In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are...In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are also proposed.These applications apply architectures such as distributed learning,resource sharing,and arithmetic trading,which make high demands on identity authentication,asset authentication,resource addressing,and service location.Therefore,an efficient,secure,and trustworthy Industrial Internet identity resolution system is needed.However,most of the traditional identity resolution systems follow DNS architecture or tree structure,which has the risk of a single point of failure and DDoS attack.And they cannot guarantee the security and privacy of digital identity,personal assets,and device information.So we consider a decentralized approach for identity management,identity authentication,and asset verification.In this paper,we propose a distributed trusted active identity resolution system based on the inter-planetary file system(IPFS)and non-fungible token(NFT),which can provide distributed identity resolution services.And we have designed the system architecture,identity service process,load balancing strategy and smart contract service.In addition,we use Jmeter to verify the performance of the system,and the results show that the system has good high concurrent performance and robustness.展开更多
The proof system, based on resolution method, has become quite popular in automatic theorem proving, because this method is simple to implement. At present many kinds of extensions for resolution method are known: Re...The proof system, based on resolution method, has become quite popular in automatic theorem proving, because this method is simple to implement. At present many kinds of extensions for resolution method are known: Resolution with restricted number of variables in disjuncts, resolution over Linear Equations, Cutting planes, etc. For Classical, Intuitionistic and Minimal (Johansson's) propositional logics, the authors introduce the family of resolution systems with full substitution rule (SRC, SRI and SRM) and with e-restricted substitution rule (SeRC, SeRf and SeRM), where the number of substituted formula connectives is bounded by . The authors show that for each of mentioned logic the SR-type system (in tree form) is polynomially equivalent to Frege systems by size, but for every ~' 〉 0, Se+lR-type has exponential speed-up over the SeR-type (in tree form).展开更多
Identification and resolution system of the industrial Internet is the“neural hub”of the industrial Internet for coordination.Catastrophic damage to the whole industrial Internet industry ecology may be caused if th...Identification and resolution system of the industrial Internet is the“neural hub”of the industrial Internet for coordination.Catastrophic damage to the whole industrial Internet industry ecology may be caused if the identification and resolution system is attacked.Moreover,it may become a threat to national security.Therefore,security plays an important role in identification and resolution system of the industrial Internet.In this paper,an innovative security risk analysis model is proposed for the first time,which can help control risks from the root at the initial stage of industrial Internet construction,provide guidance for related enterprises in the early design stage of identification and resolution system of the industrial Internet,and promote the healthy and sustainable development of the industrial identification and resolution system.展开更多
Gamma-ray imaging systems are powerful tools in radiographic diagnosis.However,the recorded images suffer from degradations such as noise,blurring,and downsampling,consequently failing to meet high-precision diagnosti...Gamma-ray imaging systems are powerful tools in radiographic diagnosis.However,the recorded images suffer from degradations such as noise,blurring,and downsampling,consequently failing to meet high-precision diagnostic requirements.In this paper,we propose a novel single-image super-resolution algorithm to enhance the spatial resolution of gamma-ray imaging systems.A mathematical model of the gamma-ray imaging system is established based on maximum a posteriori estimation.Within the plug-and-play framework,the half-quadratic splitting method is employed to decouple the data fidelit term and the regularization term.An image denoiser using convolutional neural networks is adopted as an implicit image prior,referred to as a deep denoiser prior,eliminating the need to explicitly design a regularization term.Furthermore,the impact of the image boundary condition on reconstruction results is considered,and a method for estimating image boundaries is introduced.The results show that the proposed algorithm can effectively addresses boundary artifacts.By increasing the pixel number of the reconstructed images,the proposed algorithm is capable of recovering more details.Notably,in both simulation and real experiments,the proposed algorithm is demonstrated to achieve subpixel resolution,surpassing the Nyquist sampling limit determined by the camera pixel size.展开更多
