期刊文献+
共找到7,528篇文章
< 1 2 250 >
每页显示 20 50 100
Electrically Tunable Graphene Nanomechanical Resonators
1
作者 Yibo Wang Zhuozhi Zhang +4 位作者 Chenxu Wu Yushi Zhang Guosheng Lei Xiangxiang Song Guoping Guo 《Chinese Physics Letters》 2025年第7期467-488,共22页
The excellent mechanical properties make graphene promising for realizing nanomechanical resonators with high resonant frequencies,large quality factors,strong nonlinearities,and the capability to efectively interface... The excellent mechanical properties make graphene promising for realizing nanomechanical resonators with high resonant frequencies,large quality factors,strong nonlinearities,and the capability to efectively interface with various physical systems.Equipped with gate electrodes,it has been demonstrated that these exceptional device properties can be electrically manipulated,leading to a variety of nanomechanical/acoustic applications.Here,we review the recent progress of graphene nanomechanical resonators with a focus on their electrical tunability.First,we provide an overview of diferent graphene nanomechanical resonators,including their device structures,fabrication methods,and measurement setups.Then,the key mechanical properties of these devices,for example,resonant frequencies,nonlinearities,dissipations,and mode coupling mechanisms,are discussed,with their behaviors upon electrical gating being highlighted.After that,various potential classical/quantum applications based on these graphene nanomechanical resonators are reviewed.Finally,we briefy discuss challenges and opportunities in this feld to ofer future prospects for the ongoing studies on graphene nanomechanical resonators. 展开更多
关键词 gate electrodesit NONLINEARITIES resonant frequencies electrical gating quality factors mechanical properties nanomechanical resonators electrically tunable
原文传递
Design of phononic crystal plate with folded helical beam for vibration isolation in MEMS resonators
2
作者 LI Siyi XU Lijiang JIANG Bo 《Journal of Measurement Science and Instrumentation》 2025年第3期323-333,共11页
Enhancing the vibration resistance of micro-electro-mechanical systems(MEMS)resonators in complex environments is a critical issue that urgently needs to be addressed.This paper presents a chip-scale locally resonant ... Enhancing the vibration resistance of micro-electro-mechanical systems(MEMS)resonators in complex environments is a critical issue that urgently needs to be addressed.This paper presents a chip-scale locally resonant phononic crystal(LRPnC)plate based on a folded helical beam structure.Through finite element simulation and theoretical analysis,the bandgap characteristics and vibration suppression mechanisms of this structure were thoroughly investigated.The results show that the structure exhibits a complete bandgap in the frequency range of 9.867-14.605 kHz,and the bandgap can be effectively tuned by adjusting the structural parameters.Based on this,the influence of the number of unit cell layers on the vibration reduction performance was further studied,and a finite periodic LRPnC plate was constructed.Numerical studies have shown that the LRPnC plate can achieve more than-30 dB of vibration attenuation within the bandgap and effectively suppress y-direction coupling vibrations caused by x-direction propagating waves.In addition,its chip-scale size and planar structure design provide new ideas and methods for the engineering application of phononic crystal technology in the field of MEMS vibration isolation. 展开更多
关键词 micro-electro-mechanical systems(MEMS)resonators vibration isolation locally resonant phononic crystals(LRPnC) chip-level acoustic metamaterials finite element simulation
在线阅读 下载PDF
Tunable anisotropy in wide-bandgap 2D crystal CaNb_(2)O_(6) utilizing nanomechanical resonators
3
作者 Yachun Liang Luming Wang +11 位作者 Song Wu Jiaqi Wu Jiankai Zhu Jiaze Qin Xiulian Fan Zejuan Zhang Bo Xu Chenyin Jiao Shenghai Pei Yu Zhou Juan Xia Zenghui Wang 《International Journal of Extreme Manufacturing》 2025年第4期462-470,共9页
