ethylene and osmotic responses. Here we further report that overexpression of TERF1 confers sugar response in tobacco. Analysis of the novel isolated tomato TERF1 promoter provides information indicating that there are many cis-acting elements, including sugar responsive elements (SURE) and W box, suggesting that TERF1 might be sugar inducible. This prediction is confirmed by results of reverse transcription-polymerase chain reaction amplification, indicating that transcripts of TERF1 are accumulated in tomato seedlings after application of glucose. Further investigation indicates that the expression of TERF1 in tobacco enhances sensitivity to glucose during seed germination, root and seedling development, showing a decrease of the fresh weight and root elongation under glucose treatment. Detailed investigations provide evidence that TERF1 interacts with the sugar responsive cis-acting element SURE and activates the expression of sugar response genes, establishing the transcriptional regulation of TERF1 in sugar response. Therefore, our results deepen our understanding of the glucose response mediated by the ERF protein TERF1 in tobacco.
基金Supported by the State Key Basic Research and Development Plan of China(2004CB117307).
文摘Auxin response factors (ARFs), a family of transcription factors, have been discovered recently. The ARFs bind specifically to the auxin response elements (AuxREs) within promoters of primary auxin responsive genes and function as activators or repressors. The ARFs contain three domains, namely a conserved Nterminal DNA-binding domain, a non-conserved middle region, and a conserved C-termlnal dlmerlzatlon domaln. The ARFs can form a protein complex with auxin/indoleacetic acid through homodimerization or heterodlmerization. The particular protein-protein interaction may play a key role in moduiating the expression of early auxin responsive genes. The identification of ARF mutations in Arabidopsis helps to demonstrate/dissect the function of ARFs in the normal growth and development of plants. Phylogenetic analysis also reveals some interesting protein evolution points in the ARF family.
基金supported by the Eurasian University Network for International Cooperation in Earthquake (EU-NICE)
文摘Most current seismic design includes the nonlinear response of a structure through a response reduction factor (R). This allows the designer to use a linear elastic force-based approach while accounting for nonlinear behavior and deformation limits. In fact, the response reduction factor is used in modem seismic codes to scale down the elastic response of a structure. This study focuses on estimating the actual 'R' value for engineered design/construction of reinforced concrete (RC) buildings in Kathmandu valley. The ductility and overstrength of representative RC buildings in Kathmandu are investigated. Nonlinear pushover analysis was performed on structural models in order to evaluate the seismic performance of buildings. Twelve representative engineered irregular buildings with a variety of characteristics located in the Kathmandu valley were selected and studied. Furthermore, the effects of overstrength on the ductility factor, beam column capacity ratio on the building ductility, and load path on the response reduction factor, are examined. Finally, the results are further analyzed and compared with different structural parameters of the buildings.
基金supported by grants from the National Natural Science Foundation of China(8120223181273116+2 种基金81430079)the Science and Technology Program of Guangdong Bureau of Science and TechnologyChina(2013B021800069)
文摘The molecular mechanism of DNA damage induced by hydroquinone (HQ) remains unclear. Poly(ADP-ribose) polymerase-1 (PARP-1) usually works as a DNA damage sensor, and hence, it is possible that PARP-1 is involved in the DNA damage response induced by HQ. In TK6 cells treated with HQ, PARP activity as well as the expression of apoptosis antagonizing transcription factor (AATF), PARP-1, and phosphorylated H2AX (v-H2AX) were maximum at 0.5 h, 6 h, 3 h, and 3 h, respectively. To explore the detailed mechanisms underlying the prompt DNA repair reaction, the above indicators were investigated in PARP-l-silenced cells. PARP activity and expression of AATF and PARP-1 decreased to 36%, 32%, and 33%, respectively, in the cells; however, y-H2AX expression increased to 265%. Co-immunoprecipitation (co-IP) assays were employed to determine whether PARP-1 and AATF formed protein complexes. The interaction between these proteins together with the results from IP assays and confocal microscopy indicated that poly(ADP-ribosyl)ation {PARylation) regulated AATF expression, in conclusion, PARP-1 was involved in the DNA damage repair induced by HQ via increasing the accumulation of AATF through PARylation.