On-line chemical characterization of atmospheric particulate matter(PM)with soft ionization technique and ultrahigh-resolution Mass Spectrometry(UHRMS)provides molecular information of organic constituents in real tim...On-line chemical characterization of atmospheric particulate matter(PM)with soft ionization technique and ultrahigh-resolution Mass Spectrometry(UHRMS)provides molecular information of organic constituents in real time.Here we describe the development and application of an automatic measurement system that incorporates PM_(2.5)sampling,thermal desorption,atmospheric pressure photoionization,and UHRMS analysis.Molecular formulas of detected organic compounds were deducted from the accurate(±10 ppm)molecular weights obtained at a mass resolution of 100,000,allowing the identification of small organic compounds in PM_(2.5).Detection efficiencies of 28 standard compounds were determined and we found a high sensitivity and selectivity towards organic amines with limits of detection below 10 pg.As a proof of principle,PM_(2.5)samples collected off-line in winter in the urban area of Beijing were analyzed using the Ionization Module and HRMS of the system.The automatic system was then applied to conduct on-line measurements during the summer time at a time resolution of 2 hr.The detected organic compounds comprised mainly CHON and CHN compounds below 350 m/z.Pronounced seasonal variations in elemental composition were observed with shorter carbon backbones and higher O/C ratios in summer than that in winter.This result is consistent with stronger photochemical reactions and thus a higher oxidation state of organics in summer.Diurnal variation in signal intensity of each formula provides crucial information to reveal its source and formation pathway.In summary,the automatic measurement system serves as an important tool for the on-line characterization and identification of organic species in PM_(2.5).展开更多
Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution...Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution sparse compound-eye camera(CEC)based on dual-end collaborative optimization is proposed,which provides a cost-effective way to break through the trade-off among the field of view,resolution,and imaging speed.In the optical end,a sparse CEC based on liquid lenses is designed,which can realize large-field-of-view imaging in real time,and fast zooming within 5 ms.In the computational end,a disturbed degradation model driven super-resolution network(DDMDSR-Net)is proposed to deal with complex image degradation issues in actual imaging situations,achieving high-robustness and high-fidelity resolution enhancement.Based on the proposed dual-end collaborative optimization framework,the angular resolution of the CEC can be enhanced from 71.6"to 26.0",which provides a solution to realize high-resolution imaging for array camera dispensing with high optical hardware complexity and data transmission bandwidth.Experiments verify the advantages of the CEC based on dual-end collaborative optimization in high-fidelity reconstruction of real scene images,kilometer-level long-distance detection,and dynamic imaging and precise recognition of targets of interest.展开更多
The CUG_CLMFM3D series comprises high-resolution three-dimensional lithospheric magnetic field models for China and its surroundings.The first version,CUG_CLMFM3Dv1,is a spherical cap harmonic model integrating the WD...The CUG_CLMFM3D series comprises high-resolution three-dimensional lithospheric magnetic field models for China and its surroundings.The first version,CUG_CLMFM3Dv1,is a spherical cap harmonic model integrating the WDMAMv2(World Digital Magnetic Anomaly Map version 2)global magnetic anomaly grid and nearly a decade of CHAMP(Challenging Minisatellite Payload for Geophysical Research and Application)satellite vector data.It achieves a~5.7 km resolution but has limitations:the WDMAMv2 grid lacks high-resolution data in the southern Xinjiang and Tibet regions,which leads to missing small-to medium-scale anomalies,and unfiltered CHAMP data introduce low-frequency conflicts with global spherical harmonic models.Above the altitude of 150 km,correlations with global models drop below 0.9.The second version,CUG_CLMFM3Dv2,addresses these issues by incorporating 5-km-resolution aeromagnetic data and rigorously processed satellite data from CHAMP,Swarm,CSES-1(China Seismo-Electromagnetic Satellite 1),and MSS-1(Macao Science Satellite 1).The comparison analysis shows that the CUG_CLMFM3Dv2 captures finer high-frequency details and more stable long-wavelength signals,offering improved magnetic anomaly maps for further geological and geophysical studies.展开更多
The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled h...The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled hyperonantihyperon pairs to be produced at Super Tau-Charm Facility(STCF),the CP asymmetry of hyperon is expected to be tested with a statistical sensitivity of 10^(−4) or even better.To cope with the statistical precision,the systematic effects from various aspects are critical and need to be studied in detail.In this paper,the sensitivity effects on the CP violation parameters associated with the detector resolution,including those of the position and momentum,are studied and discussed in detail.The results provide valuable guidance for the design of STCF detector.展开更多
This article proposes a three-dimensional light field reconstruction method based on neural radiation field(NeRF)called Infrared NeRF for low resolution thermal infrared scenes.Based on the characteristics of the low ...This article proposes a three-dimensional light field reconstruction method based on neural radiation field(NeRF)called Infrared NeRF for low resolution thermal infrared scenes.Based on the characteristics of the low resolution thermal infrared imaging,various optimizations have been carried out to improve the speed and accuracy of thermal infrared 3D reconstruction.Firstly,inspired by Boltzmann's law of thermal radiation,distance is incorporated into the NeRF model for the first time,resulting in a nonlinear propagation of a single ray and a more accurate description of the physical property that infrared radiation intensity decreases with increasing distance.Secondly,in terms of improving inference speed,based on the phenomenon of high and low frequency distribution of foreground and background in infrared images,a multi ray non-uniform light synthesis strategy is proposed to make the model pay more attention to foreground objects in the scene,reduce the distribution of light in the background,and significantly reduce training time without reducing accuracy.In addition,compared to visible light scenes,infrared images only have a single channel,so fewer network parameters are required.Experiments using the same training data and data filtering method showed that,compared to the original NeRF,the improved network achieved an average improvement of 13.8%and 4.62%in PSNR and SSIM,respectively,while an average decreases of 46%in LPIPS.And thanks to the optimization of network layers and data filtering methods,training only takes about 25%of the original method's time to achieve convergence.Finally,for scenes with weak backgrounds,this article improves the inference speed of the model by 4-6 times compared to the original NeRF by limiting the query interval of the model.展开更多
Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(...Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].展开更多
Microsphere and microcylinder-assisted microscopy(MAM)has grown steadily over the last decade and is still an intensively studied optical far-field imaging technique that promises to overcome the fundamental lateral r...Microsphere and microcylinder-assisted microscopy(MAM)has grown steadily over the last decade and is still an intensively studied optical far-field imaging technique that promises to overcome the fundamental lateral resolution limit of microscopy.However,the physical effects leading to resolution enhancement are still frequently debated.In addition,various configurations of MAM operating in transmission mode as well as reflection mode are examined,and the results are sometimes generalized.We present a rigorous simulation model of MAM and introduce a way to quantify the resolution enhancement.The lateral resolution is compared for microscope arrangements in reflection and transmission modes.Furthermore,we discuss different physical effects with respect to their contribution to resolution enhancement.The results indicate that the effects impacting the resolution in MAM strongly depend on the arrangement of the microscope and the measurement object.As a highlight,we outline that evanescent waves in combination with whispering gallery modes also improve the imaging capabilities,enabling super-resolution under certain circumstances.This result is contrary to the conclusions drawn from previous studies,where phase objects have been analyzed,and thus further emphasizes the complexity of the physical mechanisms underlying MAM.展开更多
In February 2025,a startup satellite manufacturer,Albedo(Broomfield,CO,USA)is expected to launch its first satellite,Clarity-1,into orbit aboard SpaceX’s Transporter-13,a Falcon 9 rideshare mission[1].Like many imagi...In February 2025,a startup satellite manufacturer,Albedo(Broomfield,CO,USA)is expected to launch its first satellite,Clarity-1,into orbit aboard SpaceX’s Transporter-13,a Falcon 9 rideshare mission[1].Like many imaging satellites,Clarity-1’s mis-sion will be to take high-resolution aerial photos for clients in var-ious economic sectors including agriculture,insurance,energy,mapping,utilities,and defense.What makes this satellite unique is both its industry-leading 10 cm spatial resolution and its extre-mely low orbit of 200 km,far closer to Earth than the 450 km or higher orbits of most of its peers with similar missions.展开更多
Since 1960,there have been more than thirty UN peacekeeping missions across Africa,the most of any region in the context of the conflicts that have plagued the region for decades.It has become increasingly evident tha...Since 1960,there have been more than thirty UN peacekeeping missions across Africa,the most of any region in the context of the conflicts that have plagued the region for decades.It has become increasingly evident that official diplomacy is not enough to resolve these crises.Experience shows that given the people’s reliance on religion,religion has continued to act as a force of conflict prevention and resolution in the region.The role played by faith-based diplomats has gained the trust of the conflict parties such that it would be unwise for national and international actors to neglect their role in policy making and conflict prevention and resolution.展开更多
Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration para...Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration parameters.First,a Monte Carlo simulation model consistent with an actual measurement system was constructed to obtain the energy deposition distribution in the scintillation crystal.Subsequently,the regularization objective function is established based on weighted least squares and additional constraints.Additional constraints were designed using a special weighting scheme based on the incident gamma-ray energies.Subsequently,an intelligent algorithm was introduced to search for the optimal resolution calibration parameters by minimizing the objective function.The most appropriate regularization parameter was determined through mathematical experiments.When the regularization parameter was 30,the calibrated results exhibited the minimum RMSE.Simulations and test pit experiments were conducted to verify the performance of the proposed method.The simulation results demonstrate that the proposed algorithm can determine resolution calibration parameters more accurately than the traditional weighted least squares,and the test pit experimental results show that the R-squares between the calibrated and measured spectra are larger than 0.99.The accurate resolution calibration parameters determined by the proposed method lay the foundation for gamma-ray spectral processing and simulation benchmarking.展开更多
