Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(...Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].展开更多
Microsphere and microcylinder-assisted microscopy(MAM)has grown steadily over the last decade and is still an intensively studied optical far-field imaging technique that promises to overcome the fundamental lateral r...Microsphere and microcylinder-assisted microscopy(MAM)has grown steadily over the last decade and is still an intensively studied optical far-field imaging technique that promises to overcome the fundamental lateral resolution limit of microscopy.However,the physical effects leading to resolution enhancement are still frequently debated.In addition,various configurations of MAM operating in transmission mode as well as reflection mode are examined,and the results are sometimes generalized.We present a rigorous simulation model of MAM and introduce a way to quantify the resolution enhancement.The lateral resolution is compared for microscope arrangements in reflection and transmission modes.Furthermore,we discuss different physical effects with respect to their contribution to resolution enhancement.The results indicate that the effects impacting the resolution in MAM strongly depend on the arrangement of the microscope and the measurement object.As a highlight,we outline that evanescent waves in combination with whispering gallery modes also improve the imaging capabilities,enabling super-resolution under certain circumstances.This result is contrary to the conclusions drawn from previous studies,where phase objects have been analyzed,and thus further emphasizes the complexity of the physical mechanisms underlying MAM.展开更多
Infrared(IR) optics have garnered significant attention due to growing demands in advanced optical imaging,communication, detection, and sensing. Among various IR devices, microlenses and microlens arrays offer distin...Infrared(IR) optics have garnered significant attention due to growing demands in advanced optical imaging,communication, detection, and sensing. Among various IR devices, microlenses and microlens arrays offer distinct advantages in integration capability, imaging precision, multifunctionality, and cost-effective manufacturing. We present a novel design of high-resolution achromatic microlens in the mid-IR region. Different from traditional high-refractive-index convex microlenses embedded within a low-index background medium, the current design is a low-index air concave microlens embedded within a high-index silicon medium. The designed air microlens exhibits capabilities in high-resolution imaging(~λ/6) and achromatic performance across the 3–5 μm mid-IR spectrum. The air microlens could be assembled in large-area microlens arrays or as part of multi-lens system.When combined with the HgCdTe detector system placed on the focal plane, the air microlens can find promising applications in high-resolution optical imaging and high-sensitivity photoelectric detection.展开更多
Block copolymer(BCP) nanolithography offers potential beyond traditional photolithographic limits, yet reliably producing low-defect, perpendicular domains remains challenging. We introduce a microenvironmentdriven is...Block copolymer(BCP) nanolithography offers potential beyond traditional photolithographic limits, yet reliably producing low-defect, perpendicular domains remains challenging. We introduce a microenvironmentdriven isothermal annealing method for directed self-assembly of BCP thin films. By annealing films at stable temperature in a quasi-sealed, inert-gas chamber, our approach promotes highly uniform perpendicular lamellar nanopatterns over large areas, effectively mitigating environmental fluctuations and emulating solvent-vapor annealing without solvent exposure. Resulting BCP structures demonstrate enhanced spatial coherence and notably low defect density. Furthermore, we successfully transfer these nanopatterns into precise metal nano-line arrays,confirming the method's capability for high-fidelity pattern replication. This scalable, solvent-free technique provides a robust, reliable route for high-resolution nanopatterning in advanced semiconductor manufacturing.展开更多
Gamma-ray imaging systems are powerful tools in radiographic diagnosis.However,the recorded images suffer from degradations such as noise,blurring,and downsampling,consequently failing to meet high-precision diagnosti...Gamma-ray imaging systems are powerful tools in radiographic diagnosis.However,the recorded images suffer from degradations such as noise,blurring,and downsampling,consequently failing to meet high-precision diagnostic requirements.In this paper,we propose a novel single-image super-resolution algorithm to enhance the spatial resolution of gamma-ray imaging systems.A mathematical model of the gamma-ray imaging system is established based on maximum a posteriori estimation.Within the plug-and-play framework,the half-quadratic splitting method is employed to decouple the data fidelit term and the regularization term.An image denoiser using convolutional neural networks is adopted as an implicit image prior,referred to as a deep denoiser prior,eliminating the need to explicitly design a regularization term.Furthermore,the impact of the image boundary condition on reconstruction results is considered,and a method for estimating image boundaries is introduced.The results show that the proposed algorithm can effectively addresses boundary artifacts.By increasing the pixel number of the reconstructed images,the proposed algorithm is capable of recovering more details.Notably,in both simulation and real experiments,the proposed algorithm is demonstrated to achieve subpixel resolution,surpassing the Nyquist sampling limit determined by the camera pixel size.展开更多