基金supported by the National Natural Science Foundation of China(82071249 and 81771207).
文摘Objective:Neuropathic pain(NP)is one of the most common forms of chronic pain,yet current treatment options are limited in effectiveness.Peripheral nerve injury activates spinal microglia,altering their inflammatory response and phagocytic functions,which contributes to the progression of NP.Most current research on NP focuses on microglial inflammation,with relatively little attention to their phagocytic function.Early growth response factor 2(EGR2)has been shown to regulate microglial phagocytosis,but its specific role in NP remains unclear.This study aims to investigate how EGR2 modulates microglial phagocytosis and its involvement in NP,with the goal of identifying potential therapeutic targets.Methods:Adult male Sprague-Dawley(SD)rats were used to establish a chronic constriction injury(CCI)model of the sciatic nerve.Pain behaviors were assessed on days 1,3,7,10,and 14 post-surgery to confirm successful model induction.The temporal and spatial expression of EGR2 in the spinal cord was examined using real-time quantitative PCR(RT-qPCR),Western blotting,and immunofluorescence staining.Adeno-associated virus(AAV)was used to overexpress EGR2 in the spinal cord,and behavioral assessments were performed to evaluate the effects of EGR2 modulation of NP.CCI and lipopolysaccharide(LPS)models were established in animals and microglial cell lines,respectively,and changes in phagocytic activity were measured using RT-qPCR and fluorescent latex bead uptake assays.After confirming the involvement of microglial phagocytosis in NP,AAV was used to overexpress EGR2 in both in vivo and in vitro models,and phagocytic activity was further evaluated.Finally,eukaryotic transcriptome sequencing was conducted to screen differentially expressed mRNAs,followed by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analyses to identify potential downstream effectors of EGR2.Results:The CCI model successfully induced NP.Following CCI,EGR2 expression in the spinal cord was upregulated in parallel with NP development.Overexpression of EGR2 via spinal AAV injection enhanced microglial phagocytic activity and increased pain hypersensitivity in rats.Both animal and cellular models showed that CCI or LPS stimulation enhanced microglial phagocytosis,which was further amplified by EGR2 overexpression.Transcriptomic analysis of spinal cord tissues from CCI rats overexpressing EGR2 revealed upregulation of numerous genes associated with microglial phagocytosis and pain regulation.Among them,Lag3 emerged as a potential downstream target of EGR2.Conclusion:EGR2 contributes to the maintenance of NP by enhancing microglial phagocytosis in the spinal dorsal horn.
基金supported by the science and technology major program of Hubei Province(2022ABA001)the National Key Research and Development Program of Shandong Province(2022CXPT014)the Knowledge Innovation Program of Wuhan-Shugung Project(2023020201020413).
文摘Maize(Zea mays)is highly susceptible to waterlogging stress,which reduces both the yield and quality of this important crop.However,the molecular mechanism governing waterlogging tolerance is poorly understood.In this study,we identify a waterlogging-and ethylene-inducible gene ZmEREB179 that encodes an ethylene response factor(ERF)localized in the nucleus.Overexpression of ZmEREB179 in maize increases the sensitivity to waterlogging stress.Conversely,the zmereb179 knockout mutants are more tolerant to waterlogging,suggesting that ZmEREB179 functions as a negative regulator of waterlogging tolerance.A transcriptome analysis of the ZmEREB179-overexpressing plants reveals that the ERF-type transcription factor modulates the expression of various stress-related genes,including ZmEREB180.We find that ZmEREB179 directly targets the ZmEREB180 promoter and represses its expression.Notably,the analysis of a panel of 220 maize inbred lines reveals that genetic variations in the ZmEREB179 promoter(Hap2)are highly associated with waterlogging resistance.The functional association of Hap2 with waterlogging resistance is tightly co-segregated in two F2 segregating populations,highlighting its potential applications in breeding programs.Our findings shed light on the involvement of the transcriptional cascade of ERF genes in regulating plant-waterlogging tolerance.
