Mn_(3)Si_(2)Te_(6) is a ferrimagnetic nodal-line semiconductor with colossal angular magnetoresistance at ambient pressure.In this work,we investigated the effect of hydrostatic pressure on its electrical transport pr...Mn_(3)Si_(2)Te_(6) is a ferrimagnetic nodal-line semiconductor with colossal angular magnetoresistance at ambient pressure.In this work,we investigated the effect of hydrostatic pressure on its electrical transport properties,magnetic transition,and crystal structure by measuring resistivity,DC and AC magnetic susceptibility,and XRD under various pressures up to~20 GPa.Our results confirmed the occurrence of pressure-induced structural transition at P_(c)≈10–12 GPa accompanied by a concurrent drop of room-temperature resistance in Mn_(3)Si_(2)Te_(6).In the low-pressure phase at PP_(c),the sample exhibits a metallic behavior in the whole temperature range and its resistivity exhibits a kink anomaly at T_(M),characteristic of critical scattering around a magnetic transition.Recovery of the Raman spectrum upon decompression indicated that pressure-induced structural transition is reversible without amorphization under hydrostatic pressure conditions.Our present work not only resolves some existing controversial issues but also provides new insights into pressure-driven diverse behaviors of Mn_(3)Si_(2)Te_(6).展开更多
基金supported by the National Key R&D Program of China (Grant Nos. 2023YFA1406100, 2022YFA1403900, 2024YFA1408400, 2021YFA1400200, 2022YFA1403800, and 2023YFA1406500)the National Natural Science Foundation of China (Grant Nos. 12174424, 12025408, 11921004, U22A6005, and 12274459)+1 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2023007)the Chinese Academy of Sciences President’s International Fellowship Initiative (Grant No. 2024PG0003)。
文摘Mn_(3)Si_(2)Te_(6) is a ferrimagnetic nodal-line semiconductor with colossal angular magnetoresistance at ambient pressure.In this work,we investigated the effect of hydrostatic pressure on its electrical transport properties,magnetic transition,and crystal structure by measuring resistivity,DC and AC magnetic susceptibility,and XRD under various pressures up to~20 GPa.Our results confirmed the occurrence of pressure-induced structural transition at P_(c)≈10–12 GPa accompanied by a concurrent drop of room-temperature resistance in Mn_(3)Si_(2)Te_(6).In the low-pressure phase at PP_(c),the sample exhibits a metallic behavior in the whole temperature range and its resistivity exhibits a kink anomaly at T_(M),characteristic of critical scattering around a magnetic transition.Recovery of the Raman spectrum upon decompression indicated that pressure-induced structural transition is reversible without amorphization under hydrostatic pressure conditions.Our present work not only resolves some existing controversial issues but also provides new insights into pressure-driven diverse behaviors of Mn_(3)Si_(2)Te_(6).