In February 2025,a startup satellite manufacturer,Albedo(Broomfield,CO,USA)is expected to launch its first satellite,Clarity-1,into orbit aboard SpaceX’s Transporter-13,a Falcon 9 rideshare mission[1].Like many imagi...In February 2025,a startup satellite manufacturer,Albedo(Broomfield,CO,USA)is expected to launch its first satellite,Clarity-1,into orbit aboard SpaceX’s Transporter-13,a Falcon 9 rideshare mission[1].Like many imaging satellites,Clarity-1’s mis-sion will be to take high-resolution aerial photos for clients in var-ious economic sectors including agriculture,insurance,energy,mapping,utilities,and defense.What makes this satellite unique is both its industry-leading 10 cm spatial resolution and its extre-mely low orbit of 200 km,far closer to Earth than the 450 km or higher orbits of most of its peers with similar missions.展开更多
Since 1960,there have been more than thirty UN peacekeeping missions across Africa,the most of any region in the context of the conflicts that have plagued the region for decades.It has become increasingly evident tha...Since 1960,there have been more than thirty UN peacekeeping missions across Africa,the most of any region in the context of the conflicts that have plagued the region for decades.It has become increasingly evident that official diplomacy is not enough to resolve these crises.Experience shows that given the people’s reliance on religion,religion has continued to act as a force of conflict prevention and resolution in the region.The role played by faith-based diplomats has gained the trust of the conflict parties such that it would be unwise for national and international actors to neglect their role in policy making and conflict prevention and resolution.展开更多
In this study,we comprehensively characterized and optimized a cryogenic pure CsI(pCsI)detector.We utilized a 2 cm×2 cm×2 cm cube crystal coupled with a HAMAMATSU R11065 photomultiplier tube,achieving a rema...In this study,we comprehensively characterized and optimized a cryogenic pure CsI(pCsI)detector.We utilized a 2 cm×2 cm×2 cm cube crystal coupled with a HAMAMATSU R11065 photomultiplier tube,achieving a remarkable light yield of 35.2 PE/ke V_(ee)and an unprecedented energy resolution of 6.9%at 59.54 ke V.Additionally,we measured the scintillation decay time of pCsI,which was significantly shorter than that of CsI(Na)at room temperature.Furthermore,we investigated the impact of temperature,surface treatment and crystal shape on light yield.Notably,the light yield peaked at approximately 20 K and remained stable within the range of 70–100 K.The light yield of the polished crystals was approximately 1.5 times greater than that of the ground crystals,whereas the crystal shape exhibited minimal influence on the light yield.These results are crucial for the design of the 10 kg pCsI detector for the future CLOVERS(coherent elastic neutrino(V)-nucleus scattering at China Spallation Neutron Source(CSNS))experiment.展开更多
This paper introduces some of the image processing techniques developed in the Canada Research Chair in Advanced Geomatics Image Processing Laboratory (CRC-AGIP Lab) and in the Department of Geodesy and Geomatics Engi...This paper introduces some of the image processing techniques developed in the Canada Research Chair in Advanced Geomatics Image Processing Laboratory (CRC-AGIP Lab) and in the Department of Geodesy and Geomatics Engineering (GGE) at the University of New Brunswick (UNB), Canada. The techniques were developed by innovatively/“smartly” utilizing the characteristics of the available very high resolution optical remote sensing images to solve important problems or create new applications in photogrammetry and remote sensing. The techniques to be introduced are: automated image fusion (UNB-PanSharp), satellite image online mapping, street view technology, moving vehicle detection using single set satellite imagery, supervised image segmentation, image matching in smooth areas, and change detection using images from different viewing angles. Because of their broad application potential, some of the techniques have made a global impact, and some have demonstrated the potential for a global impact.展开更多
As digital image techniques have been widely used, the requirements for high-resolution images become increasingly stringent. Traditional single-frame interpolation techniques cannot add new high frequency information...As digital image techniques have been widely used, the requirements for high-resolution images become increasingly stringent. Traditional single-frame interpolation techniques cannot add new high frequency information to the expanded images, and cannot improve resolution in deed. Multiframe-based techniques are effective ways for high-resolution image reconstruction, but their computation complexities and the difficulties in achieving image sequences limit their applications. An original method using an artificial neural network is proposed in this paper. Using the inherent merits in neural network, we can establish the mapping between high frequency components in low-resolution images and high-resolution images. Example applications and their results demonstrated the images reconstructed by our method are aesthetically and quantitatively (using the criteria of MSE and MAE) superior to the images acquired by common methods. Even for infrared images this method can give satisfactory results with high definition. In addition, a single-layer linear neural network is used in this paper, the computational complexity is very low, and this method can be realized in real time.展开更多
Acoustic-resolution photoacoustic microscopy(AR-PAM)suffers from degraded lateral resolution due to acoustic diffraction.Here,a resolution enhancement strategy for AR-PAM via a mean-reverting diffusion model was propo...Acoustic-resolution photoacoustic microscopy(AR-PAM)suffers from degraded lateral resolution due to acoustic diffraction.Here,a resolution enhancement strategy for AR-PAM via a mean-reverting diffusion model was proposed to achieve the transition from acoustic resolution to optical resolution.By modeling the degradation process from high-resolution image to low-resolution AR-PAM image with stable Gaussian noise(i.e.,mean state),a mean-reverting diffusion model is trained to learn prior information of the data distribution.Then the learned prior is employed to generate a high-resolution image from the AR-PAM image by iteratively sampling the noisy state.The performance of the proposed method was validated utilizing the simulated and in vivo experimental data under varying lateral resolutions and noise levels.The results show that an over 3.6-fold enhancement in lateral resolution was achieved.The image quality can be effectively improved,with a notable enhancement of∼66%in PSNR and∼480%in SSIM for in vivo data.展开更多