As an ultrathin wide-bandgap(WBG)material,CaNb_(2)O_(6)exhibits excellent optical and electrical properties.Particularly,its highly asymmetric crystal structure provides new opportunities for designing novel nanodevic... As an ultrathin wide-bandgap(WBG)material,CaNb_(2)O_(6)exhibits excellent optical and electrical properties.Particularly,its highly asymmetric crystal structure provides new opportunities for designing novel nanodevices with directional functionality.However,due to the significant challenges in applying conventional techniques to nanoscale samples,the in-plane anisotropy of CaNb_(2)O_(6)has still remained unexplored.Here,we leverage the resonant nanoelectromechanical systems(NEMS)platform to successfully quantify both the mechanical and thermal anisotropies in such an ultrathin WBG crystal.Specifically,by measuring the dynamic response in both spectral and spatial domains,we determine the anisotropic Young’s modulus of CaNb_(2)O_(6)as E_(Y(a))=70.42 GPa and EY(b)=116.2 GPa.By further expanding this technique to cryogenic temperatures,we unveil the anisotropy in thermal expansion coefficients as α_((a))=13.4 ppm·K^(-1),α(b)=2.9 ppm·K^(-1).Interestingly,through thermal strain engineering,we successfully modulate the mode sequence and achieve a crossing of(1×2)-(2×1)modes with perfect degeneracy.Our study provides guidelines for future CaNb_(2)O_(6)nanodevices with additional degrees of freedom and new device functions. 展开更多
关键词 ANISOTROPY wide-bandgap materials nanomechanical resonators 2D crystal
在线阅读 下载PDF
Topology-optimized 2D silicon–air phononic crystal slabs for enhancing quality factor of laterally vibrating resonators
4
作者 Zihao Xie Yongqing Fu Jin Xie 《Nanotechnology and Precision Engineering》 2025年第1期36-44,共9页
Two-dimensional phononic crystal(PnC)slabs have shown advantages in enhancing the quality factors Q of piezoelectric laterally vibrating resonators(LVRs)through topology optimization.However,the narrow geometries of m... Two-dimensional phononic crystal(PnC)slabs have shown advantages in enhancing the quality factors Q of piezoelectric laterally vibrating resonators(LVRs)through topology optimization.However,the narrow geometries of most topology-optimized silicon–air 2D PnC slabs face significant fabrication challenges owing to restricted etching precision,and the anisotropic nature of silicon is frequently overlooked.To address these issues,this study employs the finite element method with appropriate discretization numbers and the genetic algorithm to optimize the structures and geometries of 2D silicon–air PnC slabs.The optimized square-lattice PnC slabs,featuring a rounded-cross structure oriented along the`110e directions of silicon,achieve an impressive relative bandgap(RBG)width of 82.2%for in-plane modes.When further tilted by 15° from the (100) directions within the(001)plane,the optimal RBG width is expanded to 91.4%.We fabricate and characterize thin-film piezoelectric-on-silicon LVRs,with or without optimized 2D PnC slabs.The presence of PnC slabs around anchors increases the series and parallel quality factors Q_(s) and Q_(p) from 2240 to 7118 and from 2237 to 7501,respectively,with the PnC slabs oriented along the`110e directions of silicon. 展开更多
关键词 Laterally vibrating resonators Phononic crystal slabs Topology optimization Quality factor
在线阅读 下载PDF
Reconfigurable microring resonators for multipurpose quantum light sources
5
作者 Yuxing Du Yingwen Liu +6 位作者 ChaoWu Pingyu Zhu Chang Zhao Miaomiao Yu Yan Wang Kaikai Zhang Ping Xu 《Chinese Physics B》 2025年第7期355-363,共9页
Microring resonators(MRRs)are extensively utilized in photonic chips for generating quantum light sources and enabling high-efficiency nonlinear frequency conversion.However,conventional microrings are typically optim... Microring resonators(MRRs)are extensively utilized in photonic chips for generating quantum light sources and enabling high-efficiency nonlinear frequency conversion.However,conventional microrings are typically optimized for a single specific function,limiting their versatility in multifunctional applications.In this work,we propose a reconfigurable microring resonator architecture designed to accommodate diverse application requirements.By integrating a cascaded Mach–Zehnder interferometer(MZI)as the microring coupler,the design enables independent control of the quality factors for pump,signal and idler photons through two tunable phase shifters.This capability allows for dynamic tuning and optimization of critical performance parameters,including photon-pair generation rate(PGR),spectral purity and single photon heralding efficiency(HE).The proposed structure is implemented on a silicon photonic chip,and experimental results exhibit a wide range of tunability for these parameters,with excellent agreement with theoretical predictions.This flexible and multi-functional design offers a promising pathway for high-performance,highly integrated on-chip quantum information processing systems. 展开更多