Infrared(IR) optics have garnered significant attention due to growing demands in advanced optical imaging,communication, detection, and sensing. Among various IR devices, microlenses and microlens arrays offer distin...Infrared(IR) optics have garnered significant attention due to growing demands in advanced optical imaging,communication, detection, and sensing. Among various IR devices, microlenses and microlens arrays offer distinct advantages in integration capability, imaging precision, multifunctionality, and cost-effective manufacturing. We present a novel design of high-resolution achromatic microlens in the mid-IR region. Different from traditional high-refractive-index convex microlenses embedded within a low-index background medium, the current design is a low-index air concave microlens embedded within a high-index silicon medium. The designed air microlens exhibits capabilities in high-resolution imaging(~λ/6) and achromatic performance across the 3–5 μm mid-IR spectrum. The air microlens could be assembled in large-area microlens arrays or as part of multi-lens system.When combined with the HgCdTe detector system placed on the focal plane, the air microlens can find promising applications in high-resolution optical imaging and high-sensitivity photoelectric detection.展开更多
AIM:To evaluate the effectiveness of 532,577,and 810 nm lasers as an initial treatment for non-resolving central serous chorioretinopathy(CSC).METHODS:Following the Cochrane Collaboration Handbook and Preferred Report...AIM:To evaluate the effectiveness of 532,577,and 810 nm lasers as an initial treatment for non-resolving central serous chorioretinopathy(CSC).METHODS:Following the Cochrane Collaboration Handbook and Preferred Reporting Items for Systematic Reviews and Meta-analysis(PRISMA)guidelines,randomized clinical trials(RCTs),non-randomized cohorts,observational studies,and case series(>10 cases)assessing these lasers for non-resolving CSC with≥3mo of follow-up were included.Non-resolving CSC was defined as persistent subretinal fluid(SRF)for>3-6mo.Searches were conducted in PubMed,the Cochrane Library,and Embase(January 17,2025).Two authors independently performed data extraction and assessed the risk of bias.The primary outcome was SRF resolution on optic cherence tomography(OCT)at 3-6mo.Central retinal thickness(CRT)and best-corrected visual acuity(BCVA)were secondary outcomes.A random-effects model was employed to calculate pooled proportions with 95%confidence intervals(CIs),and heterogeneity was assessed using I²and Q statistics.RESULTS:Twenty-four studies(3 RCTs,21 non-RCTs)involving 829 non-resolving CSC eyes(77.6%male,mean age 45.36y)were included.SRF resolution was 59%(95%CI:0.51-0.67;I2=72.6%),showing no significant difference between lasers.Trim-and-fill adjustment raised SRF resolution to 65%(95%CI:0.44-0.81).CRT significantly decreased by 126.32µm(95%CI:95.99-156.65;P<0.0001;I2=95.7%),with the largest reduction noted for the 810 nm laser.BCVA change was 0.10 logMAR(95%CI:-0.03 to 0.22;P=0.13;I2=96.6%),indicating no significant visual improvement.CONCLUSION:This Meta-analysis supports the use of 532,577,and 810 nm subthreshold micropulse lasers as equally effective in resolving SRF in non-resolving CSC.展开更多
Herein,we report the dynamic kinetic resolution asymmetric acylation ofγ-hydroxy-γ-perfluoroalkyl butenolides/phthalides catalyzed by amino acid-derived bifunctional organocatalysts,and a series of ketals were obtai...Herein,we report the dynamic kinetic resolution asymmetric acylation ofγ-hydroxy-γ-perfluoroalkyl butenolides/phthalides catalyzed by amino acid-derived bifunctional organocatalysts,and a series of ketals were obtained in high yields(up to 95%)and excellent enantioselectivities(up to 99%).In terms of synthetic utility,the reaction can be performed on a gram scale,and the product can be converted into potential biological nucleoside analog.展开更多
In this study,we comprehensively characterized and optimized a cryogenic pure CsI(pCsI)detector.We utilized a 2 cm×2 cm×2 cm cube crystal coupled with a HAMAMATSU R11065 photomultiplier tube,achieving a rema...In this study,we comprehensively characterized and optimized a cryogenic pure CsI(pCsI)detector.We utilized a 2 cm×2 cm×2 cm cube crystal coupled with a HAMAMATSU R11065 photomultiplier tube,achieving a remarkable light yield of 35.2 PE/ke V_(ee)and an unprecedented energy resolution of 6.9%at 59.54 ke V.Additionally,we measured the scintillation decay time of pCsI,which was significantly shorter than that of CsI(Na)at room temperature.Furthermore,we investigated the impact of temperature,surface treatment and crystal shape on light yield.Notably,the light yield peaked at approximately 20 K and remained stable within the range of 70–100 K.The light yield of the polished crystals was approximately 1.5 times greater than that of the ground crystals,whereas the crystal shape exhibited minimal influence on the light yield.These results are crucial for the design of the 10 kg pCsI detector for the future CLOVERS(coherent elastic neutrino(V)-nucleus scattering at China Spallation Neutron Source(CSNS))experiment.展开更多
A method is proposed for high-resolution neutron spectrum regulation across the entire energy domain.It was applied to in-reactor transuranic isotope production.This method comprises four modules:a neutron spectrum pe...A method is proposed for high-resolution neutron spectrum regulation across the entire energy domain.It was applied to in-reactor transuranic isotope production.This method comprises four modules:a neutron spectrum perturbation module,a neutron spectrum calculation module,a neutron spectrum valuation module,and an intelligent optimization module.It makes it possible to determine the optimal neutron spectrum for transuranic isotope production and a regulation scheme to establish this neutron spectrum within the reactor.The state-of-the-art production schemes for^(252)Cf and^(238)Pu in the High Flux Isotope Reactor were optimized,improving the yield of^(252)Cf by 12.16%and that of^(238)Pu by 7.53-25.84%.Moreover,the proposed optimization schemes only disperse certain nuclides into the targets without modifying the reactor design parameters,making them simple and feasible.The new method achieves efficient and precise neutron spectrum optimization,maximizing the production of transuranic isotopes.展开更多
基金supported by the National Natural Science Foundation of China(No.92267301).