文摘Integrating sprinkler with deficit irrigation system is a new approach to improve crop water productivity and ensure water and food security in arid areas of India.This study undertook a field experiment of sprinkler-irrigated cumin(variety GC-4)with a mini-lysimeter setup at an experimental research farm in Jodhpur,India during 2019-2022.Four irrigation treatments T_(1),T_(2),T_(3),and T4 were designed at irrigation water/cumulative pan evaporation(IW/CPE)of 1.0,0.8,0.6,and 0.4,respectively,with three replications.Daily actual crop evapotranspiration(ETc)was recorded and weekly soil moisture was monitored over the crop growth period.Quantities of applied water and drainage from mini-lysimeters were also measured at every irrigation event.Yield of cumin was recorded at crop maturity.Furthermore,change in farmer's net income from 1-hm2 land was computed based on the cost of applying irrigation water and considering yield variations among the treatments.Results indicated the highest mean seasonal actual ETc(371.7 mm)and cumin yield(952.47 kg/hm2)under T_(1)(with full irrigation).Under T_(2),T_(3),and T4,the seasonal actual ETc decreased by 10.4%,27.6%,and 41.3%,respectively,while yield declined by 5.0%,28.4%,and 50.8%,respectively,as compared to the values under T_(1).Furthermore,crop water productivity of 0.272(±0.068)kg/m3 under T_(2)was found relatively higher in comparison to other irrigation treatments,indicating that T_(2)can achieve improved water productivity of cumin in arid areas at an optimum level of deficit irrigation.The results of cost-economics indicated that positive change in farmer's net income from 1-hm2 land was 108.82 USD under T_(2),while T_(3)and T4 showed net losses of 5.33 and 209.67 USD,respectively.Moreover,value of yield response factor and ratio of relative yield reductions to relative ETc deficits were found to be less than 1.00 under T_(2)(0.48),and more than 1.00 under T_(3)(1.07)and T4(1.23).This finding further supports that T_(2)shows the optimized level of deficit irrigation that saves 20.0%of water with sacrificing 5.0%yield in the arid areas of India.Findings of this study provide useful strategies to save irrigation water,bring additional area under irrigation,and improve crop water productivity in India and other similar arid areas in the world.
基金supported by grants from the Shenzhen Basic Research Project(JCYJ20210324125803008)the Shenzhen Longhua District Science and Innovation Bureau Fund for Medical Institutions(2022143).
文摘Background:Clear cell renal carcinoma(ccRCC),the leading histological subtype of RCC,lacks any targeted therapy options.Although some studies have shown that early growth response factor 1(EGR1)has a significant role in cancer development and progression,its role and underlying mechanisms in ccRCC remain poorly understood.Methods:The Cancer Genome Atlas(TCGA)database was utilized to examine the expression of EGR1 in ccRCC.The expression of EGR1 in 55 ccRCC tissues was evaluated using immunohistochemistry.The link between EGR1 expression and clinicopathological variables was examined through an analysis.Gain-of-function assays were employed to investigate EGR1’s biological functions in ccRCC cells,involving proliferation,colony formation,invasion assays,and tumorigenesis in nude mice.In order to assess the protein expression of mitogen-activated protein kinase 15(MAPK15),E-cadherin,matrix metalloproteinase-9/-2(MMP-9 and MMP-2),Western blot technique was applied.Results:The results revealed a decrease in EGR1 expression in ccRCC tissues.This decrease was strongly linked to TNM stage,lymphatic metastasis,tumor size,histological grade,and unfavorable prognosis in ccRCC patients.It has been demonstrated that overexpressing EGR1 inhibits the growth of xenograft tumors in vivo and inhibits cell colony formation,motility,and invasion in vitro.Furthermore,EGR1 can prevent the development and movement of ccRCC cells by controlling the expression of MMP-2,MMP-9,E-cadherin,and MAPK15.Conclusions:The EGR1/MAPK15 axis may represent a promising target for drug development,with EGR1 serving as a possible target for ccRCC therapy.