关键词 microring resonators cascaded Mach-Zehnder interferometer quantum light sources
原文传递
Recent advancements of nonlinear dynamics in mode coupled microresonators:a review 被引量:1
6
作者 Xuefeng WANG Zhan SHI +3 位作者 Qiqi YANG Yuzhi CHEN Xueyong WEI Ronghua HUAN 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期209-232,共24页
Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coup... Due to scale effects,micromechanical resonators offer an excellent platform for investigating the intrinsic mechanisms of nonlinear dynamical phenomena and their potential applications.This review focuses on mode-coupled micromechanical resonators,highlighting the latest advancements in four key areas:internal resonance,synchronization,frequency combs,and mode localization.The origin,development,and potential applications of each of these dynamic phenomena within mode-coupled micromechanical systems are investigated,with the goal of inspiring new ideas and directions for researchers in this field. 展开更多
关键词 mode coupling micro-electro-mechanical system(MEMS)resonator nonlinear dynamics
在线阅读 下载PDF
Sensing characteristics of feedback waveguide slot grating microring resonators
7
作者 ZHU Yanjie LIANG Longxue LIU Chunjuan 《Journal of Measurement Science and Instrumentation》 2025年第2期272-279,共8页
To enhance the quality factor and sensitivity of refractive index sensors,a feedback waveguide slot grating micro-ring resonator was proposed.An air-hole grating structure was introduced based on the slot micro-ring,u... To enhance the quality factor and sensitivity of refractive index sensors,a feedback waveguide slot grating micro-ring resonator was proposed.An air-hole grating structure was introduced based on the slot micro-ring,utilizing the reflection of the grating to achieve the electromagnetic-like induced transparency effect at different wavelengths.The high slope characteristics of the EIT-like effect enabled a higher quality factor and sensitivity.The transmission principle of the structure was analyzed using the transmission matrix method,and the transmission spectrum and mode field distribution were simulated using the finite-difference time-domain(FDTD)method,and the device structure parameters were adjusted for optimization.Simulation results show that the proposed structure achieves an EIT-like effect with a quality factor of 59267.5.In the analysis of refractive index sensing characteristics,the structure exhibits a sensitivity of 408.57 nm/RIU and a detection limit of 6.23×10^(-5) RIU.Therefore,the proposed structure achieved both a high quality factor and refractive index sensitivity,demonstrating excellent sensing performance for applications in environmental monitoring,biomedical fields,and other areas with broad market potential. 展开更多
关键词 integrated optics micro-ring resonator slot micro-ring GRATING refractive index sensor silicon waveguide
在线阅读 下载PDF
An all-optical 1*2 de-multiplexer based on two-dimensional nonlinear photonic crystal ring resonators 被引量:1
8
作者 Esmat Rafiee Fatemeh Abolghasemi 《Optoelectronics Letters》 EI 2024年第1期23-27,共5页
In this work,a new configuration of an all-optical nonlinear de-multiplexer gate based on two-dimensional(2D)photonic crystals(Ph C)is proposed.The gate is considered in the double-ring resonator shaped structure of s... In this work,a new configuration of an all-optical nonlinear de-multiplexer gate based on two-dimensional(2D)photonic crystals(Ph C)is proposed.The gate is considered in the double-ring resonator shaped structure of silicon rods.In order to have a more functional structure,some defect rods made of nonlinear materials were positioned in the structure.Considering the functionality of the structure,photonic band gap(PBG),field distribution and transmitted power spectra are investigated.Plane wave expansion and finite difference time domain(FDTD)methods are utilized for extracting the PBG and field distribution diagrams.The remarkable dimension,bit rate,maximum intensity and contrast ratio of 116.64μm2,3.125 Tbit/s,97%and 40.2 dB are obtained,respectively,which make the gate an appropriate candidate for utilization in optical integrated circuits. 展开更多
关键词 OPTICAL RESONATOR NONLINEAR
原文传递