With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study...With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study mainly examines a method to deconvolve the LaBr_3:Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration.In the algorithm, the full width at half maximum(FWHM)of full energy peak was calculated by the cubic spline interpolation algorithm and calibrated by a square root of a quadratic function that changes with the energy. Additionally, the detector response matrix was constructed to deconvolve the gamma spectrum. Furthermore, an improved SNIP algorithm was proposed to eliminate the background. In the experiment, several independent peaks of ^(152)Eu,^(137)Cs, and ^(60)Co sources were detected by a LaBr_3:Ce scintillator that were selected to calibrate the energy resolution. The Boosted Gold algorithm was applied to deconvolve the gamma spectrum. The results showed that the peak position difference between the experiment and the deconvolution was within ± 2 channels and the relative error of peak area was approximately within 0.96–6.74%. Finally, a ^(133) Ba spectrum was deconvolved to verify the efficiency and accuracy of the algorithm in unfolding the overlapped peaks.展开更多
The CUG_CLMFM3D series comprises high-resolution three-dimensional lithospheric magnetic field models for China and its surroundings.The first version,CUG_CLMFM3Dv1,is a spherical cap harmonic model integrating the WD...The CUG_CLMFM3D series comprises high-resolution three-dimensional lithospheric magnetic field models for China and its surroundings.The first version,CUG_CLMFM3Dv1,is a spherical cap harmonic model integrating the WDMAMv2(World Digital Magnetic Anomaly Map version 2)global magnetic anomaly grid and nearly a decade of CHAMP(Challenging Minisatellite Payload for Geophysical Research and Application)satellite vector data.It achieves a~5.7 km resolution but has limitations:the WDMAMv2 grid lacks high-resolution data in the southern Xinjiang and Tibet regions,which leads to missing small-to medium-scale anomalies,and unfiltered CHAMP data introduce low-frequency conflicts with global spherical harmonic models.Above the altitude of 150 km,correlations with global models drop below 0.9.The second version,CUG_CLMFM3Dv2,addresses these issues by incorporating 5-km-resolution aeromagnetic data and rigorously processed satellite data from CHAMP,Swarm,CSES-1(China Seismo-Electromagnetic Satellite 1),and MSS-1(Macao Science Satellite 1).The comparison analysis shows that the CUG_CLMFM3Dv2 captures finer high-frequency details and more stable long-wavelength signals,offering improved magnetic anomaly maps for further geological and geophysical studies.展开更多
Extracting the three-dimensional (3D) information including location and height of a pedestrian is important for vision-based intelligent traffic monitoring systems. This paper tackles the relationship between pixels...Extracting the three-dimensional (3D) information including location and height of a pedestrian is important for vision-based intelligent traffic monitoring systems. This paper tackles the relationship between pixels′ actual size and pixels′ spatial resolution through a new method named pixel-resolution mapping (P-RM). The proposed P-RM method derives the equations for pixels′ spatial resolutions (XY-direction) and object′s height (Z-direction) in the real world, while introducing new tilt angle and mounting height calibration methods that do not require special calibration patterns placed in the real world. Both controlled laboratory and actual world experiments were performed and reported. The tests on 3D mensuration using proposed P-RM method showed overall better than 98.7% accuracy in laboratory environments and better than 96% accuracy in real world pedestrian height estimations. The 3D reconstructed images for measured points were also determined with the proposed P-RM method which shows that the proposed method provides a general algorithm for 3D information extraction.展开更多
The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled h...The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled hyperonantihyperon pairs to be produced at Super Tau-Charm Facility(STCF),the CP asymmetry of hyperon is expected to be tested with a statistical sensitivity of 10^(−4) or even better.To cope with the statistical precision,the systematic effects from various aspects are critical and need to be studied in detail.In this paper,the sensitivity effects on the CP violation parameters associated with the detector resolution,including those of the position and momentum,are studied and discussed in detail.The results provide valuable guidance for the design of STCF detector.展开更多
This article proposes a three-dimensional light field reconstruction method based on neural radiation field(NeRF)called Infrared NeRF for low resolution thermal infrared scenes.Based on the characteristics of the low ...This article proposes a three-dimensional light field reconstruction method based on neural radiation field(NeRF)called Infrared NeRF for low resolution thermal infrared scenes.Based on the characteristics of the low resolution thermal infrared imaging,various optimizations have been carried out to improve the speed and accuracy of thermal infrared 3D reconstruction.Firstly,inspired by Boltzmann's law of thermal radiation,distance is incorporated into the NeRF model for the first time,resulting in a nonlinear propagation of a single ray and a more accurate description of the physical property that infrared radiation intensity decreases with increasing distance.Secondly,in terms of improving inference speed,based on the phenomenon of high and low frequency distribution of foreground and background in infrared images,a