文摘In recent years,the Industrial Internet and Industry 4.0 came into being.With the development of modern industrial intelligent manufacturing technology,digital twins,Web3 and many other digital entity applications are also proposed.These applications apply architectures such as distributed learning,resource sharing,and arithmetic trading,which make high demands on identity authentication,asset authentication,resource addressing,and service location.Therefore,an efficient,secure,and trustworthy Industrial Internet identity resolution system is needed.However,most of the traditional identity resolution systems follow DNS architecture or tree structure,which has the risk of a single point of failure and DDoS attack.And they cannot guarantee the security and privacy of digital identity,personal assets,and device information.So we consider a decentralized approach for identity management,identity authentication,and asset verification.In this paper,we propose a distributed trusted active identity resolution system based on the inter-planetary file system(IPFS)and non-fungible token(NFT),which can provide distributed identity resolution services.And we have designed the system architecture,identity service process,load balancing strategy and smart contract service.In addition,we use Jmeter to verify the performance of the system,and the results show that the system has good high concurrent performance and robustness.
文摘The proof system, based on resolution method, has become quite popular in automatic theorem proving, because this method is simple to implement. At present many kinds of extensions for resolution method are known: Resolution with restricted number of variables in disjuncts, resolution over Linear Equations, Cutting planes, etc. For Classical, Intuitionistic and Minimal (Johansson's) propositional logics, the authors introduce the family of resolution systems with full substitution rule (SRC, SRI and SRM) and with e-restricted substitution rule (SeRC, SeRf and SeRM), where the number of substituted formula connectives is bounded by . The authors show that for each of mentioned logic the SR-type system (in tree form) is polynomially equivalent to Frege systems by size, but for every ~' 〉 0, Se+lR-type has exponential speed-up over the SeR-type (in tree form).
基金supported by the 2018 Industrial Internet Innovation and Development Project--Industrial Internet Identification Resolution System National Top-Level Node Construction Project (Phase Ⅰ)
文摘Identification and resolution system of the industrial Internet is the“neural hub”of the industrial Internet for coordination.Catastrophic damage to the whole industrial Internet industry ecology may be caused if the identification and resolution system is attacked.Moreover,it may become a threat to national security.Therefore,security plays an important role in identification and resolution system of the industrial Internet.In this paper,an innovative security risk analysis model is proposed for the first time,which can help control risks from the root at the initial stage of industrial Internet construction,provide guidance for related enterprises in the early design stage of identification and resolution system of the industrial Internet,and promote the healthy and sustainable development of the industrial identification and resolution system.
基金supported by the National Natural Science Foundation of China(Grant No.12175183)。
文摘Gamma-ray imaging systems are powerful tools in radiographic diagnosis.However,the recorded images suffer from degradations such as noise,blurring,and downsampling,consequently failing to meet high-precision diagnostic requirements.In this paper,we propose a novel single-image super-resolution algorithm to enhance the spatial resolution of gamma-ray imaging systems.A mathematical model of the gamma-ray imaging system is established based on maximum a posteriori estimation.Within the plug-and-play framework,the half-quadratic splitting method is employed to decouple the data fidelit term and the regularization term.An image denoiser using convolutional neural networks is adopted as an implicit image prior,referred to as a deep denoiser prior,eliminating the need to explicitly design a regularization term.Furthermore,the impact of the image boundary condition on reconstruction results is considered,and a method for estimating image boundaries is introduced.The results show that the proposed algorithm can effectively addresses boundary artifacts.By increasing the pixel number of the reconstructed images,the proposed algorithm is capable of recovering more details.Notably,in both simulation and real experiments,the proposed algorithm is demonstrated to achieve subpixel resolution,surpassing the Nyquist sampling limit determined by the camera pixel size.
基金supported by the National Natural Science Foundation of China(No.41805105)。
文摘On-line chemical characterization of atmospheric particulate matter(PM)with soft ionization technique and ultrahigh-resolution Mass Spectrometry(UHRMS)provides molecular information of organic constituents in real time.Here we describe the development and application of an automatic measurement system that incorporates PM_(2.5)sampling,thermal desorption,atmospheric pressure photoionization,and UHRMS analysis.Molecular formulas of detected organic compounds were deducted from the accurate(±10 ppm)molecular weights obtained at a mass resolution of 100,000,allowing the identification of small organic compounds in PM_(2.5).Detection efficiencies of 28 standard compounds were determined and we found a high sensitivity and selectivity towards organic amines with limits of detection below 10 pg.As a proof of principle,PM_(2.5)samples collected off-line in winter in the urban area of Beijing were analyzed using the Ionization Module and HRMS of the system.The automatic system was then applied to conduct on-line measurements during the summer time at a time resolution of 2 hr.The detected organic compounds comprised mainly CHON and CHN compounds below 350 m/z.Pronounced seasonal variations in elemental composition were observed with shorter carbon backbones and higher O/C ratios in summer than that in winter.This result is consistent with stronger photochemical reactions and thus a higher oxidation state of organics in summer.Diurnal variation in signal intensity of each formula provides crucial information to reveal its source and formation pathway.In summary,the automatic measurement system serves as an important tool for the on-line characterization and identification of organic species in PM_(2.5).