Tunable superconducting resonators via on-chip control of local magnetic field
9
作者 王晨光 岳文诚 +13 位作者 涂学凑 迟天圆 郭婷婷 吕阳阳 董思宁 曹春海 张蜡宝 贾小氢 孙国柱 康琳 陈健 王永磊 王华兵 吴培亨 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期674-679,共6页
Superconducting microwave resonators play a pivotal role in superconducting quantum circuits.The ability to finetune their resonant frequencies provides enhanced control and flexibility.Here,we introduce a frequency-t... Superconducting microwave resonators play a pivotal role in superconducting quantum circuits.The ability to finetune their resonant frequencies provides enhanced control and flexibility.Here,we introduce a frequency-tunable superconducting coplanar waveguide resonator.By applying electrical currents through specifically designed ground wires,we achieve the generation and control of a localized magnetic field on the central line of the resonator,enabling continuous tuning of its resonant frequency.We demonstrate a frequency tuning range of 54.85 MHz in a 6.21-GHz resonator.This integrated and tunable resonator holds great potential as a dynamically tunable filter and as a key component of communication buses and memory elements in superconducting quantum computing. 展开更多
关键词 superconducting resonator NBN kinetic inductance tunable resonator
原文传递
Disorder effects in NbTiN superconducting resonators
10
作者 吕伟涛 支强 +2 位作者 胡洁 李婧 史生才 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期482-486,共5页
Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical... Disordered superconducting materials like NbTiN possess a high kinetic inductance fraction and an adjustable critical temperature, making them a good choice for low-temperature detectors. Their energy gap(D), critical temperature(T_(c)),and quasiparticle density of states(QDOS) distribution, however, deviate from the classical BCS theory due to the disorder effects. The Usadel equation, which takes account of elastic scattering, non-elastic scattering, and electro–phonon coupling,can be applied to explain and describe these deviations. This paper presents numerical simulations of the disorder effects based on the Usadel equation to investigate their effects on the △, Tc, QDOS distribution, and complex conductivity of the NbTiN film. Furthermore, NbTiN superconducting resonators with coplanar waveguide(CPW) structures are fabricated and characterized at different temperatures to validate our numerical simulations. The pair-breaking parameter α and the critical temperature in the pure state T_(c)^(P) of our NbTiN film are determined from the experimental results and numerical simulations. This study has significant implications for the development of low-temperature detectors made of disordered superconducting materials. 展开更多
关键词 effects of disorder NbTiN superconducting film Usadel equation complex conductivity superconducting resonator
原文传递
Layered metastructure containing freely-designed local resonators for wave attenuation
11
作者 Yu Li Huguang He +3 位作者 Jiang Feng Hailong Chen Fengnian Jin Hualin Fan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期23-31,共9页
Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical appr... Combining periodic layered structure with three-dimensional cylindrical local resonators,a hybrid metastructure with improved wave isolation ability was designed and investigated through theoretical and numerical approaches.The metastructure is composed of periodic rubber layers and concrete layers embedded with three-dimensional resonators,which can be freely designed with multi local resonant frequencies to attenuate vibrations at required frequencies and widen the attenuation bandgap.The metastructure can also effectively attenuate seismic responses.Compared with layered rubber-based structures,the metastructure has more excellent wave attenuation effects with greater attenuation and wider bandgap. 展开更多
关键词 Layered metastructure Local resonator Wave attenuation
在线阅读 下载PDF
Sound Transmission Loss of Helmholtz Resonators with Elastic Bottom Plate
12
作者 Liang Yang Jie Zhang +3 位作者 Jinfeng Xia Siwen Zhang Yang Yang Zhigang Chu 《Sound & Vibration》 EI 2024年第1期171-183,共13页