multi ray non-uniform light synthesis strategy is proposed to make the model pay more attention to foreground objects in the scene,reduce the distribution of light in the background,and significantly reduce training time without reducing accuracy.In addition,compared to visible light scenes,infrared images only have a single channel,so fewer network parameters are required.Experiments using the same training data and data filtering method showed that,compared to the original NeRF,the improved network achieved an average improvement of 13.8%and 4.62%in PSNR and SSIM,respectively,while an average decreases of 46%in LPIPS.And thanks to the optimization of network layers and data filtering methods,training only takes about 25%of the original method's time to achieve convergence.Finally,for scenes with weak backgrounds,this article improves the inference speed of the model by 4-6 times compared to the original NeRF by limiting the query interval of the model.展开更多
This paper reported a new analytical method for the simultaneous determination of seven benzotriazole ultraviolet absorbers and seven antibacterial agents in textiles. After ultrasonic extraction for the textile sampl...This paper reported a new analytical method for the simultaneous determination of seven benzotriazole ultraviolet absorbers and seven antibacterial agents in textiles. After ultrasonic extraction for the textile samples in methanol, the solutions were analyzed by ultra-high performance liquid chromotagraphy/orbitrap high resolution mass spectrometry (UPLC/Orbitrap HRMS). It showed that a good chromatographic separation for these target compounds was achieved by a Hypersil GOLD column (100 mm × 2.1 mm × 1.9 μm) with a gradient elution of methanol and 0.1% aqueous formic acid solution (containing 0.5 mmol/L ammonium acetate). Triclosan and 4-chloro-3,5-dimethyl phenol (PCMX) were detected by the orbitrap HRMS in an electrospray ionization (ESI) negative mode while the other twelve target compounds were detected by orbitrap HRMS in ESI positive mode. Full scan experiment was performed over the range from m/z 100 to m/z 500. These target compounds were routinely detected with mass accuracy below 2 × 10-6 (2 ppm) at the optimized conditions. The results showed that the limits of detection (LODs) were in the range from 0.1 to 0.3 μg/kg. The blank samples were spiked at three levels and their average recoveries varied from 80.5% to 96.3% while the relative standard deviation (RSD) changed from 3.2% to 9.9%. The present method was also applied for the determination of those ultraviolet absorbers and antibacterial agents in the commercial textiles.展开更多
Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration para...Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration parameters.First,a Monte Carlo simulation model consistent with an actual measurement system was constructed to obtain the energy deposition distribution in the scintillation crystal.Subsequently,the regularization objective function is established based on weighted least squares and additional constraints.Additional constraints were designed using a special weighting scheme based on the incident gamma-ray energies.Subsequently,an intelligent algorithm was introduced to search for the optimal resolution calibration parameters by minimizing the objective function.The most appropriate regularization parameter was determined through mathematical experiments.When the regularization parameter was 30,the calibrated results exhibited the minimum RMSE.Simulations and test pit experiments were conducted to verify the performance of the proposed method.The simulation results demonstrate that the proposed algorithm can determine resolution calibration parameters more accurately than the traditional weighted least squares,and the test pit experimental results show that the R-squares between the calibrated and measured spectra are larger than 0.99.The accurate resolution calibration parameters determined by the proposed method lay the foundation for gamma-ray spectral processing and simulation benchmarking.展开更多
In this paper,we numerically analyze the factors determining localization precision and resolution in single emitter localization-based imaging systems.While previous studies have considered a limited set of parameter...In this paper,we numerically analyze the factors determining localization precision and resolution in single emitter localization-based imaging systems.While previous studies have considered a limited set of parameters,our numerical approach incorporates additional parameters with significant reference values,yielding a more comprehensive analysis of the results.We differentiate between the effects of additive and multiplicative noise on localization precision using numerical modeling and take the influence of the sampling frequency into account,computing the optimal sampling frequency for varying resolution requirements.Leveraging a suite of derived equations,we systematically simulate and quantify how variations in these parameters influence system performance.Furthermore,we provide guidelines for optimizing signal-to-noise ratio(SNR)requirements and pixel size selection based on point spread function(PSF)width in single emitter localization-based imaging systems.This numerically driven research offers critical insights for the analysis of more complex imaging systems.展开更多
Herein,we report the dynamic kinetic resolution asymmetric acylation ofγ-hydroxy-γ-perfluoroalkyl butenolides/phthalides catalyzed by amino acid-derived bifunctional organocatalysts,and a series of ketals were obtai...Herein,we report the dynamic kinetic resolution asymmetric acylation ofγ-hydroxy-γ-perfluoroalkyl butenolides/phthalides catalyzed by amino acid-derived bifunctional organocatalysts,and a series of ketals were obtained in high yields(up to 95%)and excellent enantioselectivities(up to 99%).In terms of synthetic utility,the reaction can be performed on a gram scale,and the product can be converted into potential biological nucleoside analog.展开更多
文摘Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].