基金financial supports from National Natural Science Foundation of China(Grant Nos.U23A20368 and 62175006)Academic Excellence Foundation of BUAA for PhD Students.
文摘Due to the limitations of spatial bandwidth product and data transmission bandwidth,the field of view,resolution,and imaging speed constrain each other in an optical imaging system.Here,a fast-zoom and high-resolution sparse compound-eye camera(CEC)based on dual-end collaborative optimization is proposed,which provides a cost-effective way to break through the trade-off among the field of view,resolution,and imaging speed.In the optical end,a sparse CEC based on liquid lenses is designed,which can realize large-field-of-view imaging in real time,and fast zooming within 5 ms.In the computational end,a disturbed degradation model driven super-resolution network(DDMDSR-Net)is proposed to deal with complex image degradation issues in actual imaging situations,achieving high-robustness and high-fidelity resolution enhancement.Based on the proposed dual-end collaborative optimization framework,the angular resolution of the CEC can be enhanced from 71.6"to 26.0",which provides a solution to realize high-resolution imaging for array camera dispensing with high optical hardware complexity and data transmission bandwidth.Experiments verify the advantages of the CEC based on dual-end collaborative optimization in high-fidelity reconstruction of real scene images,kilometer-level long-distance detection,and dynamic imaging and precise recognition of targets of interest.
基金supported by the National Natural Science Foundation of China(Grant Nos.42250103,42174090,42250101,42250102,and 41774091)the Macao Foundation+1 种基金the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(Grant No.GLAB2023ZR02)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(Grant No.MSFGPMR2022-4)。
文摘The CUG_CLMFM3D series comprises high-resolution three-dimensional lithospheric magnetic field models for China and its surroundings.The first version,CUG_CLMFM3Dv1,is a spherical cap harmonic model integrating the WDMAMv2(World Digital Magnetic Anomaly Map version 2)global magnetic anomaly grid and nearly a decade of CHAMP(Challenging Minisatellite Payload for Geophysical Research and Application)satellite vector data.It achieves a~5.7 km resolution but has limitations:the WDMAMv2 grid lacks high-resolution data in the southern Xinjiang and Tibet regions,which leads to missing small-to medium-scale anomalies,and unfiltered CHAMP data introduce low-frequency conflicts with global spherical harmonic models.Above the altitude of 150 km,correlations with global models drop below 0.9.The second version,CUG_CLMFM3Dv2,addresses these issues by incorporating 5-km-resolution aeromagnetic data and rigorously processed satellite data from CHAMP,Swarm,CSES-1(China Seismo-Electromagnetic Satellite 1),and MSS-1(Macao Science Satellite 1).The comparison analysis shows that the CUG_CLMFM3Dv2 captures finer high-frequency details and more stable long-wavelength signals,offering improved magnetic anomaly maps for further geological and geophysical studies.
基金supported by the National Key R&D Program of China(2022YFA1602200)the International Partnership Program of the Chinese Academy of Sciences(211134KYSB20200057).
文摘The study of the charge conjugation and parity(CP)violation of hyperon is the precision frontier for probing possible new CP violation sources beyond the standard model(SM).With the large number of quantum entangled hyperonantihyperon pairs to be produced at Super Tau-Charm Facility(STCF),the CP asymmetry of hyperon is expected to be tested with a statistical sensitivity of 10^(−4) or even better.To cope with the statistical precision,the systematic effects from various aspects are critical and need to be studied in detail.In this paper,the sensitivity effects on the CP violation parameters associated with the detector resolution,including those of the position and momentum,are studied and discussed in detail.The results provide valuable guidance for the design of STCF detector.
基金Support by the Fundamental Research Funds for the Central Universities(2024300443)the National Natural Science Foundation of China(NSFC)Young Scientists Fund(62405131)。
文摘This article proposes a three-dimensional light field reconstruction method based on neural radiation field(NeRF)called Infrared NeRF for low resolution thermal infrared scenes.Based on the characteristics of the low resolution thermal infrared imaging,various optimizations have been carried out to improve the speed and accuracy of thermal infrared 3D reconstruction.Firstly,inspired by Boltzmann's law of thermal radiation,distance is incorporated into the NeRF model for the first time,resulting in a nonlinear propagation of a single ray and a more accurate description of the physical property that infrared radiation intensity decreases with increasing distance.Secondly,in terms of improving inference speed,based on the phenomenon of high and low frequency distribution of foreground and background in infrared images,a multi ray non-uniform light synthesis strategy is proposed to make the model pay more attention to foreground objects in the scene,reduce the distribution of light in the background,and significantly reduce training time without reducing accuracy.In addition,compared to visible light scenes,infrared images only have a single channel,so fewer network parameters are required.Experiments using the same training data and data filtering method showed that,compared to the original NeRF,the improved network achieved an average improvement of 13.8%and 4.62%in PSNR and SSIM,respectively,while an average decreases of 46%in LPIPS.And thanks to the optimization of network layers and data filtering methods,training only takes about 25%of the original method's time to achieve convergence.Finally,for scenes with weak backgrounds,this article improves the inference speed of the model by 4-6 times compared to the original NeRF by limiting the query interval of the model.