Helmholtz resonators are widely used to control low frequency noise propagating in pipes.In this paper,the elastic bottom plate of Helmholtz resonator is simplified as a single degree of freedom(SDOF)vibration system ... Helmholtz resonators are widely used to control low frequency noise propagating in pipes.In this paper,the elastic bottom plate of Helmholtz resonator is simplified as a single degree of freedom(SDOF)vibration system with acoustic excitation,and a one-dimensional lumped-parameter analytical model was developed to accurately characterize the structure-acoustic coupling and sound transmission loss(STL)of a Helmholtz resonator with an elastic bottom plate.The effect of dynamical parameters of elastic bottom plate on STL is analyzed by utilizing the model.A design criterion to circumvent the effect of wall elasticity of Helmholtz resonators is proposed,i.e.,the structural natural frequency of the wall should be greater than three times the resonant frequency of the resonator to avoid the adverse effects of wall elasticity.This study can provide guidance for the rapid and effective design of Helmholtz resonators. 展开更多
关键词 Helmholtz resonator bottom plate elasticity sound transmission loss
在线阅读 下载PDF
Hybrid silicon-barium-titanate tunable racetrack resonators based on chemical solution deposition
13
作者 Lei Zhang Xin Wang +10 位作者 Yong Zhang Jian Shen Chenglong Feng Jian Xu Min Liu Wei Wang Yongqiang Deng Yang Xu Yi Li Guofeng Yin Yikai Sua 《Advanced Photonics Nexus》 2024年第6期38-46,共9页
Integrated electro-optic tuning devices are essential parts of optical communication,sensors,and optical machine learning.Among the available materials,silicon is the most promising for on-chip signal processing and n... Integrated electro-optic tuning devices are essential parts of optical communication,sensors,and optical machine learning.Among the available materials,silicon is the most promising for on-chip signal processing and networks.However,silicon is limited owing to the absence of efficient Pockels electro-optic tuning.Herein,we propose a new hybrid silicon-barium-titanate(Si-BTO)integrated photonic platform,in which the BTO thin film is deposited by the chemical solution deposition(CSD)method.A tunable racetrack resonator is demonstrated to confirm the Pockels electro-optic tuning potential of the BTO thin film.The hybrid racetrack resonator has a tuning efficiency of 6.5 pm∕V and a high-power efficiency of 2.16 pm∕nW.Moreover,the intrinsic quality factor of the fabricated racetrack resonator is 48,000,which is the highest in hybrid Si-BTO platforms,to the best of our knowledge.The high-speed test verifies the stability of the racetrack resonator.The hybrid Si-BTO technology based on the CSD method has the advantages of low equipment cost and simple fabrication process,which holds promise for low-power electro-optic tuning devices. 展开更多
关键词 barium titanate chemical solution deposition electro-optic tuning RESONATOR
在线阅读 下载PDF
Rectangular optical filter based on high-order silicon microring resonators
14
作者 BAO Jia-qi YU Kan +1 位作者 WANG Li-jun YIN Juan-juan 《Optoelectronics Letters》 EI 2017年第4期268-270,共3页
The rectangular optical filter is one of the most important optical switching components in the dense wavelength divi- sion multiplexing (DWDM) fiber-optic communication system and the intelligent optical network. T... The rectangular optical filter is one of the most important optical switching components in the dense wavelength divi- sion multiplexing (DWDM) fiber-optic communication system and the intelligent optical network. The integrated high- order silicon microring resonator (MRR) is one of the best candidates to achieve rectangular filtering spectrum re- sponse. In general, the spectrum response rectangular degree of the single MRR is very low, so it cannot be used in the DWDM system. Using the high-order MRRs, the bandwidth of flat-top pass band, the out-of-band rejection degree and the roll-off coefficient of the edge will be improved obviously. In this paper, a rectangular optical filter based on high- order MRRs with uniform couplers is presented and demonstrated. Using 15 coupled race-track MRRs with 10 pm in radius, the 3 dB flat-top pass band of 2 nm, the out-of-band rejection ratio of 30 dB and the rising and falling edges of 48 dB/nm can be realized successfully. 展开更多
关键词 Bandpass filters Dense wavelength division multiplexing Optical communication Optical filters Optical resonators resonators
原文传递
Middle range wireless power transfer systems with multiple resonators 被引量:1
15
作者 陈新 张桂香 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2127-2136,共10页