基金supported by the Natural Science Foundation of Hainan Province (2018CXTD330 and 318QN204)Key R&D Program of Hainan Province (ZDYF2019063)+1 种基金China Agriculture Research System (CARS11-hncyh)the National Natural Science Foundation of China (31560497)。
文摘Cassava,Manihot esculenta Crantz (Me),is a major dietary source of calories for over 700 million people in tropical regions.The production of cassava is constantly threatened by cassava bacterial blight (CBB),caused by Xanthomonas axonopodis pv.manihotis (Xam).The gene resources for CBB-resistant breeding of cassava are limited.In model plant species,ethylene response factors play important roles in response to pathogen infection.In this study,cassava ethylene response factors (MeERFs) were identified and characterized as the first step in studying their potential for CBB-resistant breeding of cassava.In the cassava genome 155 MeERFs were identified,of which 23 were induced by Xam infection.The promoter regions of204 genes harbored GCC-box that had the potential to interact with MeERFs.Using 37 transcriptomes derived from Xam infection treatment,four gene co-expression modules for the MeERFs and GCC-box containing genes were constructed.Six MeERFs were associated with two GCC-box containing genes:transcription initiation factor TFIIE subunit beta (MeTFIIE),and histone-lysine N-methyltransferase ASHR1 (MeASHR1).Dual-luciferase reporter assays showed that MeERF10 and MeERF58 positively regulated Me TFIIE;MeERF137 negatively regulated Me TFIIE;MeERF10 and MeERF137 positively regulated Me ASHR1;and MeERF35 negatively regulated Me ASHR1.The four MeERFs may mediate pathogen response by regulating the expression of the two GCC-box containing genes.
基金Project (No. 2004Z3-E0351) supported by the Guangzhou Scientificand Technological Research Project, China
文摘Wind loading is a dominant factor for design of a cable-membrane structure. Three orthogonal turbulent components, including the longitudinal, lateral and vertical wind velocities, should be taken into account for the wind loads. In this study, a stochastic 3D coupling wind field model is derived by the spectral representation theory. The coherence functions of the three orthogonal turbulent components are considered in this model. Then the model is applied to generate the three correlated wind turbulent components. After that, formulae are proposed to transform the velocities into wind loads, and to introduce the modified wind pressure force. Finally, a wind-induced time-history response analysis is conducted for a 3D cable-membrane structure. Analytical results indicate that responses induced by the proposed wind load model are 10%-25% larger than those by the con- ventional uncorrelated model, and that the responses are not quite influenced by the modified wind pressure force. Therefore, we concluded that, in the time-history response analysis, the coherences of the three orthogonal turbulent components are necessary for a 3D cable-membrane structure, but the modified wind pressure force can be ignored.
基金supported by the National Natural Science Foundation of China (grant No. 41503033)Basic Foresight Program of the Ministry of science and technology, Sinopec (grant No. G5800-15-ZS-KJB050-02)the Key Laboratory Project of Gansu Province (grant No. 1309RTSA041)
文摘Objective Reversed alkane δ;C and δ;H values in many prolific shale plays all over the world have aroused much attention in the study of the formation mechanism of reversed isotope series in alkanes in the past few years(Zou Caineng et al., 2016). Although many researchers have put forward different hypotheses, the mechanism has not been well understood yet. The openness degree of oil and gas system
基金The partial support by the National Science Foundation of China (Grant 51278433) is greatly acknowledged
文摘This paper addresses the peak factors of wind- excited responses including alongwind, acrosswind tall building responses and vortex-induced vibration considering the bandwidth parameter. The influence of bandwidth parameter on the peak factor is investigated using advanced upcrossing theory taking the bandwidth influence into account. Results show that Davenport's formula without consideration of bandwidth parameter servers well in general. However, the advanced upcrossing theory leads to a better prediction of the peak factor of wind-induced response of very lightly damped buildings.