基金supported by the German Research Foundation(DFG)(Grant Nos.LE 992/14-3 and LE 992/15-3).
文摘Microsphere and microcylinder-assisted microscopy(MAM)has grown steadily over the last decade and is still an intensively studied optical far-field imaging technique that promises to overcome the fundamental lateral resolution limit of microscopy.However,the physical effects leading to resolution enhancement are still frequently debated.In addition,various configurations of MAM operating in transmission mode as well as reflection mode are examined,and the results are sometimes generalized.We present a rigorous simulation model of MAM and introduce a way to quantify the resolution enhancement.The lateral resolution is compared for microscope arrangements in reflection and transmission modes.Furthermore,we discuss different physical effects with respect to their contribution to resolution enhancement.The results indicate that the effects impacting the resolution in MAM strongly depend on the arrangement of the microscope and the measurement object.As a highlight,we outline that evanescent waves in combination with whispering gallery modes also improve the imaging capabilities,enabling super-resolution under certain circumstances.This result is contrary to the conclusions drawn from previous studies,where phase objects have been analyzed,and thus further emphasizes the complexity of the physical mechanisms underlying MAM.
基金supported by the Science and Technology Project of Guangdong Province, China (Grant No. 2020B010190001)the National Natural Science Foundation of China (Grant No. 12434016)the National Key Research and Development Program of China (Grant No. 2018YFA0306200)。
文摘Infrared(IR) optics have garnered significant attention due to growing demands in advanced optical imaging,communication, detection, and sensing. Among various IR devices, microlenses and microlens arrays offer distinct advantages in integration capability, imaging precision, multifunctionality, and cost-effective manufacturing. We present a novel design of high-resolution achromatic microlens in the mid-IR region. Different from traditional high-refractive-index convex microlenses embedded within a low-index background medium, the current design is a low-index air concave microlens embedded within a high-index silicon medium. The designed air microlens exhibits capabilities in high-resolution imaging(~λ/6) and achromatic performance across the 3–5 μm mid-IR spectrum. The air microlens could be assembled in large-area microlens arrays or as part of multi-lens system.When combined with the HgCdTe detector system placed on the focal plane, the air microlens can find promising applications in high-resolution optical imaging and high-sensitivity photoelectric detection.
基金supported by the National Natural Science Foundation of China (Grant Nos.U20A20168 and 62404120)the National Key R&D Program (Grant No.2022YFB3204100)+2 种基金the Postdoctoral Fellowship Program of CPSF (Grant Nos.GZB20240335 and GZC20231216)the China Postdoctoral Science Foundation (Grant No.2025T180151)the Initiative Scientific Research Program of the School of Integrated Circuits,Tsinghua University。
文摘Block copolymer(BCP) nanolithography offers potential beyond traditional photolithographic limits, yet reliably producing low-defect, perpendicular domains remains challenging. We introduce a microenvironmentdriven isothermal annealing method for directed self-assembly of BCP thin films. By annealing films at stable temperature in a quasi-sealed, inert-gas chamber, our approach promotes highly uniform perpendicular lamellar nanopatterns over large areas, effectively mitigating environmental fluctuations and emulating solvent-vapor annealing without solvent exposure. Resulting BCP structures demonstrate enhanced spatial coherence and notably low defect density. Furthermore, we successfully transfer these nanopatterns into precise metal nano-line arrays,confirming the method's capability for high-fidelity pattern replication. This scalable, solvent-free technique provides a robust, reliable route for high-resolution nanopatterning in advanced semiconductor manufacturing.
基金supported by the National Natural Science Foundation of China(Grant No.12175183)。
文摘Gamma-ray imaging systems are powerful tools in radiographic diagnosis.However,the recorded images suffer from degradations such as noise,blurring,and downsampling,consequently failing to meet high-precision diagnostic requirements.In this paper,we propose a novel single-image super-resolution algorithm to enhance the spatial resolution of gamma-ray imaging systems.A mathematical model of the gamma-ray imaging system is established based on maximum a posteriori estimation.Within the plug-and-play framework,the half-quadratic splitting method is employed to decouple the data fidelit term and the regularization term.An image denoiser using convolutional neural networks is adopted as an implicit image prior,referred to as a deep denoiser prior,eliminating the need to explicitly design a regularization term.Furthermore,the impact of the image boundary condition on reconstruction results is considered,and a method for estimating image boundaries is introduced.The results show that the proposed algorithm can effectively addresses boundary artifacts.By increasing the pixel number of the reconstructed images,the proposed algorithm is capable of recovering more details.Notably,in both simulation and real experiments,the proposed algorithm is demonstrated to achieve subpixel resolution,surpassing the Nyquist sampling limit determined by the camera pixel size.