The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, re... The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, resistance, parasitic capacitance, mutual inductance and S-parameters of coils & resonators were analyzed. The impedance matching method was used to optimize load power and transmission efficiency of the multi-resonator WPT system, and the impedance matching method was realized through adjusting the distances between the coils and resonators. Experiments show that the impedance matching method can effectively improve load power and transmission efficiency for middle range wireless power transfer systems with multiple resonators, at distances up to 3 times the coil radius with efficiency more than 70% and load power also close to 3.5 W. 展开更多
关键词 wireless power transfer middle range multiple resonators S-PARAMETERS two-port network impedance matching
在线阅读 下载PDF
The Multi-field Coupled Vibration Analysis of AT-Cut Quartz Crystal Resonators with Parallelism Error 被引量:1
16
作者 Mengjie Li Nian Li +4 位作者 Peng Li Dianzi Liu Iren EKuznetsova Zhenghua Qian Tingfeng Ma 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2023年第2期349-360,共12页
During the fabrication of quartz crystal resonators(QCRs),parallelism error is inevitably generated,which is rarely investigated.In order to reveal the influence of parallelism error on the working performance of QCRs... During the fabrication of quartz crystal resonators(QCRs),parallelism error is inevitably generated,which is rarely investigated.In order to reveal the influence of parallelism error on the working performance of QCRs,the coupled vibration of a non-parallel AT-cut quartz crystal plate with electrodes is systematically studied from the views of theoretical analysis and numerical simulations.The two-dimensional thermal incremental field equations are solved for the free vibration analysis via the coefficient-formed partial differential equation module of the COMSOL Multiphysics software,from which the frequency spectra,frequency–temperature curves,and mode shapes are discussed in detail.Additionally,the piezoelectric module is utilized to obtain the admittance response under different conditions.It is demonstrated that the parallelism error reduces the resonant frequency.Additionally,symmetry broken by the non-parallelism increases the probability of activity dip and is harmful to QCR’s thermal stability.However,if the top and bottom surfaces incline synchronously in the same direction,the influence of parallelism error is tiny.The conclusions achieved are helpful for the QCR design,and the methodology presented can also be applied to other wave devices. 展开更多
关键词 Quartz crystal resonators Parallelism error Resonant frequency Mode coupling ADMITTANCE
原文传递
A new model for film bulk acoustic wave resonators 被引量:1
17
作者 李玉金 元秀华 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期368-373,共6页
Based on cavity resonance and sandwich composite plate (3D) theoretical model for frequency dispersion characterization theory, this paper presents a universal three-dimensional and displacement profile shapes of th... Based on cavity resonance and sandwich composite plate (3D) theoretical model for frequency dispersion characterization theory, this paper presents a universal three-dimensional and displacement profile shapes of the film bulk acoustic resonator (FBARs). This model provides results of FBAR excited thickness-extensional and flexure modes, and the result of frequency dispersion is proposed in which the thicknesses and impedance of the electrodes and the piezoelectric material are taken into consideration; its further simplification shows good agreement with the modified Butterworth-Van-Dyke (MBVD) model. The displacement profile reflects the vibration stress distribution of electrode shapes and the lateral resonance effect, which depends on the axis ratio of the electrode shapes a/b. The results are consistent with the 3D finite element method modeling and laser interferometry measurement in general. 展开更多
关键词 film bulk acoustic wave resonators acoustic field vibration cavity resonance piezoelectric com-posite
原文传递
Orthogonally polarized RF optical single sideband generation with integrated ring resonators 被引量:1
18
作者 Mengxi Tan Xingyuan Xu +6 位作者 Jiayang Wu Thach G.Nguyen Sai T.Chu Brent E.Little Arnan Mitchell Roberto Morandotti David J.Moss 《Journal of Semiconductors》 EI CAS CSCD 2021年第4期53-66,共14页
