A reshock experiment for investigating the growth of material mixing driven by the Richtmyer–Meshkov instability has been conducted at the SG 100 kJ Laser Facility.We present a novel measurement technique for capturi...A reshock experiment for investigating the growth of material mixing driven by the Richtmyer–Meshkov instability has been conducted at the SG 100 kJ Laser Facility.We present a novel measurement technique for capturing the density field and the temporal evolution of the mixing width in rough aluminum subjected to reshocks under extreme conditions.The temporal evolution of the aluminum layer width obtained from backlit X-ray radiography demonstrates a sharp increase in width caused by reshocks,and simulations using the BHR-2 turbulent mixing model show excellent agreement with the measured aluminum layer width.Moreover,by utilizing a quasi-monochromatic X-ray imaging system at 5.2 keV,based on Bragg reflection from a spherically curved quartz crystal,we demonstrate direct quantification of the aluminum density field in mixed regions for the first time in a indirectly driven reshock experiment.The deviation between the calculated and actual density values is significantly less than 10%when the density of the aluminum region is below 0.7 g/cm3.The density field provides further information about variable-density turbulent mixing,which improves the constraints on simulations and enhances predictive capabilities for inertial confinement fusion target design and astrophysical shock scenarios.展开更多
The dynamics of the reshocked multi-mode Richtmyer-Meshkov instability is investigated using 513 × 257^2 three-dimensional ninth-order weighted essentially nonoscil- latory shock-capturing simulations. A two-mode...The dynamics of the reshocked multi-mode Richtmyer-Meshkov instability is investigated using 513 × 257^2 three-dimensional ninth-order weighted essentially nonoscil- latory shock-capturing simulations. A two-mode initial perturbation with superposed ran- dom noise is used to model the Mach 1.5 air/SF6 Vetter-Sturtevant shock tube experiment. The mass fraction and enstrophy isosurfaces, and density cross-sections are utilized to show the detailed flow structure before, during, and after reshock. It is shown that the mixing layer growth agrees well with the experimentally measured growth rate before and after reshock. The post-reshock growth rate is also in good agreement with the prediction of the Mikaelian model. A parametric study of the sensitivity of the layer growth to the choice of amplitudes of the short and long wavelength initial interfacial perturbation is also pre- sented. Finally, the amplification effects of reshock are quantified using the evolution of the turbulent kinetic energy and turbulent enstrophy spectra, as well as the evolution of the baroclinic enstrophy production, buoyancy production, and shear production terms in the enstrophy and turbulent kinetic transport equations.展开更多
基金supported by the National Key R&D Program of China(Grant No.2023YFA1608400)the National Natural Science Foundation of China(Grant Nos.12205275 and 12588301).
文摘A reshock experiment for investigating the growth of material mixing driven by the Richtmyer–Meshkov instability has been conducted at the SG 100 kJ Laser Facility.We present a novel measurement technique for capturing the density field and the temporal evolution of the mixing width in rough aluminum subjected to reshocks under extreme conditions.The temporal evolution of the aluminum layer width obtained from backlit X-ray radiography demonstrates a sharp increase in width caused by reshocks,and simulations using the BHR-2 turbulent mixing model show excellent agreement with the measured aluminum layer width.Moreover,by utilizing a quasi-monochromatic X-ray imaging system at 5.2 keV,based on Bragg reflection from a spherically curved quartz crystal,we demonstrate direct quantification of the aluminum density field in mixed regions for the first time in a indirectly driven reshock experiment.The deviation between the calculated and actual density values is significantly less than 10%when the density of the aluminum region is below 0.7 g/cm3.The density field provides further information about variable-density turbulent mixing,which improves the constraints on simulations and enhances predictive capabilities for inertial confinement fusion target design and astrophysical shock scenarios.
基金performed under the auspices of the U.S.Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
文摘The dynamics of the reshocked multi-mode Richtmyer-Meshkov instability is investigated using 513 × 257^2 three-dimensional ninth-order weighted essentially nonoscil- latory shock-capturing simulations. A two-mode initial perturbation with superposed ran- dom noise is used to model the Mach 1.5 air/SF6 Vetter-Sturtevant shock tube experiment. The mass fraction and enstrophy isosurfaces, and density cross-sections are utilized to show the detailed flow structure before, during, and after reshock. It is shown that the mixing layer growth agrees well with the experimentally measured growth rate before and after reshock. The post-reshock growth rate is also in good agreement with the prediction of the Mikaelian model. A parametric study of the sensitivity of the layer growth to the choice of amplitudes of the short and long wavelength initial interfacial perturbation is also pre- sented. Finally, the amplification effects of reshock are quantified using the evolution of the turbulent kinetic energy and turbulent enstrophy spectra, as well as the evolution of the baroclinic enstrophy production, buoyancy production, and shear production terms in the enstrophy and turbulent kinetic transport equations.