文摘Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].
基金supported by the German Research Foundation(DFG)(Grant Nos.LE 992/14-3 and LE 992/15-3).
文摘Microsphere and microcylinder-assisted microscopy(MAM)has grown steadily over the last decade and is still an intensively studied optical far-field imaging technique that promises to overcome the fundamental lateral resolution limit of microscopy.However,the physical effects leading to resolution enhancement are still frequently debated.In addition,various configurations of MAM operating in transmission mode as well as reflection mode are examined,and the results are sometimes generalized.We present a rigorous simulation model of MAM and introduce a way to quantify the resolution enhancement.The lateral resolution is compared for microscope arrangements in reflection and transmission modes.Furthermore,we discuss different physical effects with respect to their contribution to resolution enhancement.The results indicate that the effects impacting the resolution in MAM strongly depend on the arrangement of the microscope and the measurement object.As a highlight,we outline that evanescent waves in combination with whispering gallery modes also improve the imaging capabilities,enabling super-resolution under certain circumstances.This result is contrary to the conclusions drawn from previous studies,where phase objects have been analyzed,and thus further emphasizes the complexity of the physical mechanisms underlying MAM.
文摘In February 2025,a startup satellite manufacturer,Albedo(Broomfield,CO,USA)is expected to launch its first satellite,Clarity-1,into orbit aboard SpaceX’s Transporter-13,a Falcon 9 rideshare mission[1].Like many imaging satellites,Clarity-1’s mis-sion will be to take high-resolution aerial photos for clients in var-ious economic sectors including agriculture,insurance,energy,mapping,utilities,and defense.What makes this satellite unique is both its industry-leading 10 cm spatial resolution and its extre-mely low orbit of 200 km,far closer to Earth than the 450 km or higher orbits of most of its peers with similar missions.
文摘Since 1960,there have been more than thirty UN peacekeeping missions across Africa,the most of any region in the context of the conflicts that have plagued the region for decades.It has become increasingly evident that official diplomacy is not enough to resolve these crises.Experience shows that given the people’s reliance on religion,religion has continued to act as a force of conflict prevention and resolution in the region.The role played by faith-based diplomats has gained the trust of the conflict parties such that it would be unwise for national and international actors to neglect their role in policy making and conflict prevention and resolution.
基金supported by the National Natural Science Foundation of China(No.41804141)。
文摘Energy resolution calibration is crucial for gamma-ray spectral analysis,as measured using a scintillation detector.A locally constrained regularization method was proposed to determine the resolution calibration parameters.First,a Monte Carlo simulation model consistent with an actual measurement system was constructed to obtain the energy deposition distribution in the scintillation crystal.Subsequently,the regularization objective function is established based on weighted least squares and additional constraints.Additional constraints were designed using a special weighting scheme based on the incident gamma-ray energies.Subsequently,an intelligent algorithm was introduced to search for the optimal resolution calibration parameters by minimizing the objective function.The most appropriate regularization parameter was determined through mathematical experiments.When the regularization parameter was 30,the calibrated results exhibited the minimum RMSE.Simulations and test pit experiments were conducted to verify the performance of the proposed method.The simulation results demonstrate that the proposed algorithm can determine resolution calibration parameters more accurately than the traditional weighted least squares,and the test pit experimental results show that the R-squares between the calibrated and measured spectra are larger than 0.99.The accurate resolution calibration parameters determined by the proposed method lay the foundation for gamma-ray spectral processing and simulation benchmarking.
基金supported by the Science and Technology Project of Guangdong Province, China (Grant No. 2020B010190001)the National Natural Science Foundation of China (Grant No. 12434016)the National Key Research and Development Program of China (Grant No. 2018YFA0306200)。
文摘Infrared(IR) optics have garnered significant attention due to growing demands in advanced optical imaging,communication, detection, and sensing. Among various IR devices, microlenses and microlens arrays offer distinct advantages in integration capability, imaging precision, multifunctionality, and cost-effective manufacturing. We present a novel design of high-resolution achromatic microlens in the mid-IR region. Different from traditional high-refractive-index convex microlenses embedded within a low-index background medium, the current design is a low-index air concave microlens embedded within a high-index silicon medium. The designed air microlens exhibits capabilities in high-resolution imaging(~λ/6) and achromatic performance across the 3–5 μm mid-IR spectrum. The air microlens could be assembled in large-area microlens arrays or as part of multi-lens system.When combined with the HgCdTe detector system placed on the focal plane, the air microlens can find promising applications in high-resolution optical imaging and high-sensitivity photoelectric detection.