We review recent work on narrowband orthogonally polarized optical RF single sideband generators as well as dualchannel equalization,both based on high-Q integrated ring resonators.The devices operate in the optical t... We review recent work on narrowband orthogonally polarized optical RF single sideband generators as well as dualchannel equalization,both based on high-Q integrated ring resonators.The devices operate in the optical telecommunications C-band and enable RF operation over a range of either fixed or thermally tuneable frequencies.They operate via TE/TM mode birefringence in the resonator.We achieve a very large dynamic tuning range of over 55 dB for both the optical carrier-to-sideband ratio and the dual-channel RF equalization for both the fixed and tunable devices. 展开更多
关键词 microwave photonics micro-ring resonators radio frequency
在线阅读 下载PDF
Thermoelastic Dissipation in Diamond Micro Hemispherical Shell Resonators 被引量:1
19
作者 FENG Jun ZHANG Weiping +2 位作者 LIU Zhaoyang GU Liutao CHENG Yuxiang 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第3期281-287,共7页
Maximizing quality factor (Q) is essential to improve the performance of micro hemispherical shell resonators (μHSRs) which can be used in microelectromechanical system (MEMS) gyroscopes to measure angular rotation.S... Maximizing quality factor (Q) is essential to improve the performance of micro hemispherical shell resonators (μHSRs) which can be used in microelectromechanical system (MEMS) gyroscopes to measure angular rotation.Several energy dissipation mechanisms limit Q,where thermoelastic dissipation (TED) is the major one and studied in this paper.Fully coupled thermo-mechanical equations for calculating TED are formulated,and then temperature distribution in a deformed μHSR and its quality factor related to TED (QTED) are obtained by solving the equations through a finite-element method (FEM).It has been found that different fabrication process conditions can obtain various geometrical parameters in our previous studies.In order to provide guidelines for the design and fabrication of μHSRs,the effects of their geometry on resonant frequency (f0) and QTED are studied.The change of anchor height and small enough anchor radius have no effect on both f0 and QTED,but the shell size including its radius,thickness and height has significant impact on f0 and QTED.It is found that whether a μHSR has lower f0 and higher QTED or higher f0 and higher QTED can be achieved by changing these geometrical parameters.The results presented in this paper can also be applied to other similar resonators. 展开更多
关键词 microelectromechanical system(MEMS) diamond hemispherical shell resonators quality factor thermoelastic dissipation(TED)
原文传递
Frequency response of a new kind of silicon nanoelectromechanical systems resonators
20
作者 于虹 袁为民 +5 位作者 刘春胜 岳东旭 吴士杰 顾勇 陈志远 黄庆安 《Journal of Southeast University(English Edition)》 EI CAS 2012年第3期310-314,共5页
Diffraction effects will bring about more difficulties in actuating resonators,which are electrostatically actuated ones with sub-micrometer or nanometer dimensions,and in detecting the frequency of the resonator by o... Diffraction effects will bring about more difficulties in actuating resonators,which are electrostatically actuated ones with sub-micrometer or nanometer dimensions,and in detecting the frequency of the resonator by optical detection.To avoid the effects of diffraction,a new type of nanoelectromechanical systems(NEMS) resonators is fabricated and actuated to oscillate.As a comparison,a doubly clamped silicon beam is also fabricated and studied.The smallest width and thickness of the resonators are 180 and 200 nm,respectively.The mechanical oscillation responses of these two kinds of resonators are studied experimentally.Results show that the resonant frequencies are from 6.8 to 20 MHz,much lower than the theoretical values.Based on the simulation,it is found that over-etching is one of the important factors which results in lower frequencies than the theoretical values.It is also found that the difference between resonance frequencies of two types of resonators decreases with the increase in beam length.The quality factor is improved greatly by lowering the pressure in the sample chamber at room temperature. 展开更多
关键词 nanoelectromechanical system resonant frequency over-etching nano-beam
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部