文摘In February 2025,a startup satellite manufacturer,Albedo(Broomfield,CO,USA)is expected to launch its first satellite,Clarity-1,into orbit aboard SpaceX’s Transporter-13,a Falcon 9 rideshare mission[1].Like many imaging satellites,Clarity-1’s mis-sion will be to take high-resolution aerial photos for clients in var-ious economic sectors including agriculture,insurance,energy,mapping,utilities,and defense.What makes this satellite unique is both its industry-leading 10 cm spatial resolution and its extre-mely low orbit of 200 km,far closer to Earth than the 450 km or higher orbits of most of its peers with similar missions.
文摘Since 1960,there have been more than thirty UN peacekeeping missions across Africa,the most of any region in the context of the conflicts that have plagued the region for decades.It has become increasingly evident that official diplomacy is not enough to resolve these crises.Experience shows that given the people’s reliance on religion,religion has continued to act as a force of conflict prevention and resolution in the region.The role played by faith-based diplomats has gained the trust of the conflict parties such that it would be unwise for national and international actors to neglect their role in policy making and conflict prevention and resolution.
基金supported by the National Key R&D Program of China(No.2022YFA1602204)the National Natural Science Foundation of China(Nos.12175241,12221005)+2 种基金the Fundamental Research Funds for the Central Universitiesthe International Partnership Program of the Chinese Academy of Sciences(No.211134KYSB20200057)the Double First-Class University Project Foundation of USTC。
文摘In this study,we comprehensively characterized and optimized a cryogenic pure CsI(pCsI)detector.We utilized a 2 cm×2 cm×2 cm cube crystal coupled with a HAMAMATSU R11065 photomultiplier tube,achieving a remarkable light yield of 35.2 PE/ke V_(ee)and an unprecedented energy resolution of 6.9%at 59.54 ke V.Additionally,we measured the scintillation decay time of pCsI,which was significantly shorter than that of CsI(Na)at room temperature.Furthermore,we investigated the impact of temperature,surface treatment and crystal shape on light yield.Notably,the light yield peaked at approximately 20 K and remained stable within the range of 70–100 K.The light yield of the polished crystals was approximately 1.5 times greater than that of the ground crystals,whereas the crystal shape exhibited minimal influence on the light yield.These results are crucial for the design of the 10 kg pCsI detector for the future CLOVERS(coherent elastic neutrino(V)-nucleus scattering at China Spallation Neutron Source(CSNS))experiment.
文摘This paper introduces some of the image processing techniques developed in the Canada Research Chair in Advanced Geomatics Image Processing Laboratory (CRC-AGIP Lab) and in the Department of Geodesy and Geomatics Engineering (GGE) at the University of New Brunswick (UNB), Canada. The techniques were developed by innovatively/“smartly” utilizing the characteristics of the available very high resolution optical remote sensing images to solve important problems or create new applications in photogrammetry and remote sensing. The techniques to be introduced are: automated image fusion (UNB-PanSharp), satellite image online mapping, street view technology, moving vehicle detection using single set satellite imagery, supervised image segmentation, image matching in smooth areas, and change detection using images from different viewing angles. Because of their broad application potential, some of the techniques have made a global impact, and some have demonstrated the potential for a global impact.
文摘As digital image techniques have been widely used, the requirements for high-resolution images become increasingly stringent. Traditional single-frame interpolation techniques cannot add new high frequency information to the expanded images, and cannot improve resolution in deed. Multiframe-based techniques are effective ways for high-resolution image reconstruction, but their computation complexities and the difficulties in achieving image sequences limit their applications. An original method using an artificial neural network is proposed in this paper. Using the inherent merits in neural network, we can establish the mapping between high frequency components in low-resolution images and high-resolution images. Example applications and their results demonstrated the images reconstructed by our method are aesthetically and quantitatively (using the criteria of MSE and MAE) superior to the images acquired by common methods. Even for infrared images this method can give satisfactory results with high definition. In addition, a single-layer linear neural network is used in this paper, the computational complexity is very low, and this method can be realized in real time.
基金pported by the National Natural Science Foundation of China(62265011 and 62122033)Jiangxi Provincial Natural Science Foundation(20224BAB212006 and 20232BAB 202038)National Key Research and Develop-ment Program of China(2023YFF1204302)。
文摘Acoustic-resolution photoacoustic microscopy(AR-PAM)suffers from degraded lateral resolution due to acoustic diffraction.Here,a resolution enhancement strategy for AR-PAM via a mean-reverting diffusion model was proposed to achieve the transition from acoustic resolution to optical resolution.By modeling the degradation process from high-resolution image to low-resolution AR-PAM image with stable Gaussian noise(i.e.,mean state),a mean-reverting diffusion model is trained to learn prior information of the data distribution.Then the learned prior is employed to generate a high-resolution image from the AR-PAM image by iteratively sampling the noisy state.The performance of the proposed method was validated utilizing the simulated and in vivo experimental data under varying lateral resolutions and noise levels.The results show that an over 3.6-fold enhancement in lateral resolution was achieved.The image quality can be effectively improved,with a notable enhancement of∼66%in PSNR and∼480%in SSIM for in vivo data.