文摘AIM:To evaluate the effectiveness of 532,577,and 810 nm lasers as an initial treatment for non-resolving central serous chorioretinopathy(CSC).METHODS:Following the Cochrane Collaboration Handbook and Preferred Reporting Items for Systematic Reviews and Meta-analysis(PRISMA)guidelines,randomized clinical trials(RCTs),non-randomized cohorts,observational studies,and case series(>10 cases)assessing these lasers for non-resolving CSC with≥3mo of follow-up were included.Non-resolving CSC was defined as persistent subretinal fluid(SRF)for>3-6mo.Searches were conducted in PubMed,the Cochrane Library,and Embase(January 17,2025).Two authors independently performed data extraction and assessed the risk of bias.The primary outcome was SRF resolution on optic cherence tomography(OCT)at 3-6mo.Central retinal thickness(CRT)and best-corrected visual acuity(BCVA)were secondary outcomes.A random-effects model was employed to calculate pooled proportions with 95%confidence intervals(CIs),and heterogeneity was assessed using I²and Q statistics.RESULTS:Twenty-four studies(3 RCTs,21 non-RCTs)involving 829 non-resolving CSC eyes(77.6%male,mean age 45.36y)were included.SRF resolution was 59%(95%CI:0.51-0.67;I2=72.6%),showing no significant difference between lasers.Trim-and-fill adjustment raised SRF resolution to 65%(95%CI:0.44-0.81).CRT significantly decreased by 126.32µm(95%CI:95.99-156.65;P<0.0001;I2=95.7%),with the largest reduction noted for the 810 nm laser.BCVA change was 0.10 logMAR(95%CI:-0.03 to 0.22;P=0.13;I2=96.6%),indicating no significant visual improvement.CONCLUSION:This Meta-analysis supports the use of 532,577,and 810 nm subthreshold micropulse lasers as equally effective in resolving SRF in non-resolving CSC.
基金supported by the National Natural Science Foundation of China(Nos.82130103,82151525 and 81903465)the Central Plains Scholars and Scientists Studio Fund(2018002)+1 种基金the Natural Science Foundation of Henan Province(No.212300410051)the Science and Technology Major Project of Henan Province(No.221100310300)。
文摘Herein,we report the dynamic kinetic resolution asymmetric acylation ofγ-hydroxy-γ-perfluoroalkyl butenolides/phthalides catalyzed by amino acid-derived bifunctional organocatalysts,and a series of ketals were obtained in high yields(up to 95%)and excellent enantioselectivities(up to 99%).In terms of synthetic utility,the reaction can be performed on a gram scale,and the product can be converted into potential biological nucleoside analog.
基金supported by the National Key R&D Program of China(No.2022YFA1602204)the National Natural Science Foundation of China(Nos.12175241,12221005)+2 种基金the Fundamental Research Funds for the Central Universitiesthe International Partnership Program of the Chinese Academy of Sciences(No.211134KYSB20200057)the Double First-Class University Project Foundation of USTC。
文摘In this study,we comprehensively characterized and optimized a cryogenic pure CsI(pCsI)detector.We utilized a 2 cm×2 cm×2 cm cube crystal coupled with a HAMAMATSU R11065 photomultiplier tube,achieving a remarkable light yield of 35.2 PE/ke V_(ee)and an unprecedented energy resolution of 6.9%at 59.54 ke V.Additionally,we measured the scintillation decay time of pCsI,which was significantly shorter than that of CsI(Na)at room temperature.Furthermore,we investigated the impact of temperature,surface treatment and crystal shape on light yield.Notably,the light yield peaked at approximately 20 K and remained stable within the range of 70–100 K.The light yield of the polished crystals was approximately 1.5 times greater than that of the ground crystals,whereas the crystal shape exhibited minimal influence on the light yield.These results are crucial for the design of the 10 kg pCsI detector for the future CLOVERS(coherent elastic neutrino(V)-nucleus scattering at China Spallation Neutron Source(CSNS))experiment.
基金sponsored by the National Natural Science Foundation of China(No.12305190)the Lingchuang Research Project of the China National Nuclear Corporation(CNNC)。
文摘A method is proposed for high-resolution neutron spectrum regulation across the entire energy domain.It was applied to in-reactor transuranic isotope production.This method comprises four modules:a neutron spectrum perturbation module,a neutron spectrum calculation module,a neutron spectrum valuation module,and an intelligent optimization module.It makes it possible to determine the optimal neutron spectrum for transuranic isotope production and a regulation scheme to establish this neutron spectrum within the reactor.The state-of-the-art production schemes for^(252)Cf and^(238)Pu in the High Flux Isotope Reactor were optimized,improving the yield of^(252)Cf by 12.16%and that of^(238)Pu by 7.53-25.84%.Moreover,the proposed optimization schemes only disperse certain nuclides into the targets without modifying the reactor design parameters,making them simple and feasible.The new method achieves efficient and precise neutron spectrum optimization,maximizing the production of transuranic isotopes.