基金supported by the National Natural Science Foundation of China(Nos.41374130 and 41604154)
文摘With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study mainly examines a method to deconvolve the LaBr_3:Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration.In the algorithm, the full width at half maximum(FWHM)of full energy peak was calculated by the cubic spline interpolation algorithm and calibrated by a square root of a quadratic function that changes with the energy. Additionally, the detector response matrix was constructed to deconvolve the gamma spectrum. Furthermore, an improved SNIP algorithm was proposed to eliminate the background. In the experiment, several independent peaks of ^(152)Eu,^(137)Cs, and ^(60)Co sources were detected by a LaBr_3:Ce scintillator that were selected to calibrate the energy resolution. The Boosted Gold algorithm was applied to deconvolve the gamma spectrum. The results showed that the peak position difference between the experiment and the deconvolution was within ± 2 channels and the relative error of peak area was approximately within 0.96–6.74%. Finally, a ^(133) Ba spectrum was deconvolved to verify the efficiency and accuracy of the algorithm in unfolding the overlapped peaks.
基金supported by the National Natural Science Foundation of China(Grant Nos.42250103,42174090,42250101,42250102,and 41774091)the Macao Foundation+1 种基金the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(Grant No.GLAB2023ZR02)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(Grant No.MSFGPMR2022-4)。
文摘The CUG_CLMFM3D series comprises high-resolution three-dimensional lithospheric magnetic field models for China and its surroundings.The first version,CUG_CLMFM3Dv1,is a spherical cap harmonic model integrating the WDMAMv2(World Digital Magnetic Anomaly Map version 2)global magnetic anomaly grid and nearly a decade of CHAMP(Challenging Minisatellite Payload for Geophysical Research and Application)satellite vector data.It achieves a~5.7 km resolution but has limitations:the WDMAMv2 grid lacks high-resolution data in the southern Xinjiang and Tibet regions,which leads to missing small-to medium-scale anomalies,and unfiltered CHAMP data introduce low-frequency conflicts with global spherical harmonic models.Above the altitude of 150 km,correlations with global models drop below 0.9.The second version,CUG_CLMFM3Dv2,addresses these issues by incorporating 5-km-resolution aeromagnetic data and rigorously processed satellite data from CHAMP,Swarm,CSES-1(China Seismo-Electromagnetic Satellite 1),and MSS-1(Macao Science Satellite 1).The comparison analysis shows that the CUG_CLMFM3Dv2 captures finer high-frequency details and more stable long-wavelength signals,offering improved magnetic anomaly maps for further geological and geophysical studies.
文摘Extracting the three-dimensional (3D) information including location and height of a pedestrian is important for vision-based intelligent traffic monitoring systems. This paper tackles the relationship between pixels′ actual size and pixels′ spatial resolution through a new method named pixel-resolution mapping (P-RM). The proposed P-RM method derives the equations for pixels′ spatial resolutions (XY-direction) and object′s height (Z-direction) in the real world, while introducing new tilt angle and mounting height calibration methods that do not require special calibration patterns placed in the real world. Both controlled laboratory and actual world experiments were performed and reported. The tests on 3D mensuration using proposed P-RM method showed overall better than 98.7% accuracy in laboratory environments and better than 96% accuracy in real world pedestrian height estimations. The 3D reconstructed images for measured points were also determined with the proposed P-RM method which shows that the proposed method provides a general algorithm for 3D information extraction.
基金supported by the National Key R&D Program of China(2022YFA1602200)the International Partnership Program of the Chinese Academy of Sciences(211134KYSB20200057).
文摘The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled hyperonantihyperon pairs to be produced at Super Tau-Charm Facility(STCF),the CP asymmetry of hyperon is expected to be tested with a statistical sensitivity of 10^(−4) or even better.To cope with the statistical precision,the systematic effects from various aspects are critical and need to be studied in detail.In this paper,the sensitivity effects on the CP violation parameters associated with the detector resolution,including those of the position and momentum,are studied and discussed in detail.The results provide valuable guidance for the design of STCF detector.
基金Support by the Fundamental Research Funds for the Central Universities(2024300443)the National Natural Science Foundation of China(NSFC)Young Scientists Fund(62405131)。
文摘This article proposes a three-dimensional light field reconstruction method based on neural radiation field(NeRF)called Infrared NeRF for low resolution thermal infrared scenes.Based on the characteristics of the low resolution thermal infrared imaging,various optimizations have been carried out to improve the speed and accuracy of thermal infrared 3D reconstruction.Firstly,inspired by Boltzmann's law of thermal radiation,distance is incorporated into the NeRF model for the first time,resulting in a nonlinear propagation of a single ray and a more accurate description of the physical property that infrared radiation intensity decreases with increasing distance.Secondly,in terms of improving inference speed,based on the phenomenon of high and low frequency distribution of foreground and background in infrared images,a multi ray non-uniform light synthesis strategy is proposed to make the model pay more attention to foreground objects in the scene,reduce the distribution of light in the background,and significantly reduce training time without reducing accuracy.In addition,compared to visible light scenes,infrared images only have a single channel,so fewer network parameters are required.Experiments using the same training data and data filtering method showed that,compared to the original NeRF,the improved network achieved an average improvement of 13.8%and 4.62%in PSNR and SSIM,respectively,while an average decreases of 46%in LPIPS.And thanks to the optimization of network layers and data filtering methods,training only takes about 25%of the original method's time to achieve convergence.Finally,for scenes with weak backgrounds,this article improves the inference speed of the model by 4-6 times compared to the original NeRF by limiting the query interval of the model.
文摘This paper reported a new analytical method for the simultaneous determination of seven benzotriazole ultraviolet absorbers and seven antibacterial agents in textiles. After ultrasonic extraction for the textile samples in methanol, the solutions were analyzed by ultra-high performance liquid chromotagraphy/orbitrap high resolution mass spectrometry (UPLC/Orbitrap HRMS). It showed that a good chromatographic separation for these target compounds was achieved by a Hypersil GOLD column (100 mm × 2.1 mm × 1.9 μm) with a gradient elution of methanol and 0.1% aqueous formic acid solution (containing 0.5 mmol/L ammonium acetate). Triclosan and 4-chloro-3,5-dimethyl phenol (PCMX) were detected by the orbitrap HRMS in an electrospray ionization (ESI) negative mode while the other twelve target compounds were detected by orbitrap HRMS in ESI positive mode. Full scan experiment was performed over the range from m/z 100 to m/z 500. These target compounds were routinely detected with mass accuracy below 2 × 10-6 (2 ppm) at the optimized conditions. The results showed that the limits of detection (LODs) were in the range from 0.1 to 0.3 μg/kg. The blank samples were spiked at three levels and their average recoveries varied from 80.5% to 96.3% while the relative standard deviation (RSD) changed from 3.2% to 9.9%. The present method was also applied for the determination of those ultraviolet absorbers and antibacterial agents in the commercial textiles.
基金supported by the National Natural Science Foundation of China(No.41804141)。
文摘Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration parameters.First,a Monte Carlo simulation model consistent with an actual measurement system was constructed to obtain the energy deposition distribution in the scintillation crystal.Subsequently,the regularization objective function is established based on weighted least squares and additional constraints.Additional constraints were designed using a special weighting scheme based on the incident gamma-ray energies.Subsequently,an intelligent algorithm was introduced to search for the optimal resolution calibration parameters by minimizing the objective function.The most appropriate regularization parameter was determined through mathematical experiments.When the regularization parameter was 30,the calibrated results exhibited the minimum RMSE.Simulations and test pit experiments were conducted to verify the performance of the proposed method.The simulation results demonstrate that the proposed algorithm can determine resolution calibration parameters more accurately than the traditional weighted least squares,and the test pit experimental results show that the R-squares between the calibrated and measured spectra are larger than 0.99.The accurate resolution calibration parameters determined by the proposed method lay the foundation for gamma-ray spectral processing and simulation benchmarking.
基金Project supported by the National Key Research and Development Program of China(No.2022YFB3206000)the Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences(No.CI2023C009YG)the Research and Development Program of Jiaxing(No.2022AD10028)。
文摘In this paper,we numerically analyze the factors determining localization precision and resolution in single emitter localization-based imaging systems.While previous studies have considered a limited set of parameters,our numerical approach incorporates additional parameters with significant reference values,yielding a more comprehensive analysis of the results.We differentiate between the effects of additive and multiplicative noise on localization precision using numerical modeling and take the influence of the sampling frequency into account,computing the optimal sampling frequency for varying resolution requirements.Leveraging a suite of derived equations,we systematically simulate and quantify how variations in these parameters influence system performance.Furthermore,we provide guidelines for optimizing signal-to-noise ratio(SNR)requirements and pixel size selection based on point spread function(PSF)width in single emitter localization-based imaging systems.This numerically driven research offers critical insights for the analysis of more complex imaging systems.
基金supported by the National Natural Science Foundation of China(Nos.82130103,82151525 and 81903465)the Central Plains Scholars and Scientists Studio Fund(2018002)+1 种基金the Natural Science Foundation of Henan Province(No.212300410051)the Science and Technology Major Project of Henan Province(No.221100310300)。
文摘Herein,we report the dynamic kinetic resolution asymmetric acylation ofγ-hydroxy-γ-perfluoroalkyl butenolides/phthalides catalyzed by amino acid-derived bifunctional organocatalysts,and a series of ketals were obtained in high yields(up to 95%)and excellent enantioselectivities(up to 99%).In terms of synthetic utility,the reaction can be performed on a gram scale,and the product can be converted into potential biological nucleoside analog.